
Supplementary Theory

In this Supplementary Theory, we provide further details on the modelling approach to
study the cellular dynamics of sebaceous gland (SG) morphogenesis, homeostasis, and
oncogenic activation. We also provide details on the statistical tests and approaches used
to challenge the model versus the dataset.

1 Morphogenesis of the sebaceous gland

As shown in the main text, the SG develops between P2 and P7 from a pool of committed
precursors. To address the cellular fate choices and lineage hierarchy involved in this
process, we implemented a quantitative clonal lineage tracing strategy inspired by previous
studies [1, 2, 3]. Using inducible genetic labelling, based on the Lrig1 promoter, we kept
track of the geographical location of the resulting clones, both in terms of hair follicle
compartment, but also in a subcompartment manner (for instance, in the case of the SG,
we defined three regions based on height: bottom third, middle third and top third, in
addition to the SG duct, and assigned clones to each regions). Throughout this section,
we use the two-tailed Mann-Whitney test as a statistical test for differences in clonal sizes,
given its non-parametric nature (anticipating on the fact that the resulting distributions
are non-normal due to the stochastic fate choices performed by cells).

1.1 Clonal dynamics of individual precursors

Using the tracing from P2 to P7 as an indication of the fate choices made by individual cells
during morphogenesis, we first wished to test for geographical biases in clone sizes. We
thus compared the basal clone sizes in the top and bottom compartments at P7 (n = 13
and n′ = 26, resp.), and found no statistical differences (P = 0.83, Mann-Whitney test),
arguing against a spatial gradients in morphogenetic potential. This was also true for
suprabasal clone sizes (P = 0.98, Mann-Whitney test).

Moreover, clone size distributions were consistently broad, arguing against a deter-
ministic and highly regulated developmental sequence. As stochastic fate choices have
been observed in other epithelial contexts, we thus sought the simplest possible model,
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considering a single equipotent precursor cell (P) population that undergo stochastic fate
choice between division and differentiation into suprabasal non-dividing differentiated cells
(D). Here, we make the assumption that differentiated basal cells migrate rapidly into the
suprabasal layer, so that the vast majority of basal cells are dividing progenitors. We
define λ as the division rate of progenitors. In this paradigm, progenitor fate is defined
by the Markovian process,

P λ→

{
P+P Proba. 1/2+∆

D Proba. 1/2−∆

in which the constant fate probabilities are defined intrinsically (i.e. cell-autonomously).
We discuss in further depth the assumption of intrinsic or extrinsic cellular fates in the
next sections. As we are in an out-of-homeostasis setting, the number of basal precur-
sors P must increase during morphogenesis, which translates into an imbalance towards
differentiation ∆.

Formally, defining PnP,nD(t) as the probability to find a clone at time t post-induction
containing nP basal precusors and nD differentiated cells is described by the Master equa-
tion:

1
λ

dPnP,nD

dt
= (1/2 + ∆)(nP − 1)PnP−1,nD + (1/2 − ∆)(nP + 1)PnP+1,nD−1 (1)

Thus, the precursor population conforms to a Galton-Watson birth-death type process,
which has been studied extensively by statisticians [4]. For ∆ = 0, the process is critical,
and starting at t = 0 with the initial condition PnP,nD(0) = δnP,1δnD,0. Note that we
neglect suprabasal cell loss here, giving the small timeframe of the observed morphogenetic
timecourse. Previous studies have shown that the average number of basal progenitors in
surviving clones (i.e. clones with at least one basal cell at a given time) is given by [4, 5]

〈nP(t)〉= 1+λ t/2 (2)

This linear increase in average size compensates for the continuous chance loss of clones
through differentiation. For a critical process (balanced cell fate), the increase in average
basal clone size is simply the inverse of the persisting clone fraction

1−P0(t) =
∞

∑
i=1

Pi(t) =
1

1+λ/2t
(3)

so that the product of the two is constant, and equal to its initial value.
When fate becomes imbalanced towards division (∆ > 0), the average clone size de-

pendence becomes exponential. However, in both homeostatic and out-of-homeostasis
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setting, the basal clone size distribution is expected to rapidly converge towards a scaling
behavior, where the chance of finding a clone with n cells at time t post-labelling takes the
form Pn(t) = 1

〈n(t)〉 f ( n
〈n(t)〉), where 〈n(t)〉 denotes the average clone size, and the function

f (x) = e−x.

1.2 Fitting procedure

In order to fit the model to the clonal fate data, in the absence of any prior information
on the value that the parameters might have, we made use of the classical method of
least-squares, which consists in defining a sum L of residuals

L =
1
n

n

∑
i=1

(
yi

obs− ỹi
model(

~θ)
)2

where yi
obs is a collection of n measured observables, whereas ỹi

model(
~θ) is a collection of

predictions from the model using a set of parameters represented by the vector ~θ . The
difference, yi

obs− ỹi
model(

~θ), between a measurement and a prediction is called a residual,

and in the case of the SG tracing from P2 to P7, the parameter vector is ~θ = (∆,λ ).

We then minimise L with respect to ~θ to find the optimal parameters describing
the dataset, and resort to numerical simulations of the corresponding model, for various
values of the fitting parameters, ~θ . In each case described below, we started by perform-
ing a coarse parameter sweep in order to determine the neighbourhood of the optimal
parameters, and we then performed a much finer parameter sweep to obtain the optimal
fitting values. For each set of fitting parameters, or estimators, we simulated at least
50000 clones to build a model two-dimensional probability distribution P(nP,nD) of a
clone containing nP basal progenitor cell and nD suprabasal differentiated cells. However,
the dataset was too sparse to sample accurately a 2D probability distribution (for instance
at P7, the dataset contained 44 clones ranging until nmax

P = 11 and nmax
D = 4. Therefore,

we decided to fit instead the 1D probabilities P(nP) and P(nD) for a clone to contain resp.
nP and nD cells. Thus, the observables yi

obs were values of these two distributions (ranging
until nmax

P and nmax
D so that the dataset had n = nmax

P +nmax
D +1 bins to compare to the

model, as nP = 0 is not recorded experimentally). For each parameter sweep, we also
performed several replicates to verify that we always converged on the same parameter
set.

Once the optimal set of parameters was determined, we complemented the analysis
with a confidence interval for each of these parameters, i.e. the confidence that the real
parameter values fall within the provided interval. In order to get a confidence interval in
a non-parametric fashion, we made use of a bootstrapping method, using a Monte Carlo
algorithm for case resampling [6]. This method involves performing the same parameter
sweep as the one described before, but for a large number of artificial datasets, which are
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samples with replacement of the original dataset. For instance, if 100 clones have been
counted for a given data point, we randomly picked 100 clones within these (allowing for
replacement, so that the same clone can be picked several times), and determined the
optimal parameters for that dataset.

We performed this operation for at least 500 iterations, and thereby built an estimate
for the probability distribution of our estimators themselves. Once this distribution had
been calculated, it was straightforward to deduce a confidence interval for any confidence
value of choice. We also plot confidence intervals (shaded areas on the graphs such as
Figure 2d) on each prediction of the model, in order to visualise how the error bars in
the fitting parameters extracted influence this prediction. In the remainder of the text,
confidence intervals will be stated at the 95% confidence level. In all cases, we performed
our parameter fitting on the joint distributions of the basal and suprabasal clone sizes.

1.3 Results

Using the method described above on the P7 clone size distributions, we found that the
best fits (Figure 2d,e) occurred for

∆ = 0.29+0.06
−0.1 , λ = 0.4+0.05

−0.08d−1

which translates into a cell fate choice occurring on average every 1.7 days, and
resulting in a symmetric division 79% of the cases, and a differentiation in 21% of the
cases. This resulted in a minimum sum of residuals Lmin = 0.0037.

1.4 Alternative models

In this subsection, we wish to strengthen the validity of our modelling approach by con-
sidering alternatives to our model, which can be seen as the simplest option.

Basal differentiated cells As mentioned above, the wide distribution of clone sizes
excludes a deterministic model of stem cell fate. However, one could envision a more
complex mechanism, for instance as found in oesophagus, where the basal layer consists
of both basal precursors P, and basal differentiated cells D1, on route towards suprabasal
stratification D2 i.e. following the rules:

P λ→

{
P+P Pr. 1/2+∆

D1 Pr. 1/2−∆
D1

Γ→ D2
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This adds a free parameter to the analysis, and would suggest that the basal distri-
bution that we measure consists of P+D1 cells. We thus performed a similar fitting
procedure, considering the ~θ = (∆,λ ,Γ) parameter vector instead. One should note that
in the limit Γ� λ , this model reduces to the previous one (D1 cells have a very short
lifespan). Bounding the possible values of Γ between 0 and 5λ gave an optimal value
of the fit for Γ at the upper bound (5λ ), arguing that there are very few, if any, basally
differentiated cells. When broadening even more the phase space of parameters Γ (we
here proceeded in steps of 1/Γ, which are more appropriate to look for very large values
of Γ), we found an optimal value for the fit of Γ = 3.1d−1 ≈ 8λ . However, the addition
of this parameter only infinitesimally lowered the value of the residuals Lmin = 0.0037
(indeed, the value of Lmin became near constant in this region of large Γ, reflecting its
lack of influence on the dynamics), so that we could reject the likelihood for a significant
fraction of basally differentiated cells (see AIC criterion from section below).

Refractory period after division Next, we sought to incorporate a potential refractory
period after division into our model, to check whether this would improve the fit, and in
particular, whether this would explain the small deviation from exponential distributions
that we see experimentally (i.e. the fact that we observe less small clones than what
an exponential distribution would predict - see Figure 2d and Figure S2f). We thus
came back to the previous model of a single population of basal (dividing) cells, but
incorporated a time Tf post-division below which no subsequent fate choice can occur.
Interestingly, and contrary to the model above, this provided a marked improvements of
the fits: Lmin = 0.0021, thus halving the sum of residuals, as this introduced small time-
correlations that improved the fits compared to exponential distributions (Figure S2f).
This was achieved for best fit parameters of:

∆ = 0.28+0.07
−0.13, λ = 0.65+0.10

−0.2 d−1, Tf = 1.1+0.2
−0.05d

To compare this with the previous paradigm, we calculated Akaike’s information criteria
(AIC) for both models, with the classical formula: AIC = 2k−nln(Lmin), where k is the
number of inferred parameters (resp. 2 and 3 in both models). This gave AIC1 =−41.2
and AIC2 = −48.3 respectively, meaning that the first model without refractory periods
was 0.029 times less probable than the model with refractory periods.

One should note that this second model, apart from the rather large refractory period,
still yields a qualitatively similar paradigm to the one before, with in particular comparable
division rates and imbalances. The effective division time would indeed read τ = Tf +
ln(2)/λ ≈ 2.1 days. In Ref. [7], a refractory period of 3 days was found (for a division
time around 4 days), showing that refractory periods can be relatively large in vivo.
Importantly, this only introduces short-term correlations in the dataset, without changing
significantly the key scaling features of longer-term tracings.
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1.5 Coordination of cellular fate choices for SG size regulation

So far, we have described fate choices during SG morphogenesis as a zero-dimension,
cell-intrinsic process, where each cell behaved stochastically, without sensing the finite
size of the SG. This is partially justified by the fact that clones at P7 are small compared
to total SG size (making up on average 9% of a given SG in terms of total cell numbers),
so that they do not feel the boundary conditions associated with longer-term monoclonal
conversion. However, this still begs the question of how final SG size is regulated during
morphogenesis.

A first, more intuitive, hypothesis would be that cell fate, although stochastic, is not
intrinsic, as assumed above, but instead depends on the interactions with neighbours
and/or a niche, providing spatial information that can regulate SG size correctly. Re-
cently, a study uncovered a mechanism of this class underlying the robustness of fate
allocation during gut epithelial homeostasis [8], involving Delta-Notch interactions be-
tween neighbours. However, such cell-extrinsic classes of mechanisms would yield the
same key predictions as the cell intrinsic model in terms of clone size distribution, making
it hard to address from the lineage tracing data alone.

A second class of models would be that all SG precursors cells make independent and
stochastic fate choices, but that a temporal signal at P7 shifts their dynamics collectively
towards balance. Such ”temporal” models would predict a much broader distribution of
final SG sizes, as the stochasticity arising from the fate choices of uncorrelated precursors
would be ”quenched” at P7, without the possibility of corrections. Given that around 11
precursors at P2 give rise to the final SG at P7 (Figure 2j,k and Figure S2d), and that
each gives rise to a roughly exponential clone size distribution, one would then predict the
SG size follows a broad Gamma distribution.

Strikingly, when simulating 11 independent precursors behaving according to the rules
inferred above, we could indeed predict the SG size distribution with high accuracy, in the
absence of adjustable parameters (Figure 2l). This strongly argues for the second ”tem-
poral” class of model, and for the absence of strong fate coordination between different
precursors during the growth phase. As detailed in the main text, ECM rigidity, which
increases strongly during the first week of development (Figure 4), could contribute to
provide such an external mechanical cue.

1.6 Validating the model

Finally, in order to test the predictions of the model further, we performed H2B experi-
ments which measure how fast nuclear H2B gets diluted in basal cells, as a measure of
the cell division rate. Interestingly, assessing dilution between P2 and either P4, P6 and
P8, we found an exponential decay with nearly constant slope, and verified that this decay
was reproduced by a characteristic division rate of TH2B = 1.3 days, close to our inferred
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value from the tracing (Figure 2i).

2 Homeostasis of the sebaceous gland

In the following section, we discuss the post-P7 homeostatic cellular dynamics in the SG.
As SG size does not evolve after this time point, we can assume that the basal precursors
must make fate choices which are balanced, either at the cell or population levels.

2.1 Clonal dynamics of individual precursors

We first make use of the same tracing as the previous section, i.e. induction at P2, but
examining longer chase time. To comprehensively study the long-term dynamics of cell
fate, we collected samples up to a year: at P23, P56, P90 and P365.

A first possibility for homeostatic regulation would be that cell fate would be balanced
at the cellular level through intrinsically asymmetric divisions (P→ P+D), which would
translate into clone sizes constant in time, post-P7. However, the data indicated an
opposite situation of slow but steady increase in clone sizes, up to the point at 1 year
where all SGs were either devoid of clones, or monoclonally converted. This confirmed
previous findings using an Lgr6 promoter in the SG [10], and echoes findings in the
intestinal crypt [9], indicating that basal precursors compete via symmetric divisions.

In analogy to the section above on SG morphogenesis, we then turned to detailed
modelling of individual SG basal cell fate. A key difference with the previous section, as
well as with similar models in the interfollicular epidermis [2] or oesophagus [3] is that one
must take into account the finite size of the SG compartments at these time scales. One
should note that previous modelling of the SG did not take this into account, as they were
starting the tracing already at homeostasis and using 22 weeks as latest time point [10],
so that the clones were never large enough for finite size effects to strongly influence the
dynamics. Importantly indeed, examining our P7 and P23 basal clone size distribution,
prior to dominant monoclonal conversion, revealed the expected scaling and exponential
dependency (Figure 3m).

However, for the P56, P90 and P365 time points, a significant portions of the clones
(all clones at P365) were spanning entire glands, so that not only the finite size of SGs,
but also the size distribution of SG themselves, had to be taken into account. For that,
we made use of the findings from the first section: we simulated SG size distributions
by considering 11 independent precursors at P2 (with one being labelled), with Galton-
Watson dynamics.

For each simulation, at P7, we ”freeze” the SG total size, and build a two-dimensional
rectangular lattice of cells, with dimensions NxM such that the total basal cell number
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approximates optimally the number calculated from the P2-P7 simulation of the 11 pre-
cursors. We then position the P7 clone (according to its size in this given simulation) on
the lattice, and let the simulation evolve from P7 to P365, according to loss-replacement
kinetics with division rate λh (see Figure S3i,j for a model schematics). Post-P7, we
ran the simulation according to classical loss-replacement dynamics: each basal cell can
divide symmetrically, with rate λh, causing another basal cell to migration suprabasally,
with periodic boundary conditions. Given the fact that suprabasal cells make up half the
number of basal cells, we assume that suprabasal cells are organised in a Mx(N/2) grid,
and that any basal cell differentiation causes the suprabasal cell above to be lost (see
Figure S3j for a schematic).

One should therefore note that this model has few adjustable parameters: the division
rate λh, and the length scale for loss/replacement dynamics, i.e. when a given cell divides,
where the corresponding lost cell is located. There are two limits to this: nearest neighbour
loss-replacement, where a dividing cell expels one of its direct neighbours, and global
competition, where a dividing cell expels any other cell in the tissue. These two scenarii
only differ mildly from on another, as we show on Figure S3q. This is consistent with
previous theoretical analyses of lineage-tracing datasets[5, 11]. Indeed, although cell-
intrinsic and cell-extrinsic models of stem cell renewal do give very different predictions
for one-dimensional tissues, notably as a clone can only grow on its boundary in cell-
extrinsic models (where the former predicts exponential clone size distributions and linear
clone size growth in time, while the latter predicts gaussian clone size distributions and
clone size growing as square root of time), both models make very similar predictions for
two-dimensional tissues (and rigorously undistinguishable in three-dimensions). In two-
dimensions, both models are expected to give rise to linear (or quasi-linear) monoclonal
conversion, as well as exponential clone size distributions for intermediate time scales,
explaining the similarity of outcomes displayed on Figure S3q. For the same reason, we
found that positioning clones in the simulation at P7 on the NxM grid either via random
position picking for each cell, or as a coherent clonal structure (isotropic or anisotropic),
to give very similar outcomes (one should note that in the limit of global competition,
relative positions of cells do not matter, and the way of initialising the clone at P7 becomes
rigorously irrelevant). As detailed below, global competition yields a slightly more rapid
monoclonal conversion, fitting better with the data, so that we choose this model in the
following.

2.2 Fit of the homeostatic division rate

Similarly to the previous section on morphogenesis, one could fit the division rate versus
the time evolution of the basal and suprabasal clones. However, to constrain better the
dynamics, we adopt here the complimentary approach of first measuring independently
the division rate, in order to make predictions on the clonal evolution subsequently.
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For this, we make use of an H2B dilution experiments, as detailed in the main text
(starting at P49 and traced for two weeks). We simulate the clonal dynamics detailed
above, and perform again a least-square fit analysis with bootstrapping to determine the
homeostatic division rate λh.

This leads the best fit for values of

λh = 0.2+0.02
−0.02d−1

which is equivalent to a division every 3.5 days, close to the value observed for the
interfollicular epidermis in mouse [2]. On Figure 3j, we show the data, together with the
model predictions (thick and thin lines indicate resp. the best fit and confidence intervals).
Interestingly, in homeostatic tracings from adulthood such as the one performed by Ref.
[10], the SG basal clone size for intermediate time is expected to grow linearly with slope
rλh, where 1− 2r quantifies the possibility of intrinsically asymmetric divisions. Using
the first 40 days on this tracing (to remain at intermediate time scales where growth is
linear), together with our division rate of λh = 0.2d−1 would give a value of r slightly above
0.5, arguing again in the homeostasis setting for the absence of intrinsically asymmetric
divisions, a point we will come back to below using our own dataset. One should also
note that incorporating the small, experimentally measured division rate gradient along
the top-bottom axis of the SG (Figure S3o) in the model (by assuming a linear 25%
gradient in division rates) did not change significantly either the clone size distributions
or the average clone size evolution (Figure S3q).

2.3 Results and model validation

Firstly, we wish to start with predictions which are independent on the exact details of
either the division rate, or the nature of loss-replacement. For this, we turn to the clone
size distributions at all time points (P7, P23, P56, P90 and P365), and compare them to
the model predictions by matching each experimental data point not the corresponding
simulated time (as was done in Figure 3m), but to simulated time points that best fit the
average clone size at each time point (Figure S3p). Effectively, this enables us to test
how good the predicted shapes of the distribution match the data, after having fitted the
averages. Importantly, this provided consistently good predictions: as mentioned above,
P7 and P23 distributions are close to exponential as predicted by the model, whereas
P56 and P90 display a first exponential part for small clone sizes (which do not feel the
boundary condition from the finite size of the SG), followed by a tail which matches the
SG size distribution for large clone sizes. For P365, the clone size distribution trivially
matches the SG size distribution, hence the goodness of the fit is not surprising. This is
a strong indication of SG homeostasis being maintained by a single functional progenitor
population.
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Secondly, we wish to test whether the model can recapitulate the evolution of basal
clone sizes throughout the 1-year tracing. Assuming that the division time instantly drops
from every 1.7 days to 3.5 days at P7 was found to under-estimate the clone size evolution.
However, modifying slightly the model, by incorporating a monotonous decrease of the
division rate between the two values for 4 weeks post-P7 (i.e. during the growth phase of
the rest of the epidermis) drastically improved the fit for the basal clone size, as shown
on Figure 3k. One should note that an alternative explanation for monoclonal conversion
occurring slightly faster than expected from the adult division rate could be that the
division rate varies in time, and for instance with the hair cycle, whereas we have assumed
it to be constant within a whole year. This would need to be addressed via live-imaging
methods.

Thirdly, we found the model provided an excellent fit for the full time course of the
average suprabasal clone size (Figure 3k, red), which was more surprising, as we haven’t
made any complex assumption on the suprabasal migration and loss rate. This argues in
favour of a theory where suprabasal cell number, possibly due to finite size constraints,
are capped and slave to the dynamics of the basal dynamics. Furthermore, the theory
also provided a good fit for the evolution of the clonal persistence, as shown on Figure 3n,
which was characterised as expected by a first phase of stark decay, followed by a plateau
arising from the monoclonal conversion.

Fourthly, to challenge the model further, we performed additional short-term tracing
experiments from P56 to P65, using both Lrig1 and K14 promoters to enhance the gen-
erality of the findings (Figure 3o). We first tested whether the distribution of basal clone
sizes were the same in both cases (n = 46 clones for K14, n = 23 clones for Lrig1), and
found no statistically significant differences (P = 0.35, two-tailed Mann-Whitney test),
providing an additional test of our theory of a single equipotent population maintaining
the SG. One should note that both the mean clone size and exponential distribution are
also consistent with the Lgr6 tracing from Ref. [10]. Importantly, both distributions
(Figure 3q) are consistent with our model predictions (with the homeostatic division rate
λh = 0.2d−1 determined above). This provides additional confidence in our model.

3 Oncogenic activation in the SG

In a third section, we discuss the effect of oncogenic KRAS activation at different time
points in the SG, both at the cellular and gland level.

3.1 Clonal dynamics post P7

We then performed KRAS activation combined with short-term (9 days) lineage tracing
during adulthood (at P56, to match the adult homeostatic tracing from the previous
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section), to follow its effect on clonal dynamics.
We then performed the same least-square fitting procedure as in the previous sections,

with the parameter vector ~θ = (∆,λ ) (again, we neglected suprabasal cell loss at these
short time scales), and found that the best fit (Figure 5k,m,p and Figure S4o,p) occurred
for values of:

∆ = 0.23+0.1
−0.1, λ = 0.22+0.05

−0.05d−1

Interestingly, this thus revealed that the cellular division rate was only weakly affected
by adult KRAS activation, and that clone size increase proceeded via an imbalance towards
symmetric division. This results in a minimum sum of residuals Lmin = 0.002. It is worth
noting that the level of imbalance inferred here is rather close to the one inferred in the
WT sebaceous gland during morphogenesis (within error bars), which could suggest that
this represents an attractor of the system in the absence of strong finite-size constraints.

3.2 Clonal dynamics during morphogenesis

We then performed KRAS activation combined with lineage tracing from P2, to follow its
effect in the phase of morphogenesis.

Tracing until P7 At P7, the effect was relatively mild, with roughly 60% increase
in basal clone size (Figure 5i,m). Here, as in the entire KRAS section, we assume,
based on the literature, that KRAS recombination is much more efficient than Confetti
recombination, so that the overwhelming majority of cells in the SG are KRAS-activated,
whereas only a small clonal subset are labelled by Confetti. Thus, we model this dynamics
as a uniform pool of KRAS cells, as opposed to a mixture of competing KRAS and
wild-type (WT) cells.

This is in fact an assumption that we can experimentally challenge, as it makes two
key testable predictions:

• one should not see an ”anomalous” early drop in persistence - which would be
associated with outcompeted WT cells.

• the clone size distributions should still display the same scaling as in wild-type
situation, as opposed to the more complex bimodal distributions one would observe
for mixtures of two cell populations.

As we will see in the subsection below, these predictions hold true in the KRAS
dataset (Figure 5l,m), validating the assumption of very efficient KRAS recombination.
One cannot rule out the possibility of WT cells being expelled and lost so rapidly between
P2 and P7 that they cannot be observed. However, this would still mean that our dataset
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consists of the dynamics of the remaining KRAS cells. An intriguing alternative would be
one where some WT cells remain within the SG, but behave exactly like KRAS neighbours
(for instance if KRAS cells eliminate the niche constrain for them as well, and if that would
be sufficient to convert WT cells to the imbalanced level seen in KRAS cells). Ruling out
this fascinating possibility is not possible within our modelling scheme, and would require
live-imaging datasets and/or experimental tools to assess the recombination status of SG
cells.

We then perform the same least-square fitting procedure as in the WT morphogenesis
section, with the same parameter vector ~θ = (∆,λ ), and found that the best fit (Figure
5k,m) occurred for values of:

∆ = 0.25+0.05
−0.05, λ = 0.62+0.1

−0.12d−1

which corresponds to a very similar value for the imbalance compared to wild-type,
but a slightly accelerated division time, of on average one division every 1.1 day. A key
signature for the fact that the division rate is the most affected here comes from the
fact that both basal and suprabasal clone sizes increase for the KRAS mutant, in similar
proportions. If the increase in basal clone size for KRAS arises from larger ∆, this would
result, on the short-term (P7), in smaller suprabasal clone sizes. Thus, contrary to the
adult KRAS activation, neonatal KRAS activation seems to act rather via an increase of
the division rate. Note that as for the homeostasis tracing, this type of lineage-tracing
based on fixed samples does not allow us to conclude on the cell-intrinsic or cell-extrinsic
nature of cell fate regulation upon KRAS activation.

However, as imbalance is conserved compared to WT morphogenesis and adult KRAS
activation (Figure 5p), it is tempting to speculate that this imbalance represents a con-
straint of the system, i.e. that the system cannot go above it during morphogenesis as
it is already at the upper bound. Understanding how these regulated fate choices are
implemented molecularly by a given cell (in the absence of finite size constraint) would
be a next key question arising from this analysis.

Longer tracing Finally, we analysed the results of tracing KRAS cells from P2 to
longer time points (where the wild-type SG should be homeostatic). Unlike shorter time
points, one cannot fit independently both ∆ and λ in this setting from the clone sizes or
clone sizes distribution, as the clone size distributions are expected to converge towards
exponentials (a feature well-recapitulated in the data, see Figure 5m), whereas the basal
clone size is expected to grow exponentially as e2∆λ t , making only the product of the two
parameters accessible from a fitting procedure. Importantly, the scaling behavior of clone
size distributions at longer time points demonstrates that the KRAS data can be explained
by a model of a single population of imbalanced progenitors on the long term (although
short-term priming and differences among KRAS progenitor could occur). Note that we
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do observe small deviations to the exponential scaling at both P7 and P23, in analogy to
Section 1 on morphogenesis, but this can again be explained in a straightforward manner
by introducing a small refractory period following cell division (see Figure S4o,p for best-
fit models of the P7 and P23 basal clone size distribution with the addition of a 24h
refractory period). We note however that introducing the analysis of a fraction of cells
remaining wild-type in the KRAS tracing systematically worsened the fit (Figure S4q), by
introducing an early drop at small clone sizes in the clone size distributions, not consistent
with the observed rarity of small clones (i.e. of a size comparable to wild-type at the same
time point) in the data.

Morever, given the findings above, we can make the simplifying assumption that KRAS
cells adopt an homeostatic value for their division rate post-P7 (λh = 0.2d−1). From
the P23 average basal clone size, one can then infer an imbalance post-P7 of ∆ = 0.2.
Interestingly, running such a simulation predicts that contrary to the WT case, KRAS
clonal persistence should rapidly reach a plateau (Figure 5l), as clone sizes reach values
at which stochastic clonal loss becomes vanishingly small. Interestingly, this was verified
in the persistence data for the KRAS tracing (Figure 5l), characterised by a constant
persistence post-P7. This confirms experimentally the role of the finite-size constraint of
the SG in promoting cell competition at homeostasis, and that KRAS activation liberates
cells from the finite size constraint to alleviate the cell-cell competition.
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