Supplementary Material to:

CLONAL HEMATOPOIESIS IN ELDERLY TWINS: CONCORDANCE, DISCORDANCE AND MORTALITY

Next-Generation Sequencing panel

We designed a TruSeq Custom Amplicon panel (Illumina, San Diego, CA, USA) with an amplicon length of 250 base pairs (bp) covering more than 95% of known mutations identified in publications on clonal hemaptopoiesis^{1–6}.Library preparation was performed according to the manufacturer's protocol, including pre-PCR addition of random unique molecular identifier (UMI) nucleotide strands. Genes and chromosol coordinates are listed below:

Gene	Chr	hg19 coordinates (start stop)	
ASXL1	20	(310 25234	310 21081)
ASXL2	2	(25964888	26101101)
DNMT3A	2	(25457124	25536945)
IDH1	2	(209113424	209112994)
IDH2	15	(90631736	90632009)
PPM1D	17	(58740350	58740919)
RAD21	8	(117859733	117866713)
SF3B1	2	(198266563	198267800)
SRSF2	17	(74732237	74733248)
TET2	4	(106155075	106197718)
TP53	17	(7572833	7579961)
JAK2	9	(5073674	5073808)
GNB1	1	Full coding se	quence
GNAS	20	(57415162	57415896)
	20	(57478578	57480535)
	20	(57484212	57485886)
ETV6	12	(11803056	12043986)
CREBBP	16	(3786120	3786810)
	16	(3781300	3781802)
NRAS	1	(115256421	115256599)
	1	(115258671	115258781)
KRAS	12	(25380168	25380346)
	12	(25398208	25398318)
CBL	11	Full coding se	quence
BRCC3	Х	(154299797	154348431)
BCOR	Х	(39911356	39937188)

Sequence analysis

Each read of the 150bp paired-end raw FASTQ included a 6bp UMI tag. Using the extract program in the UMI-tools software (v0.5.0)⁷, the UMI 6mers were removed from the read sequence, combined with the corresponding mate-pair into a 12bp identifier and moved to the read name files of each mate. Corresponding FASTQ files where aligned to the reference hg19 genome with the bwa-mem implementation of the Burrows–Wheeler algorithm⁸. PCR duplicates were removed based on the UMI information using the dedup program in UMI-tools. QC and visual inspection of the alignments and amplicon coverage were assessed with the R package TarSeqQC⁹. Identification of the variants on the filtered BAM files was performed with two variant callers; Freebayes¹⁰ and VarDict¹¹. All the variants were annotated using snpEff (v4.2)¹² for gene name, amino acid change, rare variants (ExAC, dbSNP), cancer mutation records (COSMIC) and effect predictor (VEP).

Variant calling

Curation of mutations was performed blinded to clinical data. A manual assessment of all variants was performed, which included visualization in Integrated Genome Viewer (Broad Institute, Cambridge, MA). Exclusion criteria were:

- Coverage below 200x
- Alternative variant with read count below 5
- Variant allele frequency below 2%
- Area with excessive local noise
- Strand biased call explained by sequencing error
- Synonymous changes
- Known sequencing artefact based on >1000 samples analyzed by the same panel
- Known as a common polymorphism in the normal population (>1% frequency in ExAC, TOPMED or 1000G)
- Annotated as benign polymorphism in ClinVar
- Known rare variants and missenses mutations with a variant allele frequency of 40-60%, and not previously described as pathogenic. In MZ twins the presence of rare variants in both twins confirmed a germline origin.

Additional assessment criteria supporting inclusion of variant

- Variants identified in multiple UMI families¹³
- Known COSMIC reference

For each individual gene we used the following filtering:

Gene	Chromosome	Accession	Reported mutations used for variant calling	
ASXL1	20	NM_015338	Frameshift/nonsense/splice-site in exon 11-12	
ASXL2	2	NM_018263	Frameshift/nonsense/splice-site	
DNMT3A	2	NM_022552	Frameshift/nonsense/splice-site; Missense in p.292-350 / p.482-614/ p.634-912	
IDH1	2	NM_005896	Missense at R132	
IDH2	15	NM_002168	Missense at R140 and R172	

PPM1D	17	NM 003620	Frameshift/nonsense in exon 5/6	
RAD21	8	NM_006265	Frameshift/nonsense/splice-site	
SF3B1	2	NM_012433	Missense in terminal HEAT domains (p.529-1201)	
SRSF2	17	NM_003016	Missense/deletion involving p.P95	
TET2	4	NM_001127208	TET2 Frameshift/nonsense/splice-site; Missense in	
			conserved domains (p.1104-1481 and p.1843-2002)	
TP53	17	NM_001126112	Frameshift/nonsense/splice-site; Missense in DNA-binding	
			domain (p.95-288); Missense at P72 / R337	
JAK2	9	NM_004972	JAK2 V617F and Missense/indel in aa range p.536-547	
GNB1	1	NM_002074	Missense at K57 / I80	
GNAS	20	NM_016592	GNAS Missense at R201	
ETV6	12	NM_001987	Frameshift/nonsense/splice-site	
CREBBP	16	NM_004380	Frameshift/nonsense/splice-site	
NRAS	1	NM_002524	Missense at G12 / G13 / Q61	
KRAS	12	NM_033360	Missense at G12 / G13 / Q61 / A146	
CBL	11	NM_005188	Missense in Linker/RING finger domains p.345-434	
BRCC3	Х	NM_024332	Frameshift/nonsense/splice-site	
BCOR	Х	NM_001123385	Frameshift/nonsense/splice-site	

Hematological cancer and cytopenia ICD-10 codes.

All diagnosis from the cohort was identified and we created two groups of diagnoses

Hematological cancers including the following ICD-10 diagnosis.

DD45 - Polycythemia vera	
DD46 - Myelodysplastic syndromes	
DD47 - Mast cell neoplasms of uncertain behavior	
DC81 - Hodgkin lymphoma	
DC82 - Follicular lymphoma	
DC83 - Non-follicular lymphoma	
DC84 - Mature T/NK-cell lymphomas	
DC85 - Other specified and unspecified types of non-Hodgkin lymphoma	
DC86 - Other specified types of T/NK-cell lymphoma	
DC88 - Malignant immunoproliferative diseases and certain other B-cell lymphomas	
DC90 - Multiple myeloma and malignant plasma cell neoplasms	
DC91 - Lymphoid leukemia	
DC92 - Myeloid leukemia	
DC93 - Monocytic leukemia	
DC94 - Other leukemias of specified cell type	
DC95 - Leukemia of unspecified cell type	
DC96 - Other and unspecified malignant neoplasms of lymphoid, hematopoietic and related tissue	

The group of unspecified cytopenia included the following diagnoses

DD619A – Pancytopenia, unspecified
DD693 - Immune thrombocytopenic purpura
DD696 - Thrombocytopenia, unspecified
DD613 - Idiopathic aplastic anemia
DD63 - Anemia in chronic diseases classified elsewhere
DD618 - Other specified aplastic anemias and other bone marrow failure syndromes
DD649 - Anemia, unspecified
DD694 - Other primary thrombocytopenia
DD70 – Neutropenia

Supplementary Table 1a and b Cox regression model including the VAF grouped as maximum VAF<10% vs >=10%.

Α

Variable	HR	95% CI	Р
VAF < 10%	1.16	0.94-1.43	0.115
VAF >=10%	1.120	0.93-1.54	0.205
Age (years)	1.11	1.08-1.13	<0.001
Sex (male)	1.15	0.91-1.45	0.252
Smoking (1st tertile)	1.02	0.81-1.29	0.852
Smoking (2nd tertile)	1.22	0.96-1.55	0.101
Smoking (3rd tertile)	1.70	1.23-2.35	0.001

*VAF = Variant allele frequency

В			
Variable	HR	95% CI	Р
VAF < 10%	1.12	0.91-1.38	0.299
VAF >=10%	1.16	0.91-1.49	0.267
Sex (male)	1.14	0.90-1.44	0.267
Smoking (1st tertile)	1.03	0.82-1.29	0.787
Smoking (2nd tertile)	1.26	1.00-1.59	0.053
Smoking (3rd tertile)	1.73	1.26-2.37	0.001

*VAF = Variant allele frequency

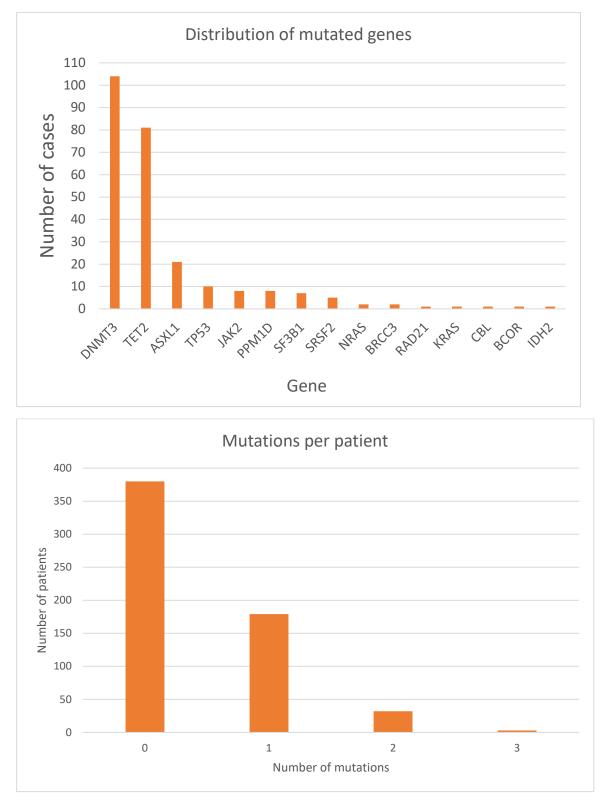
In table **A** time since blood sample is used as the underlaying time scale whereas age is used as the underlying the time scale in **B**, and almost similar results were found.

Supplementary Table 2

Risk of developing hematological cancer, competing risk analysis according to CHIP mutational status

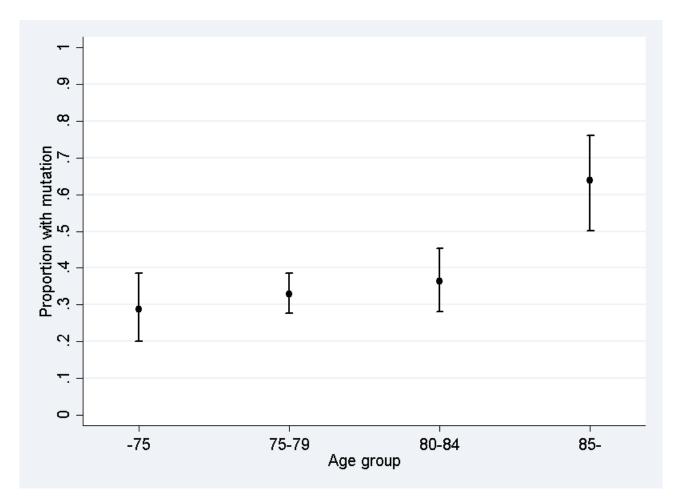
Variable	HR	95% CI	Р	
Mutation (yes/no)	1.80	0.87-3.75	0.115	
Age (years)	0.94	0.86-1.04	0.234	
Sex (male)	0.88	0.42-1.82	0.722	
Smoking (1st tertile)	0.88	0.32-2.43	0.808	
Smoking (2nd tertile)	0.123	0.016-0.95	0.045	
Smoking (3rd tertile)	1.04	0.44-2.48	0.932	

The risk of developing a hematological cancer (as defined above), was not associated with clonal hematopoiesis after adjusting for age, sex and tobacco consumption. A total of 27 twins developed a hematological cancer during follow up. Of those 19 were classified as a lymphoid neoplasm and eight as a myeloid neoplasm.

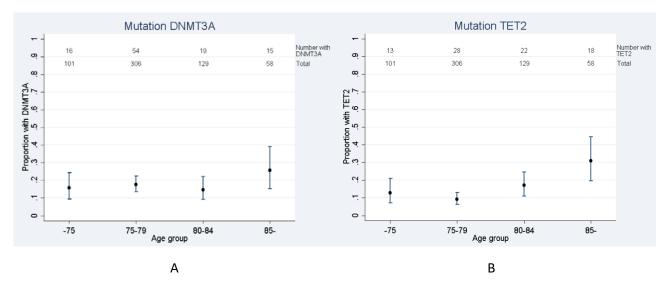

Supplementary Table 3

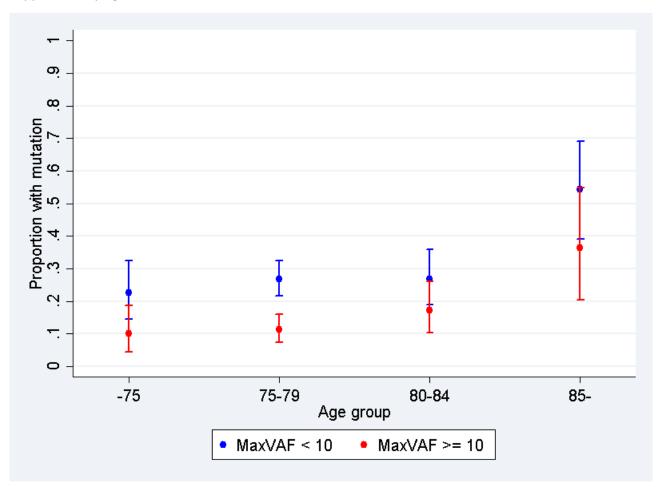
Risk of developing unspecified cytopenia, competing risk analysis according CHIP mutational status

Variable	HR	95% CI	Р
Mutation (yes/no)	1.59	0.99-2.54	0.052
Age (years)	0.96	0.91-1.02	0.158
Sex (male)	1.24	0.75-2.04	0.403
Smoking (1st tertile)	0.92	0.48-1.77	0.802
Smoking (2nd tertile)	0.63	0.31-1.30	0.211
Smoking (3rd tertile)	1.01	0.54-1.90	0.980


A total of 74 twins developed an unspecified cytopenia during follow up, and as the only variable clonal hematopoiesis had a borderline significant association with the development of unspecified cytopenia after adjusting for age, sex and tobacco consumption.

Supplementary Figure 1a and b


1a cases with a mutation in the affected gene and 1b number of different genes mutated per twin.


Proportion of individuals with a mutation according to age group. There were 101 twins between 73-75 years, 306 between 75-79 years, 129 between 80-85 years and 58 were 85 years or above at the time of inclusion in the study in 1997.

Supplementary Figure 3a and b.

The distribution of mutations in (A) *DNMT3A* and (B) *TET2* according to age group. The total number and number affected in each age group can be seen above the barplot.

Supplementary figure 4

The proportion of samples grouped according to after the allele frequency of the mutations with the highest VAF within each case.

- 1. Jaiswal S, Fontanillas P, Flannick J, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. *N. Engl. J. Med.* 2014;371(26):2488–2498.
- 2. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. *N. Engl. J. Med.* 2014;371(26):2477–87.
- 3. Gibson CJ, Lindsley RC, Tchekmedyian V, et al. Clonal Hematopoiesis Associated With Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma. *J Clin Oncol*. 2017;35:.
- 4. Gillis NK, Ball M, Zhang Q, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. *Lancet. Oncol.* 2017;18(1):112–121.
- 5. Takahashi K, Wang F, Kantarjian H, et al. Preleukaemic clonal haemopoiesis and risk of therapyrelated myeloid neoplasms: a case-control study. *Lancet. Oncol.* 2017;18(1):100–111.
- 6. Xie M, Lu C, Wang J, et al. a n a ly s i s Age-related mutations associated with clonal hematopoietic expansion and malignancies. *Nat. Med.* 2014;20(12):1472–1478.
- 7. Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. *Genome Res.* 2017;27(3):491–499.
- 8. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2010;26(5):589–95.
- 9. Merino GA, Murua YA, Fresno C, et al. TarSeqQC: Quality control on targeted sequencing experiments in R. *Hum. Mutat.* 2017;38(5):494–502.
- 10. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012;
- 11. Lai Z, Markovets A, Ahdesmaki M, et al. VarDict: a novel and versatile variant caller for nextgeneration sequencing in cancer research. *Nucleic Acids Res.* 2016;44(11):e108.
- 12. Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. *Fly (Austin)*. 6(2):80–92.
- 13. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. *Nat. Commun.* 2016;7:1–7.