Two genomic regions encoding exopolysaccharide production systems have complementary functions in *B. cereus* multicellularity and host interaction

Caro-Astorga Joaquin, Álvarez-Mena Ana, Hierrezuelo Jesús, Guadix Juan Antonio, Heredia-Ponce Zahira, Arboleda-Estudillo Yohanna, González-Munoz Elena, de Vicente Antonio, and Romero Diego

Supplemental material

Figure S1. Two genomic regions of *B. cereus* hypothetically committed to production of exopolysaccharides are differentially expressed in biofilm cells. A) Transcriptomic analysis showed the specific overexpression of genes of the *eps2* region but not the *eps1* in biofilm cells compared to floating cells at 24 h (black), 48 h (dark grey) and 72 h (clear grey). B) Validation of the *eps* mutants in *B. cereus* strains. Amplifications correspond to *eps1* (left panel) (1683 bp) and eps2 (right panel) (1419 bp) genomic regions. Sizes (Kb) are indicated. (L) Molecular Ladder. C) Dynamic of growth of *B. cereus* WT and *eps* mutants in the biofilm experimental conditions. Left: Measurement of optical density at 600 nm at 24h, 48h, 72h, 96h and 120h; right: Representation of the Log(CFU/ml) of *Bacillus* cells at these time points.

Figure S2. Level of expression of *tasA* (*BC_1279*) in *eps* mutants. Levels of transcripts of tasA were analyzed by Q-RT-PCR. The data were normalized to the level of housekeeping gene *rpoA* and the fold change ratio was calculated from *eps1* (A), *eps2* (B) and *eps1,2* (C) mutants compared to wild-type (dashed line). Statistical analysis, ANOVA with post-hoc paired Student's test, didn't show any significant differences between the samples.

Figure S3. (A-D) Gas chromatograms of the fractions of exopolysaccharide (EPS) at higher molecular weight in gel filtration chromatography of *B. cereus* 14579 and mutants. The absorption at 490 nm of aliquots from the size exclution column is represented above each chromatogram. (E) FT-IR spectrum of the extracted EPS in WT sample and most representative bands.

Figure S4. (A-F) Mass spectra of the glucose, mannose, xylose, rhamnose, ribose and fucose derivatives obtained after methanolysis and ionization by electronic impact (EI) in mass spectrometry. (G) Sugar unities identified in the EPS fractions produced by wyld type and mutants strains.

Figure S5. Eps1 and Eps2 prevent cellular auto-aggregation. Pictures of the tubes at 24 h of incubation at 30 °C and no agitation shows major aggregation of mutants than the WT.

Figure S6. EPS1 and EPS2 interact and affect cell aggregation. OD measures of the air-liquid interface of cell suspensions in static conditions at room temperature. Cultures in TY were incubated at 150 rpm and 30 °C for 16 h and OD was adjusted to OD=3 before the experiment initiation.

Figure S7. The EPS2 is more relevant for adhesion of *B. cereus* to human epithelial cells and Zebrafish gut. Bacteria localization in zebrafish larvae gut after feeding.

Figure S8. *eps1* and *eps2* expression patterns varie depending on temperature. qRT-PCR analysis was done to determine the relative levels of transcripts of representative locus of the *eps1* or *eps2* genomic regions at 30 °C and 37 °C.

Supplemental Tables

Strain	Genotype	Plasmid	Reference
B. cereus ATCC14579			This study
B. cereus ATCC14579	∆eps1		This study
B. cereus ATCC14579	∆eps2		This study
B. cereus ATCC14579	∆eps1 ∆eps2	pHCMC02-	This study
B. cereus ATCC14579		Pupp-yfp	This study
B. cereus ATCC14579	Δeps1	pHCMC02- <i>Pupp-yfp</i>	This study
B. cereus ATCC14579	Δeps2	pHCMC02- Pupp-yfp	This study
B. cereus ATCC14579	Δερs1 Δερs2	pHCMC02- Pupp-yfp	This study
B. cereus ATCC14579	∆flag		This study
B. cereus ATCC14579	Δeps1, Δflag		This study
B. cereus ATCC14579	Δeps2, Δflag		This study
B. cereus ATCC14579	∆eps1, ∆eps2, ∆flag		This study

 Table S1. Bacterial strains used in this study.

Mutations	Name	Primer sequence
∆BC_1583– 1591	Forward.up.Bam HI	AAAAGGATCCGGGATGTTGCATAAGTCGAAC
∆BC_1583– 1591 ∧BC_1582	Reverse.up	ATTGGCATTAATCCAGCAAGGCCACGAGC GATTAAACCATTC
1591	Forward.dw	CCTTGCTGGATTAATGCCAAT
∆BC_1583– 1591	Reverse.dw.Ncol	AAAACCATGGCTCTTT TTCATTACCTATAT CCCACTA
∆BC_5279- 5274 ∧BC_5270	Forward.up.Bam HI	AAAAGGATCCTTTGAAAGAACTAAGGCTGA CG
5274	Reverse.up	TGGTTTTCTTTCTTCTCCCGAACATAT T
∆BC_5279- 5274	Forward.dw	AAACCATTACGACAATTAATTACACATCAGATGA GTCAAGA GAGTATTAGGAAAACC
∆BC_5279- 5274	Reverse.dw.Ncol	AAAACCATGGATGCAAAGGTAACGTGATT TCATT
∆flag	Flag.up.fw	CGATGCATGCCATGGTACCCTTATTTTGA AACGTCGATATTTAATATTTTTTAATATATC
	Flag.up.rv	AACACAGTAAGTGCTTGCATATAAGAAAG
	Flag.dw.fw	ATGCAAGCACTTACTGTGTTACGGTCATAAC
	Flag.dw.rv	CTTCTAGAATTCGAGCTCCCGTGGCACAGATTA TGTATC
Primers to val	idate mutations	
eps1	Eps1 Fw	TGTAACGGATGCGCAAATTA
	Eps1 Rv	TTCGCAAGAATTTGTGCATC
eps2	Eps2 Fw	TGTTTTGAGCGGATTTGTTTTGT
	Eps2 Rv	GATTGCTCTGCCAATGTCTTT

Table S2. Primes used to mutate the eps1 (BC5279-5274) and eps2(1583-1591regions and flagellin.

Name	Primer sequence
Prom.upp.Fw	AAAAAGCTAGCGGATGAAATTGCGTCA
Prom.upp-yfp.Rv	CATAGTAGTTCCTCCTTATGTAGATGATA TTCATGCGTTTGC
yfp.Fw	ACATAAGGAGGAACTACTATGAGT
yip.iv	GUGUTUAUUUUUUUUUITATTTGTATAG

 Table S3. Primes used for the construction of the plasmid pHCMC02-Pupp-yfp.

Name	Primer sequence
BC_1583_fw	TGTTTTGAGCGGATTTGTTTTGT
BC_1583_rv	GTCCACGAGCGATTAAACCA
Interg_83-84_fw	ATTCAGAAAAGGGCGGTGAAAT
Interg_83-84_rv	AGCGGTTAAACAACACATCGT
BC_1584_fw	AAAATCTCGGTTGTGAATACGG
BC_1584_rv	GATTGCTCTGCCAATGTCTTT
Interg_84-85_fw	TCGAGGTGAACATGTCGATG
Interg_84-85_rv	CACCTCTGTCCTTCGTTGAA
BC_1585_fw	ACATACAGGGACGCCTTTAGT
BC_1585_rv	AACCACTCCATCGCATTTCC
Interg_85-86_fw	TTGAATGTGGGGGTAACGAT
Interg_85-86_rv	CAAACAAGCGTTTTACACTTCG
BC_1586_fw	CCCTAGACCAGAGAGAGAGTTTT
BC_1586_rv	CCCTCCATTTATTTGTGCCCA
Interg_86-87_fw	TGAACGGTAATGGTGCAAGA
Interg_86-87_rv	AAACTGACGGCCTGAAGAAG
BC_1587_fw	GAATGCAGTAGAACCACTCCAAA
BC_1587_rv	CGTCGTTAAACCGTCAGCAA
Interg_87-88_fw	CGCAAAAAGGATTATATTACGAA
Interg_87-88_rv	GAAGAATAATCCATCCCATTGA
BC_1588_fw	CGCAGCATACTTTGTTTCGTG
BC_1588_rv	ACCATCTATCTTTCCCCTTCCTT
Interg_88-89_fw	CGCAGCATACTTTGTTTCGTG
Interg_88-89_rv	GAAGAATAATCCATCCATCCATCCCATTGA
BC_1589_fw	TGTTCAACCGACCAATCTGC
BC_1589_rv	TGCGGCAACCATATATCATCAC
Interg_89-90_fw	GAAGAATAATCCATCCATCCATCCCATTGA
Interg_89-90_rv	GCCATCGCTTCAATTACTACCA
BC_1590_fw	ATTTCAGAGCCGCATGAGTTT
BC_1590_rv	GCCATCGCTTCAATTACTACCA
Interg_90-91_fw	TTTAATATCTGAATATTGCGAAT
Interg_90-91_rv	AATTTGCAGGGTTACGGTAGG
BC_1591_fw	TTTAATATCTGAATATTGCGAAT
BC_1591_rv	TTGGACCTGCTGCCATTAAG
BC_5279_fw	TCGGACAACAAGGAAAGAAAGT
BC_5279_rv	TTGGACCTGCTGCCATTAAG
Interg_79-78_fw	CTCGGAGTCGTTTTGAATGAT
Interg_79-78_rv	CGAGGATCATTGCTAAACGTT
BC_5278_fw	GCTTCAGTTGGTCTTGCATTCT
BC_5278_rv	TCTTGATGATGGAGCGTGTGA
Interg_78-77_fw	GCTTCAGTTGGTCTTGCATTCT
Interg_78-77_rv	AGAAGCATCACATACATTTGCCA
BC_5277_fw	ATCCCACCAAATCCAGCAGA
BC_5277_rv	AGAAGCATCACATACATTTGCCA

 Table S4. Primes used for RT-PCR assays.

Interg 77-76 fw TATTACTACGGTGCAAACTAG Interg 77-76 rv GTGACAATGTAAATCTATCAT BC_5276_fw GCACAAAAAGCCGCTTCAGA BC_5276_rv TAACCTGACTTCTTGCCCCG Interg 76-75 fw TGGTGATGTCTCCTAACCGT Interg_76-75_rv TAATGAGAGCCGTCTTCGATA BC 5275 fw GCAAGGAACAGCACCATCAA BC 5275 rv CCCGCACCTGTTTGTTGATT Interg_75-74_fw TGTTGGGGGAGAAGTTTGGAT Interg 75-74 rv ACTCAATATACCTGTTCCCTTCT BC 5274 fw CTAGGGAGAGAGCCTGTTCA BC_5274_rv CCCCAGCACCCGTTATTAAA CCTTATTAGATTTTGCGAATA Interg 74-73 fw Interg 74-73 rv GTCTGGTGGAGAAAACGGGA BC 5273 fw CCGTTTTCTCCACCAGACATT BC 5273 rv ACCGCTTTATTTGTCCCAACA Interg 73-72 fw AATGAAATCACGTTACCTTTGCA TGAACTGCTGCAACTCCTAG Interg 73-72 rv BC 5272 fw ACAAGGGCAAAGAGGGGTAA CCAAGTTTCTCTATCGGACGC BC_5272_rv CGTCCAGTAAATGGTAAAAATGA Interg 72-71 fw Interg 72-71 rv TAGAAAACCCGTTCCACCAG BC_5271_fw TTGGCCTGTGAGCATATTGG TCACCATGAAATGCTTGTCTGA BC 5271 rv Interg 71-70 fw TTGGCCTGTGAGCATATTGG Interg 71-70 rv CAGAGGCTGCCGTTAAGAAT BC 5270 fw ACAATGGAGCAACGTGTGAA BC 5270 rv CAGAGGCTGCCGTTAAGAAT Interg 70-69 fw ACAATGGAGCAACGTGTGAA Interg 70-69 rv ACATCCATTGCACGACTTTCA BC 5269 fw GGACTGTCCCTGAAAATGTTGT BC 5269 rv ACATCCATTGCACGACTTTCA Interg_69-68_fw CTTGGGAAGTCTAGTTCTGGG TGCAAGTCCTATTACCCTCCT Interg 69-68 rv BC_5268_fw TTAGGAGCCTGGATGTGTCT BC 5268 rv CGTTGTCGTTTGAACCCTTTT AAAAAGGGTTCAAACGACAAC Interg 68-67 fw Interg 68-67 rv TCTGTAGATCCGTCATTTACCA BC_5267_fw TTGGTAAATGACGGATCTACAGA BC 5267 rv TCAATCCTACATTTCTCGCAGA Interg_67-66_fw GAATGCTAAACCAAGTAACTAA Interg 67-66 rv TAGCAATAAATGTATAAGAG BC 5266 fw TTTCCTGCTTTACGTCGTACATC CGGTAACCACGCTGATAGGA BC_5266_rv ATGCTCATGAAATCTAAATGA Interg 66-65 fw Interg 66-65 rv AATAGGATTTTCTTTTCAT

BC_5265_fw	CAGTTGGTGGGGTAGATGTCA
BC_5265_rv	AACAGCTTGCATCACTTGGC
Interg_65-64_fw	GAGCGCATCTTGAAGTGACC
Interg_65-64_rv	CGCTCACAATCGAAGCAACA
BC_5264_fw	GCAACAGGACAAACGAGTGA
BC_5264_rv	TGCCTTTTTATCCTCAGCAGC
Interg_64-63_fw	GGACATGATGTTTGGGCGAA
Interg_64-63_rv	TATAGCCAGCTCCACCACAG
BC_5263_fw	CTGTGGTGGAGCTGGCTATA
BC 5263 rv	CGCCTTCCGTAATTGCATCT