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Appendix
Generalized-a time integration

After spatial discretization of 7 we get the fol-
lowing degenerate hyperbolic system

where M, denotes the mass matrix; C}), denotes an op-
tional damping matrix; (t) denote the unknown nodal
accelerations; 0(t) denote the unknown nodal velocities;
u(t) denote the unknown nodal displacements; and p(t)
denote the unknown nodal pressure values. We will use
the modified generalized-a method proposed in |50]. To
this end we introduce the auxiliary velocity v = u. Then,
applying the standard generalized-« integrator from [28]
we obtain

M0, = MiVnga, =0, (48)
pOthn-ﬁ-am + Chvn+af + Rn+af = 07 (49)

upper

Rt =0,  (50)

lower

where
Rﬁgpaeff = afRupper(un+17 pn—&-l);
+ (1 - af)Rupper(una pn>7
Rﬁ;:g: = CVfl:{lower(unJrlv pn+1)»
+ (1 - af)Rlower(dna pn)a
and
ﬁn+am = Oém]:anrl + (]— - O[m)l.ln, (51)
Vitan = @mVatr1 + (1 — am) v, (52)
Vit = 0t Vi1 + (1 — ag) v (53)

Moreover, we employ Newmark’s approximations, [61],
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Upt1 ’yAt(UJrl u,) + 5 u (54)
1 vy—1.
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Vi1 ’yAt(V+1 Vo) + v (55)

Using we observe

Un+am = Vntar

and combining this with f we conclude
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Thus, a dependence of v, 41 and v, 41 on u,4+1 can be
established. Having this the unknown values u, 41, Prn+1
can be computed with the Newton-Raphson method.
Based on [50] we set the parameters depending only on

poc € [0,1) by

1
af 1= 3
14 peo
3 — Poo
Oy = ,
2(1+ poo)
1—1—
= — 4+ am, — af.
Y 9 f

In all our simulations we used a value of po, = 0.5.

Remark on the implementation of the pressure-projection
stabilized equal order pair

Considering the bilinear form sy (pp,gn) defined in
we can rewrite this with a simple calculation into

Mel
1
sh(pn,an) ==Y (K/thh dx — |7_l|/ph dx/Qh dx
=1
1 K

K,

Denoting by {¢;}~ the chosen ansatz functions the el-
ement contribution for an arbitrary element K to the

matrix C, is given by

!mdxul(!@dx!@dx.

This corresponds to an element mass matrix minus a
rank-one correction.

Static condensation

For completeness we provide a summary for the static
condensation used for the MINI element. Consider a fi-
nite element K € T, with a local ordering of the un-
knowns u

u= (ui’ u;’ u; o ,ungfSN , u;ldofsN , ulzldofsN7
wl gyl )
and p as
p= (pl,pQ7 . ’pndofsN) .

Here, ndofsy corresponds to the nodal degrees of free-
dom per element and ndofsg to the bubble degrees of
freedom (one for tetrahedral elements and two for hexa-
hedral elements). Then the element contribution to the
global saddle-point system can be written as

Knn Kng By Auy Ry
KBN KBB B];r AllB = _Rlépper
By Bg Cy Ap —RR"
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The bubble part of the stiffness matrix, Kgg is local to
the element and can be directly inverted. This gives the
condensed system
K.g BL; Auy R
Berr Cet Ap —RG"
where the effective matrices and vectors are given as
K.q = Kny — Knp K Ky
Bei = By — BpKpp Koy,
C.rr := Cx — By KBy,
REF™ = RY™ — Ko KRy,
R := RY™ — Bg KRy
The effective matrices and vectors can then be assembled
in a standard way into the global system. The bubble

update contributions can be calculated once Auy and
Apy are know as

Aup = — K (RFP + KpnAuy + B Apy)

Tensor calculus

We use the following results from tensor calculus, for
more details we refer to, e.g., |45}, |84].

0C _ 2, 2 1,

%—J P=J (]I g() ®C’>7
oCc—1
oC

1
(A O A)j = 5 (Aindj + Audjr).

=-CltoCc!,

For symmetric A it holds
1
P:A=Dev(A)=A— g(A :C)ct.

The isochoric part of the second Piola—Kirchhoff stress

tensor as well as the isochoric part of the fourth order

elasticity tensor are given as

9% (C)
oC

_ W (C

5. M)

Sisc =2

= J 3Dev(S), (56)

A

4 _ — 2 2 _— ~
= J3PCP'" +J 3 Sr(CS)P
4 S
- *Sisc 0717
37
T:= 420
oCoC
P.=C'oC' - %C—l ®C1,

s 1
A®B:=_ (A9 B+B®A).
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