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SUPPLEMENTARY METHODS 

I. Theory: A simplified Formula for Calculating 𝑼𝑼(𝒙𝒙��⃑ ) 
Let: 
• 𝑥⃑𝑥 denote a random variable corresponding to a set of prognostic characteristics (the feature 

vector); 
• { }0,1y∈  denote a random variable designating the true class label; i.e., we consider a 

binary classification problem.  For example, 𝑦𝑦 = 1 if a patient dies within some specified 
time after initial diagnosis (the positive class) and 𝑦𝑦 = 0 otherwise (the negative class);   

• 𝑓𝑓(𝑥⃑𝑥) be the clinical risk model that takes a feature vector as input and outputs a risk score 
that can be used to estimate the probability of the true class label. 

As clinical risk models generally report the probability of an adverse event, or some score that 
can be translated into a probability, we consider the case where 𝑓𝑓(𝑥⃑𝑥) is a probability; i.e., 
𝑓𝑓(𝑥⃑𝑥) = 𝑃𝑃𝐸𝐸(𝑦𝑦 = 1|𝑥⃑𝑥 ), where 𝑃𝑃𝐸𝐸(𝑦𝑦 = 1|𝑥⃑𝑥 ) is the probability that 𝑦𝑦 = 1  for a patient with 
feature vector  𝑥⃑𝑥.  The superscript E designates that this probability is estimated from a training 
dataset.  Our alternate metric, 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑥⃑𝑥), uses the same data that was used to calculate 𝑓𝑓(𝑥⃑𝑥) 
and is calculated using  generative models for both the positive and negative classes (hence the 
superscript G).  When 𝑓𝑓(𝑥⃑𝑥)  and 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑥⃑𝑥) disagree, we say that the training data are 
insufficient to provide a robust, trustworthy prediction.   
As we are interested in developing a method that does not require training a new model using 
the training dataset, our goal is to derive an expression for 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑥⃑𝑥) that is straightforward 
to compute. Using Bayes’ rule, we can express 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑥⃑𝑥) as follows:  
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where 𝑃𝑃(𝑦𝑦 = 1) is the prevalence of the adverse outcome in the overall population and is 
estimated using the fraction of patients who belong to the positive class in the training dataset.  
Calculating 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑥⃑𝑥) requires us to estimate the likelihood of observing a given feature 
vector in the positive class, 𝑃𝑃𝐺𝐺(𝑥⃑𝑥|𝑦𝑦 = 1) , and the negative class, 𝑃𝑃𝐺𝐺(𝑥⃑𝑥|𝑦𝑦 = 0) .  These 
likelihoods can be estimated given appropriately trained generative models where one model 
generates feature vectors consistent with patients in the positive class, 𝑥⃑𝑥|𝑦𝑦 = 1, and the other 
generates feature vectors consistent with patients in the negative class, 𝑥⃑𝑥|𝑦𝑦 = 0. In practice, 
𝑃𝑃𝐺𝐺(𝑥⃑𝑥|𝑦𝑦 = 0) is agnostic to the type of generative model used.   In this initial work we use a 
multivariate normal (MVN) probability density function (pdf) for our generative model.  As 
outlined in the main text, this model forms a good model for the feature space as using a MVN 
to model all of the GRACE score features (both binary and continuous features) yields an AUC 
for 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑦𝑦�) is 0.8123, which is similar to the AUC of the GRACE risk model (0.8124). 



In practice, using equations (1) requires us to calculate definite integrals of multidimensional 
Gaussian pdfs, as the probabilities correspond to integrals over the pdfs.  However, calculating 
definite integrals of MVN densities can be challenging given their computational complexity1.  
For example, if dim(𝑥⃑𝑥) = 𝑁𝑁 then numerical estimates of the pdf would require sampling to 
ensure convergence for 10N values, where each prognostic feature is partitioned into 10 bins.  
To simplify the calculations, we therefore rewrite the probability estimate so that it only 
requires the numerical calculation of a univariate probability density: 
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where ( )ŷ f x=  . Note that: 

• 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑦𝑦�)  is the probability that a patient actually belongs to the 1y =  class, given that 
the clinical risk model, 𝑓𝑓, assigns a score of ŷ  to a patient with prognostic features, 𝑥⃑𝑥.   

• Similarly, 𝑃𝑃𝐺𝐺(𝑦𝑦�|𝑦𝑦 = 1) is the probability that the risk score, 𝑓𝑓, assigns a score of 𝑦𝑦� to 
patients in the positive class, and 

•  𝑃𝑃𝐺𝐺(𝑦𝑦�|𝑦𝑦 = 0) is the probability that  𝑓𝑓 assigns a score of 𝑦𝑦� to patients in the negative class.   

Since 𝑓𝑓 is completely determined by x , the associated univariate probability densities are:  
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where 𝛿𝛿 is the Dirac delta function and 𝜌𝜌𝐺𝐺 is the univariate pdf.  The needed probabilities, 
𝑃𝑃𝐺𝐺(𝑦𝑦�|𝑦𝑦 = 1)  and 𝑃𝑃𝐺𝐺(𝑦𝑦�|𝑦𝑦 = 0)  are calculated by numerically integrating the univariate 
probability densities. 

With these conventions, our unreliability metric, ( )U x , is obtained by comparing 𝑦𝑦�  and 
𝑃𝑃𝐺𝐺(𝑦𝑦�|𝑦𝑦 = 1): 

 ( ) ( )ˆ ˆ1|GU x P y y y≡ = −   (4) 

It is straightforward to show that  𝑈𝑈(𝑥⃑𝑥) ≠ 0 implies 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑥⃑𝑥) ≠  𝑓𝑓(𝑥⃑𝑥) (see Section II).  
Furthermore, it follows that 0 ≤ 𝑈𝑈(𝑥⃑𝑥) ≤ 1, where the higher the value of 𝑈𝑈(𝑥⃑𝑥) the more 
unreliable the model prediction.      

  



To arrive at a simplified expression for 𝑈𝑈(𝑥⃑𝑥) we first define: 
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We refer to xβ   as the relative likelihood. 

Then we have: 
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It follows that: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( )( ) ( )( )
( ) ( )

1 ( 1) 11 1
( 1)

1 1 ( 1)1 1
( 1)

11 ( 1)1 1
( 1)

1 1 ( 1)1 1
( 1)

1 ( 1)1
(

ˆ ˆ1|

ˆ ˆ( 1), ,

1 1
1 1

1 1

1 1

1

x

x

x

x

x

x

x

x

G

x

P y
x P y x

P y
x x P y

P y
x xP y

P y
x x P y

P y
x P y

U x P y y y

g P y y g y

γ
γ

γ
γ

γ
γ

γ
γ

γ

β β

β β

β β

β β

β

− = −− −
=

− − =− −
=

−− =− −
=

− − =− −
=

− =−

= = −

= = −

= −
+ +

+ − −
=

+ +

−
=

+






















 

 

 





( )( ) ( )( )
( ) ( )
( )( ) ( )( )

( )
( )( ) ( )( )

11
1)

1 11 1
( 1)

11 ( 1)1 1
( 1)

1 1 1
( 1)

11 ( 1)1 1
( 1)

1

1 1

1 1

1 1

x

x

x

x

x

x

x

x

x

x x P y

P y
x xP y

x P y

P y
x xP y

γ
γ

γ

γ
γ

γ

γ
γ

β

β β

β β

β

β β

−−
=

− −
=

−− =− −
=

−
=

−− =− −
=

+

− − −
=

+ +

−
=

+ +



















 

 



 

  (7) 

 

 



Substituting for xγ   we get: 
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Hence the expression we use for our calculations is: 
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II. Theorem: ( )( ) 0 1| ( )GU x P y x f x≠ ⇒ = ≠    
Taking the contrapositive, it is equivalent to show that if ( )1| ( )GP y x f x= =   then ( ) 0U x =  
First we find a simplified expression for 𝑃𝑃𝐺𝐺(𝑦𝑦 = 1|𝑦𝑦�), where 𝑦𝑦� = 𝑓𝑓(𝑥⃑𝑥). 
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Suppose ˆ( 1| )GP y x y= = .  Then by definition, ( )ˆ ˆ( ) : ( 1| )f x y y P y x∀ = = =  .  Then, 
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Hence ( )ˆ ˆ1|GP y y y= =  and ( ) 0U x =   

Q.E.D 

  



III. Normalized Brier Scores for a binary outcome 
We denote the outcome class label to be, {0,1}iy ∈ , where 1iy =  if and only if patient i belongs 
to the positive class.  The prevalence of the outcome in the population is given by N

Ny +
=  where 

N is the number of patients in the population and N + is the number of patients who are in the 
positive class.  The error of the null model is: 
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The normalized Brier Score is given by / nullB B  where ( )2

1
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N

i i
i
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= −∑ .  As the B  lies 

between 0 and 1, the normalized Brier score, / nullB B , lies between 0 and ( ) 12y y
−

− . 

 
 
 
 

  



SUPPLEMENTARY TABLE 

 

Table 1: Characteristics of patients with predictions in the upper 1% of unreliability scores 

 Most Unreliable 
Predictions for 

GRACE Risk Model 
(Upper 1%) 

Most Unreliable 
Predictions for the 
Stroke Risk Model 

(Upper 1%) 
Demographics   

Age in years (IDR1) 84.1 (68.4-93.9) 68.3 (50.3-87.7) 
Female 43.3 41.0% 
Height in cm (IDR) 165 (150-182) 168 (154-180) 
Admission weight in kg (IDR) 69.4 (45-97) 73.8 (50.0-99.5) 

Medical History  
Including Cardiac Risk Factors (%) 

  

Angina 36.3 37.3 
Congestive heart failure 28.7 6.6 
Coronary Artery Bypass Graft  9.0 6.6 
Diabetes 25.3 25.3 
Hyperlipidemia 29.1 36.7 
Hypertension 63.2 65.7 
Myocardial Infarction  33.2 30.7 
Percutaneous Coronary Intervention  8.6 18.7 
Peripheral artery disease 12.0 12.0 
Renal insufficiency 18.5 4.2 
Smoking 34.1 53.6 
TIA/Stroke 10.8 9.6 

1IDR=Interdecile Range   
 

  



SUPPLEMENTARY FIGURES 
 
 

 
Figure 1: Average pairwise distance between features of patients who fall within the top 1% 
of uncertainty and those that fall within the remainder of the dataset.  Patients who have 
predictions that fall within the highest 1% of uncertainty form a set that has features that are at 
least as heterogeneous as the set containing patients who are not in this subgroup. 

  



 

 
Figure 2: Relative prevalence of positive outcomes in patients in different cohorts, defined by 
their uncertainty score.  Patients in cohorts with high uncertainty are more heterogeneous with 
respect to the outcome than patients who have lower uncertainty scores.  Insets juxtapose the 
prevalence of positive and negative patients within relevant subgroups.  
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