1	Supplementary Materials and Methods
2	
3	Seasonality of interactions between a plant virus and its host during persistent
4	infection in a natural environment
5	
6	Mie N. Honjo, Naoko Emura, Tetsuhiro Kawagoe, Jiro Sugisaka, Mari Kamitani,
7	Atsushi J. Nagano, and Hiroshi Kudoh

9 **RNA-extraction.**

In the leaf samples from the three-year time-series observation, total RNA was extracted 10 using an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) without DNase treatment, 11 according to the manufacturer's instruction. For RT-qPCR, the extracted RNA samples 12were treated with DNase I (Takara, Tokyo, Japan) and then purified using AMpure XP 13beads (Beckman, Brea, CA, USA). For RNA-Seq, the extracted RNA samples were used 14 directly for library preparations. In other samples, total RNA was extracted with a 15Maxwell[®] 16 instrument using Maxwell[®] 16 LEV Plant RNA kit according to the 1617manufacturer's instructions (Promega, Madison, WI, USA). The leaves were completely 18 crushed with cylinder-shaped metal beads using Multi beads shocker (Yasui Kikai, Osaka, Japan). The amount of RNA was measured by Oubit Fluorometer using Ouant-iTTM RNA 1920Assay Kit (Life Technologies) or by Quantus Fluorometer using QuantiFluor® RNA System (Promega), and the quality was assessed using a Bioanalyzer (Agilent 2122Technologies, Santa Clara, CA, USA).

23

24 **RT-qPCR.**

To quantify TuMV amount in leaves, RT-qPCR was performed by the following
procedure. Total RNA (200 ng) was reverse transcribed in a 20 µL reaction (High-

27	Capacity cDNA Reverse Transcription Kit, Life Technologies) with oligo dT primer
28	according to the manufacturer's instructions. The qPCR was performed with $1\mu L$ of the
29	cDNA using the QuantStudio 7 (Applied Biosystems, Foster City, CA, USA). The amount
30	of TuMV RNA was calculated relative to a pre-prepared standard cDNA sample which
31	we included in all qPCR trials. Primers TuMVCP-F (5'-
32	TGGCTGATTACGAACTGACG-3', designed here) and CP-R (5'-
33	CTGCCTAAATGTGGGTTTGG-3') ^[1] were used for TuMV detection. We used
34	AhgActin2 and AhgPP2AA3 as reference genes for normalization of the three-year time-
35	series samples and other samples, respectively. Primers of these genes were AhgACT2F:
36	5'-TCCCTCAGCACATTCCAGCAGAT-3' and AhgACT2R: 5'-
37	AACGATTCCTGGACCTGCCTCATC-3' ^[2] and AhgPP2AA3-F: 5'-
38	GTATGCACATGTTTTGCTTCCAC-3' and AhgPP2AA3-R: 5'-
39	CAACCAAGTCATTCTCCCTCATC-3' ^[3] , respectively. The standard cDNA of TuMV
40	was prepared from total RNA, which was extracted from pooled infected leaves (ca. 10
41	leaves) of A. halleri. The standard cDNA of AhgActin2 and AhgPP2AA3 was prepared
42	from pooled un-infected leaves (ca. 10 leaves). Dilution series of the standard cDNA were
43	amplified in duplicate with samples for all qPCR, and we used nine and six dilution levels,
44	i.e., 10^0-10^8 and 5^0-5^5 , for TuMV and the reference genes, respectively. Each PCR

45	reaction contained 1 μL of cDNA solution, 200 nM primers, and Fast SYBR Green Master
46	Mix (Applied Biosystems) in a final volume of 10 $\mu L.$ The PCR conditions were as
47	follows: 20 s at 95 °C and 40 cycles of 1 s at 95 °C and 20 s at 60 °C. Two technical
48	replicates were prepared for each sample. To evaluate whether PCR products were single
49	or not, a melt-curve was obtained for each sample by a gradual increase of temperature
50	of 0.05 °C/s from 60 °C to 95 °C.
51	To confirm the replication activity of TuMV, negative strand RNA of the virus was
52	quantified by strand-specific RT-qPCR ^[4] . We used primers that were designed based on
53	the TuMV sequences at the study site using the Primer Express program (Applied
54	Biosystems). Briefly, 100 ng of total RNA were reverse transcribed in the presence of 250
55	nM RT primer which specifically anneal to the negative (-) strand RNA; TuMV-I [5'-
56	GGCCGTCATGGTGGCGAATAATACGTGCGAGAGAAGCACACA-3'. Underlined
57	and non-underlined sequences represent nonviral 5' tag sequences and those homologous
58	to TuMV, respectively] with Superscript III reverse transcriptase (Invitrogen) in 10 μL
59	reactions for 30 min at 55 °C. Previous to the reaction, primers were allowed to anneal by
60	incubating 5 min at 70 °C and snap cooling on ice. The reverse transcription reaction was
61	stopped by heating at 85 $^\circ C$ for 10 min. Specific qPCR was performed in a 10 μL final
62	volume using the Fast SYBR Green Master Mix reagent (Applied Biosystems) with the

63	same conditions described above. In this specific qPCR, TuMV (-) RNA was quantified
64	from 1 μ L cDNA using a set of primers (500 nM for each); i.e., TuMV-II (5'-
65	AATAAATCATAAGGCCGTCATGGTGGCGAATAA-3', underlined sequences are
66	identical with 5' tag of PII) ^[4] and TuMV-III (5'-
67	AATAAATCATAAATTTGTTCGGCTTGGATGGA-3', sequence complementary to
68	TuMV). Primers TuMV-II and TuMV-III contained 5' flaps (italicized sequence) to
69	improve qPCR ^[5] . The series of standard cDNA at 1, 1/2, 1/4, 1/8, and 1/16 dilutions were
70	included in all analyses. Two replicates were performed for each sample and standard.

72 **RNA-Seq analysis.**

We used previously published RNA-Seq data (accession number; DRA005871, 73DRA005872, DRA005873)^[6], and newly obtained data (accession number; DRA008908) 74for TuMV detection from the three-year time-series observations (described in detail in 7576main text). For RNA-Seq library preparation of samples from the three-year time-series observations, the modified high-throughput method was used ^[7]. Quantification of TuMV 77amount expression from by the RNA-Seq data was conducted as follows^[8]. Pre-78processing and quality filtering were performed by trimmomatic-v0.32^[9]. Virus genome 79sequences, including TuMV (Complete genome sequences of 3,981 viruses, obtained 80

81	from the NCBI GenBank were used as the virus reference sequences.); A. halleri
82	transcript sequences (32,648 genes, Dryad Digital Repository, doi:
83	10.5061/dryad.4pf96) ^[10] ; and ERCC spike in control (Life Technologies) were used as
84	reference sequences. Details of the preparation strategy of the references were described
85	in our previous study ^[8] . The pre-processed sequences were mapped on the reference and
86	quantified using RSEM-1.2.11 ^[11] . The output of RSEM was analysed using R 3.1.1
87	software ^[12] . The TuMV amount was calculated as RPM Calculation of RPM (read per
88	million) values based on the expected count values of RSEM. The number of virus reads
89	was so large that the total read number was very different between infected and non-
90	infected plants. Therefore, we used the total reads derived from host genes, except for
91	rRNA, as a denominator, instead of the total reads including virus reads ^[8] . The removal
92	of the effects of missorted reads in quantification was performed as described in our
93	previous study ^[8] .

95 References

Wei T, Zhang C, Hou X, Sanfaçon H, Wang A. The SNARE protein Syp71 is
 essential for *Turnip mosaic virus* infection by mediating fusion of virus-induced
 vesicles with chloroplasts. *PLoS Pathog* 2013; **9**: e1003378.

99 2. Aikawa S, Kobayashi MJ, Satake A, Shimizu KK, Kudoh H. Robust control of the

- 100 seasonal expression of the *Arabidopsis FLC* gene in a fluctuating environment.
- 101 *Proc Natl Acad Sci U S A.* 2010; **107:** 11632-11637.
- 102 3. Nishio H, Buzas DM, Nagano AJ, Suzuki Y, Sugano S, Ito M et al. From the
- 103 laboratory to the field: assaying histone methylation at *FLOWERING LOCUS C* in
- 104 naturally growing *Arabidopsis halleri*. *Genes Genet Syst* 2016; **91:** 15-26.
- 105 4. Martinez F, Sardanyés J, Elena SF, Daròs J-A. Dynamics of a plant RNA virus
- 106 intracellular accumulation: stamping machine vs. geometric replication. *Genetics*
- 107 2011; **188:** 637-646.
- 5. Afonina I, Ankoudinova I, Mills A, Lokhov S, Huynh P, Mahoney W. Primers with
 5' flaps improve real-time PCR. *Biotechniques* 2007; 43: 770-774.
- 110 6. Nagano AJ, Kawagoe T, Sugisaka J, Honjo MN, Iwayama K, Kudoh H. Annual
- 111 transcriptome dynamics in natural environments reveals plant seasonal adaptation.
- 112 *Nat Plants* 2019; **5:** 74-83.
- 113 7. Wang L, Si Y, Dedow LK, Shao Y, Liu P, Brutnell TP. A low-cost library construction
- 114 protocol and data analysis pipeline for Illumina-based strand-specific multiplex
- 115 RNA-seq. *Plos One* 2011; **6:** e26426.
- 116 8. Kamitani M, Nagano AJ, Honjo MN, Kudoh H. RNA-Seq reveals virus-virus and
- 117 virus-plant interactions in nature. *FEMS Microbiol Ecol* 2016; **92:** fiw176.
- 118 9. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
- 119 sequence data. *Bioinformatics* 2014; **30:** 2114-2120.

120	10. Kamitani M, Nagano AJ, Honjo MN, Kudoh H. Data from: RNA-Seq reveals virus-
121	virus and virus-plant interactions in nature. Dryad Digital Repository 2016; doi:
122	10.5061/dryad.4pf96
123	11. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
124	with or without a reference genome. BMC Bioinformatics 2011; 12: 323.
125	12. R Development Core Team. R: A Language and Environment for Statistical
126	Computing. http://www.R-project.org (R Foundation for Statistical Computing,
127	Vienna, 2011).