SUPPLEMENTAL MATERIALS

IL-6 contributes to deep vein thrombosis and is negatively regulated by miR-338-5p

Yunhong Zhang, MD^{1.2}, Zhen Zhang, PhD², Ran Wei, PhD², Xiuming Miao, MD³, Shangwen Sun, MD^{2.4}, Gang Liang, MD³, Chu Chu, MD^{1.2}, Lin Zhao, MD², Xiaoxiao Zhu, MD², Qiang Guo, PhD², Bin Wang, MD, PhD^{3*}, Xia Li, MD, PhD^{2*}

¹ School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China.

² Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China.

³ Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Bianque Building, 16369 Jingshi Road, Jinan 250014, Shandong, China.

⁴ The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.

Major Resources Tables

Animals (in vivo studies)

Species	Vendor or Source	Background Strain	Sex
C57BL/6J Mice	Ribobio	C57BL/6J	male
C57BL/6J Mice	R&D system	C57BL/6J	male

Animal breeding

	Species	Vendor or	Background Strain	Other Information		
		Source				
Parent - Male	C57BL/6J Mice	SPF	C57BL/6J	None		
		Biotechnology				
		Company				
Parent - Female	C57BL/6J Mice	SPF	C57BL/6J	None		
		Biotechnology				
		Company				

Antibodies

Target antigen	Vendor or Source	Catalog #	Working	Lot # (preferred		
			concentration	but not required)		
Rabbit Polyclonal IL-6 antibody	Proteintech	21865-1-AP	3.5 ug/ml	00071431		
Mouse Anti-Rabbit IgG (H+L)	BOSTER	BM2012	20 ug/ml	BST12F05A12		
Secondary Antibody,						
FITC Conjugate						
Mouse IL-6 Antibody	R&D system	MAB406	5ug/g	AHV2319021		
Rat IgG1 Isotype	R&D system	MAB005	5ug/g	CAN1019031		
Control						

Cultured Cells

Name	Vendor or Source	Sex (F, M, or unknown)
293T cells	Procell Life Science &	unknown
	Technology Co., Ltd	
HeLa cells	Procell Life Science &	unknown
	Technology Co., Ltd	
Human umbilical vein endothelial	Procell Life Science &	unknown
cells (HUVECs)	Technology Co., Ltd	
Peripheral blood mononuclear	Affiliated Hospital of	unknown
cells (PBMCs)	Shandong University of	
	Traditional Chinese Medicine	

Supplemental Figure I. IL-6 is positively correlated to markers of vascular endothelial function in DVT.

(A-E) The expression levels of CCL2, CCL3, ICAM-1, VCAM-1, and SELP protein in the plasma from 30 DVT patients and 30 controls were determined by ELISA. The correlation between CCL2, CCL3, ICAM-1, VCAM-1, SELP, and IL-6 was analyzed using Pearson correlation analysis (n= 30). ***P< 0.001.

Supplemental Figure II. miR-338-5p negatively regulates IL-6 expression.

(A-B) The expression of miR-338-5p was detected by qRT-PCR in HeLa cells and PBMCs. (C-D) The expression level of *IL*-6 mRNA after negative control (NC), miR-338-5p mimics, inhibitor negative control (INC), and miR-338-5p inhibitor transfection as detected by qRT-PCR in HeLa cells and PBMCs. (E-F) Expression of IL-6 protein was examined by ELISA in HeLa cells and PBMCs. (G) Expression of IL-6 in HUVECs were detected after transfection with NC, miR-338-5p mimics, INC, and miR-338-5p inhibitor by immunofluorescence staining (magnification, ×200). Scale bar= 100 μ m. **P*< 0.05, ***P*< 0.01, ****P*< 0.001.

Supplemental Figure III. IL-6 knockdown decreases mRNA and protein levels of the markers for vascular endothelial function *in vitro*.

(A-B) The expression levels of IL-6 mRNA and protein were modulated by siRNA in HUVECs. (C-D) The levels of CCL2, CCL3, ICAM-1, VCAM-1 and SELP mRNA and protein were reduced when IL-6 was knocked down by siRNA in HUVECs. *P < 0.05, **P < 0.01, ***P < 0.001.

Supplemental Figure IV. miR-338-5p does not target *TNFa* or *IL-17A*.

(A-B) The luciferase activity was determined by co-transfecting the vectors (*TNFa* or *IL-17A* 3'-UTR-WT) combined with NC or miR-338-5p mimics into 293T cells. (C) *TNFa* mRNA expression was determined by qRT-PCR in PBMCs of DVT mice treated with agomiR-338-5p (n= 7) or antagomiR-338-5p (n= 12). (D) *IL-17A* mRNA expression was determined by qRT-PCR in PBMCs of DVT mice treated with agomiR-338-5p (n= 7) or antagomiR-338-5p (n= 12).

Supplemental Figure V. The role of miR-338-5p in DVT.

(A) Confocal microscopy for miR-338-5p expression in vascular tissues (miR-338-5p, red; DAPI, blue; magnification, $\times 600$). Scale bars= 30 μ m. (B) Representative images of thrombi in each treatment group detected by vascular ultrasound at 48 h post-operation. (C) H&E staining of serial cross sections of inferior vena cava (IVC) from control, sham, DVT mice, and DVT mice treated with agomir NC, agomiR-338-5p, antagomir NC, or antagomiR-338-5p at 48 hours (magnification, $\times 100$). Scale bars= 200 μ m.

Supplemental Figure VI. The regulatory effect of miR-338-5p overexpression on IL-6 in vivo.

(A-B) The expression levels of miR-338-5p and *IL-6* mRNA were detected by qRT-PCR in vascular tissue and PBMCs of control, sham, and DVT animal group (n= 10-15/group). (C) IL-6 protein levels were determined by ELISA in vascular tissue and plasma of control, sham, and DVT animal group (n= 10-15/group). (D-E) The expression levels of miR-338-5p and *IL-6* mRNA were detected by qRT-PCR in vascular tissue and PBMCs of each treatment group (n= 7-12/group). (F) IL-6 protein levels were determined by ELISA in vascular tissue and plasma of each treatment group (n= 7-12/group). **P*< 0.05, ***P*< 0.01, ****P*< 0.001.

Supplemental Figure VII. The regulatory effect of miR-338-5p overexpression on vascular markers of endothelial function *in vivo*.

(A) Expression of *CCL2*, *CCL3*, *ICAM-1*, *VCAM-1*, and *SELP* was detected by qRT-PCR in vascular tissue and PBMCs of control, sham, DVT animal group (n= 10-15/group). (B-F) *CCL2*, *CCL3*, *ICAM-1*, *VCAM-1*, and *SELP* mRNA levels were determined by qRT-PCR in vascular tissue and PBMCs of DVT animal group and each treatment group (n= 7-12/group). (G) The luciferase activity was determined by co-transfecting the vectors (*CCL2*, *CCL3*, *ICAM-1*, *VCAM-1*, or *SELP* 3'-UTR-WT) combined with NC or miR-338-5p mimics into 293T cells. *P< 0.05, **P< 0.01, ***P< 0.001.

Supplemental Figure VIII. The regulatory effects of miR-338-5p on the expression of eNOS and ET-1.

(A-B) Expression of eNOS and ET-1 was detected by ELISA in plasma of control, sham, and DVT animal group (n= 10-15/group). (C-D) eNOS and ET-1 protein levels were determined by ELISA in plasma of DVT animal group and each treatment group (n= 7-12/group). *P< 0.05, **P< 0.01.

Supplemental Figure IX. The role of IL-6 in DVT formation and vascular endothelial function.

(A-C) H&E staining of serial cross sections of IVC from DVT mice treated with IgG1, anti-IL-6 antibody, agomiR-338-5p+IgG1, agomiR-338-5p+anti-IL-6 antibody, antagomiR-338-5p+IgG1, or antagomiR-338-5p+anti-IL-6 antibody at 48 hours (magnification, ×100). Scale bars= 200 μ m. (D-F) IL-6 protein levels were determined by ELISA in plasma of DVT animal group and each treatment group (n= 5-12/group). (G) *CCL2*, *CCL3*, *ICAM-1*, *VCAM-1*, and *SELP* mRNA levels were detected by qRT-PCR in PBMCs of DVT mice treated with IgG1 (n= 10) or anti-IL-6 antibody (n= 8). **P*< 0.05, ***P*< 0.01, ****P*< 0.001.

Supplemental Table I. List of polymerase chain reaction (PCR) primer sequences used in miRNA expression analysis.

Gene	Sequence (5'-3')
U6	Forward: CAGCACATATACTAAAATTGGAACG
	Reverse: ACGAATTTGCGTGTCATCC
miD 229 5m	Forward: CGTTACGCAACAATATCCTGGT
шк-556-5р	Reverse: TATGGTTCTTCACGACTCCTTCAC

Gene	Species	Sequence (5'-3')
	Ilumon	Forward: ACAACTTTGGTATCGTGGAAGG
GAPDH	Human	Reverse: GCCATCACGCCACAGTTTC
ПС	Humon	Forward: CACACAGACAGCCACTCACC
IL-0	Human	Reverse: CACCAGGCAAGTCTCCTCAT
	Humon	Forward: TGCAATCAATGCCCCAGTCA
CCL2	Human	Reverse: GGGTCAGCACAGATCTCCTT
CCI 2	Uumon	Forward: GCTCTCTGCAACCAGTTCTCT
CCL5	nuillaii	Reverse: GGCTTCGCTTGGTTAGGAAGA
ICAM 1	Uumon	Forward: AGGATGGCACTTTCCCACTG
ICANI-1	Tulliali	Reverse: GGAGAGCACATTCACGGTCA
VCAM 1	Human	Forward: CCACAGTAAGGCAGGCTGTAA
VCANI-1	Tulliali	Reverse: GCTGGAACAGGTCATGGTCA
SEI D	Human	Forward: CACCAACGAGGCTGAGAACT
SELI	Tulliali	Reverse: GGCTGACGGACTCTTGATGT
Bactin	Mice	Forward: TCCTTCTTGGGTATGGAATCCTG
p-actin	whee	Reverse: TGCTAGGAGCCAGAGCAGTA
П_6	Mice	Forward: GGATACCACTCCCAACAGACC
112-0	whee	Reverse: TTCTGCAAGTGCATCATCGT
CCI 2	Mice	Forward: AGTTAACGCCCCACTCACCT
	Iviliee	Reverse: TGCTGGTGATCCTCTTGTAGC
CCI 3	Mice	Forward: GCTTCTCCTACAGCCGGAAG
CCLJ	Ivilee	Reverse: AGGTCTCTTTGGAGTCAGCG
ICAM-1	Mice	Forward: CTGGGCTTGGAGACTCAGTG
	Iviliee	Reverse: CCACACTCTCCGGAAACGAA
VCAM-1	Mice	Forward: CTGGGAAGCTGGAACGAAGT
	Iviliee	Reverse: GCCAAACACTTGACCGTGAC
SEI P	Mice	Forward: GGGCTTCAGGACAATGGACA
JELI	Iviliee	Reverse: TGGAAGGTGCAGGTTGATCC
TNFa	Mice	Forward: AGCCGATGGGTTGTACCTTG
11110	111100	Reverse: ATAGCAAATCGGCTGACGGT
П -17А	Mice	Forward: CACCGCAATGAAGACCCTGA
	101100	Reverse: TTCCCTCCGCATTGACACAG

Supplemental Table II. List of PCR primer sequences used in mRNA expression analysis.

Oligo ID	Sequence (5'-3')
mimia pagativa control	sense: UUCUCCGAACGUGUCACGUTT
limite negative control	antisense: ACGUGACACGUUCGGAGAATT
hee miD 328 5n mimice	sense: AACAAUAUCCUGGUGCUGAGUG
lisa-link-338-3p lillines	antisense: CUCAGCACCAGGAUAUUGUUUU
inhibitor negative control	CAGUACUUUUGUGUAGUACAA
hsa-miR-338-5p inhibitor	CACUCAGCACCAGGAUAUUGUU
	sense: GGAGACAUGUAACAAGAGUTT
IL-0-SIKINA	antisense: ACUCUUGUUACAUGUCUCCTT
agomir NC	sense: UUCUCCGAACGUGUCACGUTT
agonini NC	antisense: ACGUGACACGUUCGGAGAATT
agomi D 228 5n	sense: AACAAUAUCCUGGUGCUGAGUG
agomik-558-5p	antisense: CUCAGCACCAGGAUAUUGUUUU
antagomir NC	CAGUACUUUUGUGUAGUACAA
antagomiR-338-5p	CACUCAGCACCAGGAUAUUGUU

Supplemental Table III. Oligo sequences used in the experiments.

Group	Number of mice	Mice number of thrombus formation	Thrombus formation rate (%)
DVT	15	10	67
DVT agomir NC	15	10	67
DVT agomiR-338-5p	15	7	47
DVT antagomir NC	15	10	67
DVT antagomiR-338-5p	15	12	80
DVT+IgG1	15	10	67
DVT+anti-IL-6 antibody	15	8	53
DVT agomiR-338-5p+IgG1	15	7	47
DVT agomiR-338-5p+anti-IL-6 antibody	15	5	33
DVT antagomiR-338-5p+IgG1	15	12	80
DVT antagomiR-338-5p+anti-IL-6 antibody	15	9	60

Supplemental Table IV. Thrombus formation in different groups of DVT mice.

systematic	01	C 2	C 2		05	00	D1	Da	D1	D4	D5	D			Control	mirbase
name	CI	C2	CS	C4	CS	Co	DI	D_2	D3	D4	D5	Do	active_sequence	cnr	type	accession No
hsa-miR-1305	2.890522	2.644196	2.866945	2.967403	2.727855	2.840017	-3.32163	-2.05754	-1.31385	-3.28559	-3.29659	-3.25973	TCTCTCCCATTAGAGTTGA		0	MIMAT0005893
hsa-miR-6717-5p	3.102884	2.69068	3.036068	3.036068	2.856456	2.749102	-3.32163	-3.32188	1.09525	-3.28559	-3.29659	-3.25973	TCTCTACATCCCCACATC		0	MIMAT0025846
hsa-miR-4442	2.519717	2.308948	2.491924	2.232139	2.270366	2.408409	-3.32163	-3.32188	-1.30551	-3.28559	-3.29659	-3.25973	CCTCCCTCTTGTCCG		0	MIMAT0018960
hsa-miR-4653-3p	2.557016	2.396131	2.347332	2.361599	2.016503	2.379267	-3.32163	-3.32188	-1.23594	-3.28559	-3.29659	-3.25973	TCTCCAAGCAACCCTT		0	MIMAT0019719
hsa-miR-4419a	2.715025	2.169307	2.133044	2.176626	2.032571	2.151727	-3.32163	-3.32188	0.128117	-3.28559	-3.29659	-3.25973	TGCAGTCTCCTCCCT		0	MIMAT0018931
hsa-miR-564	3.283139	2.460638	2.532001	2.396131	2.491924	2.58784	-3.32163	0.948874	-1.72766	-3.28559	-3.29659	-3.25973	GCCTGCTGACACCGT		0	MIMAT0003228
hsa-miR-483-5p	3.317903	2.250299	2.232139	1.747687	2.151727	2.075307	-3.32163	-1.25142	1.859515	-3.28559	-3.29659	-3.25973	CTCCCTTCTTTCCTC		0	MIMAT0004761
hsa-miR-4788	2.331065	2.049457	2.106463	2.106463	1.798728	2.123388	-1.67023	-0.63613	0.205429	-3.28559	-3.29659	-3.25973	GCCTCCCTTAGCTGG		0	MIMAT0019958
hsa-miR-5684	1.261394	1.025808	1.820038	1.16116	1.453198	1.478231	-3.32163	-3.32188	-2.0638	-3.28559	-3.29659	-3.25973	CTGTTGCTCAGGCTAG		0	MIMAT0022473
hsa-miR-650	2.032571	1.380212	2.075307	1.392273	0.005068	1.722659	-2.0638	-2.11512	-1.68486	-3.28559	-0.6177	-3.25973	GTCCTGAGAGCGCTGC		0	MIMAT0003320
hsa-miR-6891-5p	2.615863	1.131285	1.058549	1.193515	1.261998	1.641266	-3.32163	0.834653	-0.2856	-3.28559	-3.29659	-3.25973	CCCCTCATCCCCC		0	MIMAT0027682
hsa-miR-4713-3p	3.658131	3.219048	3.235708	3.544785	2.989471	3.16269	1.418389	1.620391	1.958252	-3.28559	0.197783	-3.25973	TTCTCCCACTGTCTGG		0	MIMAT0019821
hsa-miR-6769b-5p	2.097667	3.315963	0.192071	2.169307	1.058549	3.289554	-3.32163	-3.31385	-3.32138	-3.28559	-3.29659	-3.25973	GCACTTCTCCTCCCC		0	MIMAT0027620
hsa-miR-6740-5p	4.015547	3.437881	3.584511	3.707074	3.544785	3.637127	1.747687	2.123388	2.232139	1.213376	2.097667	-3.25973	TCTCCTCTCTCCATCCC		0	MIMAT0027381
hsa-miR-6126	2.450542	2.532001	2.331065	2.379267	2.185673	2.48021	0.928946	-1.22525	1.732256	-3.28559	0.140876	1.317771	TCTCCGCCGGGC		0	MIMAT0024599
hsa-miR-513c-5p	0.834653	0.948874	0.250975	0.197783	-0.65314	1.115497	0.005068	-2.21119	-2.14442	-3.28559	-0.66784	-3.25973	ATAAACGACACCTCCTTGA	chrX	0	MIMAT0005789
hsa-miR-6850-5p	2.049457	0.205429	1.747687	-1.24639	3.296593	3.289554	-3.32163	-3.32188	-3.34287	-3.28559	-3.29659	-3.25973	CGCCCCGGCCA		0	MIMAT0027600
hsa-miR-338-5p	0.861888	0.140876	0.993548	0.176005	0.050273	0.050273	-2.1352	-2.14138	-1.71401	-3.28559	-3.29659	0.897482	CACTCAGCACCAGGA		0	MIMAT0004701
hsa-miR-4449	1.180867	1.115497	0.168898	1.144027	1.180867	0.250975	-0.66917	-0.29264	0.140876	-3.28559	-0.2856	-3.25973	TGCCTCGCGCAGC		0	MIMAT0018968
hsa-miR-6724-5p	2.218914	2.232139	1.392273	1.765325	1.581486	1.131285	0.240207	1.006592	0.948874	0.215132	0.993548	-3.25973	CCCCACGCCCG		0	MIMAT0025856
hsa-miR-6879-5p	3.915201	3.658131	3.812723	3.742235	3.707074	3.780678	2.29194	2.519717	2.749102	2.460638	2.58784	2.424246	CTCTCCCACCTTCCC		0	MIMAT0027658
hsa-miR-6780b-5p	3.683952	3.283139	3.482658	3.437881	3.437881	3.437881	2.097667	2.460638	2.491924	2.097667	2.408409	1.732256	TCTTCCCTGCCAAGC		0	MIMAT0027572
hsa-miR-874-3p	2.199508	2.840017	2.69068	2.727855	2.644196	2.715025	0.948874	2.106463	1.180867	1.418389	1.581486	1.115497	TCGGTCCCTCGGG	chr5	0	MIMAT0004911
hsa-miR-6820-5p	5.146708	5.105475	5.017525	4.920903	4.920903	5.35999	3.848797	3.402584	4.132329	3.780678	3.707074	4.159892	TGACCCCAGCTCTGC		0	MIMAT0027540
hsa-miR-150-5p	10.77513	10.77513	10.77513	10.77513	9.949985	10.52436	9.41637	9.949985	8.878604	9.41637	9.949985	8.670342	CACTGGTACAAGGGTTGG	chr19	0	MIMAT0000451
hsa-miR-6127	5.439865	4.756314	4.920903	4.860059	4.860059	4.827461	3.525265	3.729768	3.986414	3.848797	4.100742	3.848797	CCTCCCACCCACTC		0	MIMAT0024610
hsa-miR-6875-5p	5.105475	4.423265	4.756314	4.535265	4.470753	4.617086	3.463085	3.584511	3.615922	3.463085	3.683952	3.565681	TCTCCTGTCCTGGGT		0	MIMAT0027650
hsa-miR-1233-5p	5.273259	4.860059	4.893096	4.72706	4.689545	4.920903	3.729768	3.463085	4.06103	3.729768	3.812723	4.036973	TGCCGTGCCCTGG	chr15	0	MIMAT0022943
hsa-miR-342-5p	3.812723	3.637127	3.742235	4.100742	3.634786	3.05275	2.331065	3.336585	1.703047	2.396131	2.989471	1.782291	TCAATCACAGATAGCACCC		0	MIMAT0004694
hsa-miR-324-3p	6.365108	6.310584	6.456261	6.66172	6.409631	6.365108	5.146708	5.273259	5.56788	5.146708	5.638115	5.439865	CCAGCAGCACCTGGGG	chr17	0	MIMAT0000762

Supplemental Table V. Data for 30 down-regulated miRNAs filtered in the Chip.