# **Supplementary Information**

# Easy access to medium-sized lactones through metal carbene migratory insertion enabled 1,4-palladium shift

Yinghua Yu,<sup>†</sup><sup>a</sup> Pushkin Chakraborty,<sup>†</sup><sup>a</sup> Jinshuai Song,<sup>†</sup><sup>b,c</sup> Lei Zhu,<sup>a</sup> Chunsen Li<sup>\*b</sup> and Xueliang Huang<sup>\*a,d</sup>

<sup>a</sup> Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. \*e-mail: huangxl@fjirsm.ac.cn

<sup>b</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. \*e-mail: chunsen.li@fjirsm.ac.cn
 <sup>c</sup> College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China.

<sup>d</sup> State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

# **Table of Contents**

| General information                             | 2   |
|-------------------------------------------------|-----|
| Optimization of the reaction conditions         | 3   |
| Gram-scale synthesis                            | 12  |
| Substrates involved in the manuscript           | 13  |
| Procedures for the preparation of substrates    | 15  |
| General procedure for the synthesis of lactones | 24  |
| Deuterium-labeling experiments                  | 62  |
| Representative synthetic application            | 64  |
| Computational details                           | 68  |
| Crystal data and structure refinement for 66    | 70  |
| Supplementary References                        | 185 |

# **Supplementary Methods**

# **General information**

Chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. Solvents were dried by Innovative Technology Solvent Purification System. Reaction progress was monitored by thin layer chromatography (TLC) and components were visualized by observation under UV light at 254nm. Flash column chromatography was performed using silica gel 60 (200-300 mesh). <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were recorded on Bruker-BioSpin AVANCE III HD and JNM-ECZ600S spectrometer. Chemical shifts are reported parts per million (ppm) referenced to CDCl<sub>3</sub> ( $\delta$  7.26 ppm), tetramethylsilane (TMS,  $\delta$  0.00 ppm), DMSO-*d*<sub>6</sub> ( $\delta$  2.50 ppm), CD<sub>3</sub>CN ( $\delta$  1.94 ppm) for <sup>1</sup>H NMR; CDCl<sub>3</sub> ( $\delta$  77.00 ppm), DMSO-*d*<sub>6</sub> ( $\delta$  40.00 ppm), CD<sub>3</sub>CN ( $\delta$  118.0 ppm) for <sup>13</sup>C NMR. Data for <sup>1</sup>H NMR are recorded as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; p = pentet; m = multiplet; br = broad), coupling constant (Hz), integration. Data for <sup>13</sup>C NMR are reported in terms of chemical shift ( $\delta$ , ppm). HRMS were obtained on Thermo Scientific LTQ Orbitrap XL and Bruker Impact II UHR-TOF.

# **Optimization of the reaction conditions**



# Optimization of the reaction conditions for seven-membered lactone in terms of 2-bromobenzaldehyde.

An oven-dried reaction tube containing a stirring bar was charged with Pd precatalyst ( $\mathbf{x}$  mol%), ligand ( $\mathbf{y}$  mol%), base ( $\mathbf{z}$  equiv.) and  $\mathbf{2a}$  (0.4 mmol, 116 mg). After evacuating and back filling with dry argon, the procedure was repeated for three times, anhydrous solvent (2.0 mL) and  $\mathbf{1a}$  (0.2 mmol, 37 mg) were added via syringe. The mixture was stirred at 80 °C for 24 h. The crude mixture was cooled to room temperature. EtOAc was added to the mixture. The mixture was filtered through celite. The solvents were evaporated and the crude products were determined via <sup>1</sup>H NMR using mesitylene as internal standard.

| H<br>Br<br>1a | +     | NNHTs Pd <sub>2</sub> (dl | Pd <sub>2</sub> (dba) <sub>3.</sub> CHCl <sub>3</sub> (2.5 mol%)<br>Ligand (y mol%)<br>K <sub>3</sub> PO <sub>4</sub> (4.0 equiv.)<br>THF, 80 ℃ |                           |   |
|---------------|-------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---|
|               | Entry | Ligand (y                 | mol%)                                                                                                                                           | <b>3 (%)</b> <sup>b</sup> | - |
|               | 1     | DPEp                      | hos (7.5)                                                                                                                                       | 5                         | - |
|               | 2     | dpp                       | e (7.5)                                                                                                                                         | 52 <sup>c</sup>           |   |
|               | 3     | dpp                       | f (7.5)                                                                                                                                         | 49 <sup>c</sup>           |   |
|               | 4     | Tri-2-furylp              | hosphine (15)                                                                                                                                   | 0                         |   |
|               | 5     | Tri-o-tolylpl             | nosphine (15)                                                                                                                                   | 0                         |   |
|               | 6     | Xantp                     | hos (7.5)                                                                                                                                       | 77                        |   |
|               | 7     | dpp                       | p (7.5)                                                                                                                                         | 67                        |   |
|               | 8     | dppp                      | e (7.5)                                                                                                                                         | 35                        |   |
|               | 9     | BINA                      | VP (7.5)                                                                                                                                        | 2                         |   |
|               | 10    | dpp                       | b (7.5)                                                                                                                                         | 57                        |   |
|               | 11    | dppi                      | m (7.5)                                                                                                                                         | 0                         |   |
|               | 12    | CyDPE                     | phos (7.5)                                                                                                                                      | 0                         |   |

# Supplementary Table 1. Screening of ligands<sup>a</sup>

<sup>a</sup> Reaction condition: **1a** (0.2 mmol), **2a** (0.4 mmol), Pd<sub>2</sub>(dba)<sub>3.</sub>CHCl<sub>3</sub> (2.5 mol%), **Ligand (y mol%)**, K<sub>3</sub>PO<sub>4</sub> (4.0 equiv) in THF (2.0 mL), stirring under atmosphere of Argon at 80 °C for 24h. <sup>b</sup> NMR yields were determined using mesitylene as internal standard. <sup>c</sup> Isolated yield.

# Supplementary Table 2. Screening of solvents<sup>a</sup>



<sup>a</sup> Reaction condition: **1a** (0.2 mmol), **2a** (0.4 mmol), Pd<sub>2</sub>(dba)<sub>3</sub>CHCl<sub>3</sub> (2.5 mol%), Xantphos (7.5 mol%), K<sub>3</sub>PO<sub>4</sub> (4.0 equiv) in **solvent** (2.0 mL), stirring under atmosphere of Argon at 80 °C for 24h.
 <sup>b</sup> NMR yields were determined using mesitylene as internal standard.



# Supplementary Table 3. Screening of bases<sup>a</sup>

<sup>a</sup> Reaction condition: **1a** (0.2 mmol), **2a** (0.4 mmol), Pd<sub>2</sub>(dba)<sub>3</sub>CHCl<sub>3</sub> (2.5 mol%), Xantphos (7.5 mol%), **base (4.0 equiv)** in THF (2.0 mL), stirring under atmosphere of Argon at 80 °C for 24h. <sup>b</sup> NMR yields were determined using mesitylene as internal standard. <sup>c</sup> Isolated yield. <sup>d</sup> 12h.

# Supplementary Table 4. Screening of palladium sources<sup>a</sup>



<sup>a</sup> Reaction condition: **1a** (0.2 mmol), **2a** (0.4 mmol), **[Pd] (x mol%)**, Xantphos (7.5 mol%), K<sub>2</sub>CO<sub>3</sub> (3.0 equiv.) in THF (2.0 mL), stirring under atmosphere of Argon at 80 °C for 12h. <sup>b</sup> NMR yields were determined using mesitylene as internal standard. <sup>c</sup> Isolated yield.

# Optimization of the reaction conditions for seven-membered lactone in terms of 2-formylphenyl trifluoromethanesulfonate.

An oven-dried reaction tube containing a stirring bar was charged with Pd precatalyst (**x** mol%), ligand (7.5 mol%), base (3.0 equiv.) and **2a** (0.4 mmol, 116 mg). After evacuating and back filling with dry argon, the procedure was repeated for three times, anhydrous solvent (2.0 mL) and **1c** (0.2 mmol, 51 mg) were added via syringe. The mixture was stirred at 80 °C for 12 h. The crude mixture was cooled to room temperature. Decane (0.2 mmol, 1.0 equiv., 39  $\mu$ L) was added via microsyringe followed by 5 mL of EtOAc. An aliquot was filtered through a plug of silica and celite and analyzed by GC.

# Supplementary Table 5. Screening of solvents<sup>a</sup>



<sup>a</sup>Reaction condition: 1c (0.2 mmol), 2a (0.4 mmol), Pd(OAc) (5 mol%), Xantphos (7.5 mol%), K<sub>2</sub>CO<sub>3</sub> (3.0 equiv) in solvent (2.0 mL), stirring under atmosphere of Argon at 80 °C for 12h.
<sup>b</sup> GC yields were determined using decane as internal standard.

| + NNHTs<br>OH<br>2a | Pd(OAc) <sub>2</sub> (5<br><b>Ligand (7.5</b><br>K <sub>2</sub> CO <sub>3</sub> (3.0 ¢<br>Dioxane, 8 | mol%)<br>mol%)<br>equiv.)<br>60 °C |
|---------------------|------------------------------------------------------------------------------------------------------|------------------------------------|
| Entry               | Ligand                                                                                               | <b>3 (%)</b> <sup>b</sup>          |
| 1                   | Xantphos                                                                                             | 63                                 |
| 2                   | dppm                                                                                                 | trace                              |
| 3                   | dppe                                                                                                 | 18                                 |
| 4                   | dppp                                                                                                 | 29                                 |
| 5                   | dppb                                                                                                 | 15                                 |
| 6                   | dpppe                                                                                                | 15                                 |
| 7                   | dppf                                                                                                 | 22                                 |
| 8                   | BINAP                                                                                                | trace                              |
| 9                   | DPEphos                                                                                              | trace                              |
| 10                  | CyDPEphos                                                                                            | trace                              |

# Supplementary Table 6. Screening of ligands<sup>a</sup>

<sup>a</sup> Reaction condition: **1c** (0.2 mmol), **2a** (0.4 mmol), Pd(OAc) (5 mol%), **Ligand** (7.5 mol%), K<sub>2</sub>CO<sub>3</sub> (3.0 equiv) in dioxane (2.0 mL), stirring under atmosphere of Argon at 80 °C for 12h. <sup>b</sup> GC yields were determined using decane as internal standard.

# Supplementary Table 7. Screening of bases<sup>a</sup>



<sup>a</sup> Reaction condition: 1c (0.2 mmol), 2a (0.4 mmol), Pd(OAc) (5 mol%), Xantphos (7.5 mol%),
base (3.0 equiv) in dioxane (2.0 mL), stirring under atmosphere of Argon at 80 °C for 12h.
<sup>b</sup> GC yields were determined using decane as internal standard.



# Supplementary Table 8. Screening of palladium sources<sup>a</sup>

<sup>a</sup> Reaction condition: **1c** (0.2 mmol), **2a** (0.4 mmol), **[Pd] (x mol%)**, Ligand (7.5 mol%), K<sub>2</sub>CO<sub>3</sub> (3.0 equiv) in dioxane (2.0 mL), stirring under atmosphere of Argon at 80 °C for 12h. <sup>b</sup> GC yields were determined using decane as internal standard. <sup>c</sup> isolated yield.

# Optimization of the reaction conditions for eight-membered

# lactone.

An oven-dried reaction tube containing a stirring bar was charged with Pd precatalyst (5 mol%), ligand (7.5 mol%), base (3.0 equiv.) and **S2w** (0.4 mmol). After evacuating and back filling with dry argon, the procedure was repeated for three times, anhydrous solvent (2.0 mL) and **1a**/ **1b**/ **1c** (0.2 mmol) were added via syringe. The mixture was stirred at 80 °C for 10 h. The crude mixture was cooled to room temperature. EtOAc was added to the mixture. The mixture was filtered through celite. The solvents were evaporated and the crude products were determined via <sup>1</sup>H NMR using dibromomethane as internal standard.

| O<br>Br<br>1a | NNHTs<br>OH<br>S2w | Pd(OAc) <sub>2</sub> (5 mol%)<br>Ligand (7.5 mol%)<br>K <sub>2</sub> CO <sub>3</sub> (3.0 equiv.)<br>THF, 0.1 M, 80 °C | ► 💭                 |                      | + CHO<br>58' |
|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|--------------|
|               | Entry              | Ligand (7.5 mol%)                                                                                                      | 58 (%) <sup>b</sup> | 58' (%) <sup>b</sup> |              |
|               | 1                  | Xantphos                                                                                                               | 15                  | trace                |              |
|               | 2                  | DPEphos                                                                                                                | 27                  | 8                    |              |
|               | 3                  | P-(2-furyl) <sub>3</sub>                                                                                               | -                   | -                    |              |
|               | 4                  | Ruphos                                                                                                                 | trace               | -                    |              |
|               | 5                  | S-phos                                                                                                                 | trace               | -                    |              |
|               | 6                  | dppb                                                                                                                   | 47(30) <sup>c</sup> | 7                    |              |
|               | 7                  | dppf                                                                                                                   | -                   | -                    |              |
|               | 8                  | PPh <sub>3</sub>                                                                                                       | 12                  | trace                |              |
|               | 9                  | BINAP                                                                                                                  | -                   | -                    |              |
|               | 10                 | Brettphos                                                                                                              | 14                  | -                    |              |
|               | 11                 | Davephos                                                                                                               | 12                  | -                    |              |
|               | 12                 | P-(o-tolyl) <sub>3</sub>                                                                                               | 19                  | -                    |              |
|               | 13                 | P-( <i>p</i> -C <sub>6</sub> H <sub>5</sub> CF <sub>3</sub> ) <sub>3</sub>                                             | 14                  | -                    |              |
|               | 14                 | P(Cy) <sub>3</sub> .HBF <sub>4</sub>                                                                                   | 10                  | -                    |              |
|               | 12                 | 2,2'-bipyridine                                                                                                        | -                   | -                    |              |
|               | 13                 | 1,10-phenanthroline                                                                                                    | -                   | -                    |              |

# **Supplementary Table 9. Screening of ligands**<sup>a</sup>

<sup>a</sup> Reaction condition: **1a** (0.2 mmol), **S2w** (0.4 mmol), Pd(OAc)<sub>2</sub> (5 mol%), **Ligand** (7.5 mol%), K<sub>2</sub>CO<sub>3</sub> (3.0 equiv.) in THF (2.0 mL), stirring under atmosphere of Argon at 80 °C for 10 h. <sup>b</sup> NMR yields were determined using dibromomethane as internal standard. <sup>c</sup> Isolated yield.

# Supplementary Table 10. Screening of solvents<sup>a</sup>



<sup>a</sup> Reaction condition: **1a** (0.2 mmol), **S2w** (0.4 mmol), Pd(OAc)<sub>2</sub> (5 mol%), dppb (7.5 mol%),  $K_2CO_3$  (3.0 equiv.) in **solvent** (2.0 mL), stirring under atmosphere of Argon at 80 °C for 10 h. <sup>b</sup> NMR yields were determined using dibromomethane as internal standard.



# Supplementary Table 11. Screening of bases<sup>a</sup>

<sup>a</sup> Reaction condition: **1a** (0.2 mmol), **S2w** (0.4 mmol), Pd(OAc)<sub>2</sub> (5 mol%), dppb (7.5 mol%), **Base (3.0 equiv.)** in THF (2.0 mL), stirring under atmosphere of Argon at 80 °C for 10 h. <sup>b</sup> NMR yields were determined using dibromomethane as internal standard. <sup>c</sup> Isolated yield.

# Supplementary Table 12. Screening of palladium sources<sup>a</sup>



<sup>a</sup> Reaction condition: **1a** (0.2 mmol), **S2w** (0.4 mmol), **[Pd] (5 mol%)**, dppb (7.5 mol%),  $K_3PO_4$  (3.0 equiv.) in THF (2.0 mL), stirring under atmosphere of Argon at 80 °C for 10 h.

<sup>b</sup> NMR yields were determined using dibromomethane as internal standard. <sup>c</sup> Isolated yield.

| O<br>H<br>1a, X = Br<br>1b, X = I<br>1c, X = OTf | Û   | NNHTs [(η-C <sub>3</sub> H<br>Liga<br>OH<br>THF<br>S2w | 6)PdCl] <sub>2</sub> (5 mol%)<br>nd (7.5 mol%)<br>e (3.0 equiv.)<br>, 0.1 M, 80 °C |                      | + + 58'              |  |
|--------------------------------------------------|-----|--------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|----------------------|--|
| Entry                                            | Х   | Ligand                                                 | Base                                                                               | 58 (%) <sup>b</sup>  | 58' (%) <sup>b</sup> |  |
| 1                                                | Br  | dppb                                                   | K <sub>2</sub> CO <sub>3</sub>                                                     | 74 (64) <sup>c</sup> | 8                    |  |
| 2                                                | Br  | dppb                                                   | Cs <sub>2</sub> CO <sub>3</sub>                                                    | 23                   | 5                    |  |
| 3                                                | 1   | dppb                                                   | K <sub>3</sub> PO <sub>4</sub>                                                     | trace                | -                    |  |
| 4                                                | CI  | dppb                                                   | K₃PO₄                                                                              | -                    | -                    |  |
| 5                                                | OTf | dppb                                                   | K₃PO₄                                                                              | 75 (71) <sup>c</sup> | 7                    |  |
| 6                                                | OTf | dppb                                                   | K <sub>2</sub> CO <sub>3</sub>                                                     | 85 (76) <sup>c</sup> | 7 (5) <sup>c</sup>   |  |
| 7                                                | OTf | dppm                                                   | K <sub>2</sub> CO <sub>3</sub>                                                     | 40                   | 10                   |  |
| 8                                                | OTf | dppe                                                   | K <sub>2</sub> CO <sub>3</sub>                                                     | 40                   | 9                    |  |
| 9                                                | OTf | dppp                                                   | K <sub>2</sub> CO <sub>3</sub>                                                     | 72                   | 10                   |  |
| 10                                               | OTf | dpppe                                                  | K <sub>2</sub> CO <sub>3</sub>                                                     | 54                   | 9                    |  |
| 11 <sup>d</sup>                                  | OTf | dppb                                                   | K <sub>2</sub> CO <sub>3</sub>                                                     | 78 (71) <sup>c</sup> | 15 (11) <sup>c</sup> |  |

Supplementary Table 13. Final screening: achieving optimal conditions<sup>a</sup>

<sup>a</sup> Reaction condition: **1a**/ **1b**/ **1c** (0.2 mmol), **S2w** (0.4 mmol),  $[(\eta-C_3H_6)PdCI]_2$  (5 mol%), **Ligand (7.5 mol%)**, **Base(3.0 equiv.)** in THF (2.0 mL), stirring under atmosphere of Argon at 80 °C for 10 h. <sup>b</sup> NMR yields were determined using dibromomethane as internal standard. <sup>c</sup> Isolated yield.

<sup>d</sup> [( $\eta$ -C<sub>3</sub>H<sub>6</sub>)PdCl]<sub>2</sub> (2.5 mol%), dppb (7.5 mol%) for 16 h.

# Gram-scale synthesis



**Supplementary Figure 1. Gram-scale synthesis.** Synthesis of lactones under optimal reaction conditions.

# Substrates involved in the manuscript

Aldehyde derivatives:





Supplementary Figure 2. Substrates involved in the manuscript.

# **Procedures for the preparation of substrates**

The salicylaldehyde analogues with substituents on the aromatic ring **S1s-a**<sup>1</sup>, **S1t-a** (paracitamol)<sup>2</sup>, **S1u-a** (methylparaben)<sup>3,4</sup>, **S1v-a** (thymol)<sup>3,4</sup>, **S1w-a** (estrone)<sup>5</sup>, **S1x-a** (methyl N-Phth-L-tyrosinate)<sup>5</sup> were prepared according to the reference. The other salicylaldehyde analogues were commercial available.

# 5.1 General procedure for the synthesis S1<sup>6</sup>



To a solution of salicylaldehyde (2.44 g, 20 mmol) in  $CH_2Cl_2$  (60 mL) were successively added pyridine (4.8 mL, 60 mmol) and  $Tf_2O$  (5.0 mL, 30 mmol) at 0 °C. After being stirred for 3 h at room temperature, the reaction was stopped by adding saturated aqueous NaHCO<sub>3</sub> at 0 °C. The crude products were extracted with  $CH_2Cl_2$ (x 4) and the combined organic extracts were washed with 1 M aqueous HCl (x1), brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, PE/EtOAc = 10/1) to give **1c** (4.63 g, 91%) as a colorless oil.

## 4-Acetamido-2-formylphenyl trifluoromethanesulfonate (S1t)



7.54 (d, J = 9.0 Hz, 1H), 2.09 (s, 3H); <sup>13</sup>C NMR (151 MHz, DMSO- $d_6$ )  $\delta$  189.2, 169.6, 143.0, 140.6, 128.8, 125.9, 123.9, 122.9, 122.8, 118.7 (q, J = 320.7 Hz), 24.5; <sup>19</sup>F NMR (376 MHz, DMSO- $d_6$ )  $\delta$  -73.1; HRMS (ESI) m/z calcd for C<sub>10</sub>H<sub>9</sub>F<sub>3</sub>NO<sub>5</sub>S<sup>+</sup> (M+H)<sup>+</sup> 312.01480, found 312.01489.

# (8S,9R,13R,14R)-2-Formyl-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydr o-6H-cyclopenta[a]phenanthren-3-yl trifluoromethanesulfonate (S1w)



J = 9.0 Hz, 2H), 2.30 (dd,  $J_1 = 10.8$  Hz,  $J_2 = 3.6$  Hz, 1H), 2.15-2.02 (m, 3H), 1.96 (d, J = 13.8 Hz, 1H), 1.65-1.44 (m, 6H), 0.88 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$ 219.9, 186.4, 147.4, 146.5, 141.1, 128.1, 125.8, 122.2, 118.4 (q, J = 320.9 Hz), 50.1, 47.6, 43.7, 37.3, 35.6, 31.2, 29.7, 25.6, 25.4, 21.4, 13.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -72.9; HRMS (ESI) m/z calcd for C<sub>20</sub>H<sub>22</sub>F<sub>3</sub>O<sub>5</sub>S<sup>+</sup> (M+H)<sup>+</sup> 431.11346, found 431.11340.

# (S)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(3-formyl-4-(((trifluoromethyl)sulfonyl) oxy)phenyl)propanoate (S1x)

**CHO** Yield 81%, White solid;  $R_f = 0.40$  (petroleum ether : **H CO<sub>2</sub>Me OTf** ethyl acetate = 5 : 1); <sup>1</sup>**H NMR (600 MHz, CDCl<sub>3</sub>)**  $\delta$ 10.09 (s, 1H), 7.79-7.76 (m, 3H), 7.70-7.69 (m, 2H), 7.53 (dd,  $J_I = 8.4$  Hz,  $J_2 = 1.8$ Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 5.15 (q, J = 5.4 Hz, 1H), 3.74 (s, 3H), 3.68 (dd,  $J_I = 8.4$  Hz, 1H) 14.4 Hz,  $J_2 = 5.4$  Hz, 1H), 3.58 (dd,  $J_1 = 14.4$  Hz,  $J_2 = 10.8$  Hz, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  186.2, 168.6, 167.2, 148.4, 138.4, 136.1, 134.4, 131.3, 131.2, 128.2, 123.6, 122.5, 118.4 (q, J = 327.4 Hz,), 53.0, 52.3, 34.0; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -72.9; HRMS (ESI) m/z calcd for C<sub>20</sub>H<sub>15</sub>F<sub>3</sub>NO<sub>8</sub>S<sup>+</sup> (M+H)<sup>+</sup> 486.04650, found 486.04681.

# 4-Allyl-2-formyl-6-methoxyphenyl trifluoromethanesulfonate (S1y)

Yield 87%, White solid;  $R_f = 0.50$  (petroleum ether : ethyl orf oMe i acetate = 20 : 1); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  10.15 (s, 1H), 7.30 (d, J = 2.4 Hz, 1H), 7.12 (d, J = 2.4 Hz, 1H), 5.94-5.87 (m, 1H), 5.15-5.10 (m, 2H), 3.92 (s, 3H), 3.42 (d, J = 7.2 Hz, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  186.7, 151.4, 141.9, 137.3, 135.3, 129.0, 120.9, 118.7, 118.5 (q, J = 318.9 Hz), 117.4, 56.3, 39.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -72.9; HRMS (ESI) m/z calcd for  $C_{12}H_{12}F_{3}O_{5}S^{+}$  (M+H)<sup>+</sup> 325.03521, found 325.03506.

# **5.2** General procedure for the synthesis of *N*-tosylhydrazones used for seven-membered lactones<sup>7</sup>



Salicylaldehyde (4.8 mL, 44 mmol) was dissolved in methanol (30 mL), then TsNHNH<sub>2</sub> (7.44 g, 40 mmol) was added to the reaction mixture. The resulting mixture was heated at 60 °C for 2 h. After cooling to room temperature, the precipitates were filtered and washed by petroleum ether, and then kept in desiccator under vacuum to

afford pure product 2a (10.4 g, 90%).

N'-(2-hydroxy-5-((trimethylsilyl)ethynyl)benzylidene)-4-methylbenzenesulfonohy drazide (S2o)

**TMS NNHTS NNHTS NNHTS H** Yield 87%, white solid;  $R_f = 0.40$  (petroleum ether : thyl acetate = 5 : 1); <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 10.33 (s, 1H), 8.36 (s, 1H), 7.88 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.38-7.34 (m, 3H), 7.26-7.25 (m, 1H), 6.86 (d, J = 8.8 Hz, 1H), 2.42 (s, 3H), 0.22 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.0, 150.9, 145.1, 135.6, 134.7, 134.1, 130.1, 127.8, 117.2, 116.9, 114.5, 103.9, 93.1, 21.6, -0.1; **HRMS (ESI)** m/z calcd for C<sub>19</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub>SSi<sup>+</sup> (M+H)<sup>+</sup> 387.11932, found 387.11972.

N'-(2-hydroxy-5-(phenylethynyl)benzylidene)-4-methylbenzenesulfonohydrazide (82p)

Ph Vield 89%, white solid;  $R_f = 0.50$  (petroleum ether : ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.35 (s, 1H), 8.32-8.28 (m, 1H), 7.92 (s, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.49-7.47 (m, 2H), 7.43 (dd,  $J_I = 8.8$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.36-7.32 (m, 6H), 6.92 (d, J = 8.8 Hz, 1H), 2.42 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.0, 151.1, 145.1, 135.3, 134.3, 134.1, 131.4, 130.1, 128.4, 128.2, 127.9, 123.1, 117.5, 117.0, 114.6, 88.4, 88.2, 21.7; HRMS (ESI) m/z calcd for C<sub>22</sub>H<sub>19</sub>N<sub>2</sub>O<sub>3</sub>S<sup>+</sup> (M+H)<sup>+</sup> 391.11109, found 391.11127. Methyl 4-hydroxy-3-((2-tosylhydrazono)methyl)benzoate (S2m)

MeO2CNNHTSYield 65%, white solid;  $R_f = 0.40$  (petroleum ether : ethyl<br/>acetate = 1 : 1); <sup>1</sup>H NMR (400 MHz, DMSO-d\_6)  $\delta$  11.63(s, 1H), 11.09 (s, 1H), 8.22 (s, 1H), 8.14 (d, J = 2.0 Hz, 1H), 7.83 (dd,  $J_I = 8.8$  Hz,  $J_2$ = 2.0 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.8 Hz, J\_2)

1H), 3.83 (s, 3H), 2.37 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  166.2, 160.8, 144.4, 144.2, 136.5, 132.9, 130.3, 128.7, 127.6, 121.3, 120.1, 116.9, 52.4, 21.54; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>17</sub>N<sub>2</sub>O<sub>5</sub>S<sup>+</sup> (M+H)<sup>+</sup> 349.08527, found 349.08502.

#### N-(3-hydroxy-4-((2-tosylhydrazono)methyl)phenyl)acetamide (S2n)

Yield 78%, white solid;  $R_f = 0.40$  (petroleum ether : ethyl acetate = 1 : 3); <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ 11.43 (s, 1H), 9.92 (s, 1H), 9.81 (s, 1H), 8.14 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 2.4 Hz, 1H), 7.49 (dd, *J*<sub>1</sub> = 8.8 Hz, *J*<sub>2</sub> = 2.4 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 2H), 6.78 (d, *J* = 8.8 Hz, 1H), 2.36 (s, 3H), 1.99 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  168.3, 152.8, 145.5, 144.1, 136.5, 132.0, 130.3, 127.6, 123.6, 119.5, 117.6, 117.0, 24.3, 21.6; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>18</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> (M+H)<sup>+</sup> 348.10125, found 348.10110.

N'-(((8*S*,9*R*,13*R*,14*R*)-3-hydroxy-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-dec ahydro-6H-cyclopenta[*a*]phenanthren-2-yl)methylene)-4-methylbenzenesulfonoh ydrazide (S2u)



Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.01 (s, 1H), 6.67 (s, 1H), 2.88-2.85 (m, 2H), 2.52 (dd,  $J_1 = 19.2$  Hz,  $J_2 = 8.8$  Hz, 1H), 2.40 (s, 3H), 2.33-1.93 (m, 6H), 1.66-1.35 (m, 6H), 0.89 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  221.7, 155.6, 152.4, 144.6, 141.5, 134.4, 131.2, 129.9, 127.9, 127.8, 116.6, 115.0, 50.2, 48.0, 43.4, 38.0, 35.9, 31.4, 29.4, 26.2, 25.8, 21.6, 21.5, 13.7. HRMS (ESI) m/z calcd for C<sub>26</sub>H<sub>31</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> (M+H)<sup>+</sup> 467.19990, found 467.20020.

# (S)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-hydroxy-3-((2-tosylhydrazono)meth -yl)phenyl)propanoate (S2v)



**DMSO-***d*<sub>6</sub>) δ 11.41 (s, 1H), 10.06 (s, 1H), 8.04 (s, 1H), 7.86 (s, 4H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 1.2 Hz, 1H), 7.02 (dd, *J*<sub>1</sub> = 8.4 Hz, *J*<sub>2</sub> = 1.6 Hz, 1H), 6.67 (d, *J* = 8.4 Hz, 1H), 5.22 (dd, *J*<sub>1</sub> = 11.2 Hz, *J*<sub>2</sub> = 4.8 Hz, 1H), 3.70 (s, 3H), 3.40 (d, *J* = 4.8 Hz, 1H), 3.25-3.19 (m, 1H), 2.38 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 169.6, 167.5, 155.7, 146.2, 144.1, 136.3, 135.6, 132.4, 131.1, 130.3,

128.2, 128.1, 127.7, 124.1, 119.4, 116.7, 53.3, 53.2, 33.6, 21.6; **HRMS (ESI)** m/z calcd for  $C_{26}H_{24}N_3O_7S^+$  (M+H)<sup>+</sup> 522.13295, found 522.13330.

# 5.3 General procedure for the synthesis of *N*-tosylhydrazones used for eight-membered lactones



<sup>*n*</sup>BuLi (2.5 equiv, 50 mmol) was added slowly to a solution of (2-bromoaryl)methanol (20 mmol) in 20 mL of dry THF at -78 °C. The resulting mixture was stirred at that temperature for 30 minutes and dry DMF (2.0 equiv) was added to the solution dropwise. After stirring at -78 °C for another 30 minutes, the reaction flask was taken out from the low-temperature bath and stirred for 10 minutes in an ice-bath. The conversion of starting into product could be checked by TLC. The reaction was then quenched by adding 10 mL of aq. solution of ammonium chloride. 20 mL of ethyl acetate was added and reaction mixture was stirred at room temperature for 15 minutes. It was then filtered via a short pad of celite and the filtrate was extracted by ethyl acetate (3 X 25 mL). The combined ethyl acetate layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and solvent was removed under reduced pressure. The residue thus obtained was dissolved in DCM and passed through a short pad of silica gel using DCM as eluent. The solvent was removed under reduced pressure. The residue was then dissolved in methanol (20 mL), TsNHNH<sub>2</sub> was added and the mixture was heated at 65 °C for 1 h. The reaction flask was then cooled to room

temperature during which white precipitate appeared (In case if precipitate didn't appeare petroleum ether could be added). The precipitate was then filtered, and washed with DCM to get pure *N*-tosylhydrzones.

## *N*-(2-(hydroxymethyl)benzylidene)-4-methylbenzenesulfonohydrazide (S2w)

**NNHTS** Yield 68%, white solid;  $R_f = 0.30$  (petroleum ether : ethyl acetate = 1 : **OH** 1); **<sup>1</sup>H NMR (400 MHz, DMSO-***d*<sub>6</sub>**)**  $\delta$  11.43 (s, 1H), 8.19 (s, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.45-7.40 (m, 3H), 7.35 (t, J = 7.6Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 5.21 (t, J = 5.2 Hz, 1H), 4.54 (d, J = 5.2 Hz, 2H), 2.36 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>**)**  $\delta$  146.8, 144.0, 141.3, 136.6, 131.4, 130.2, 130.1, 128.4, 127.8, 127.7, 127.3, 61.7, 21.5.

# *N*-(2-(hydroxymethyl)-4-methoxybenzylidene)-4-methylbenzenesulfonohydrazide (S2x)

**NNHTS** Yield 64%, white solid;  $R_f = 0.30$  (petroleum ether : ethyl **MeO H** acetate = 1 : 2); <sup>1</sup>**H NMR** (400 MHz, **DMSO**-*d*<sub>6</sub>)  $\delta$  11.20 (br s, 1H), 8.08 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.84 (dd, *J*<sub>1</sub> = 8.4 Hz, *J*<sub>2</sub> = 2.4 Hz, 1H), 5.24 (br s, 1H), 4.53 (d, *J* = 2.8 Hz, 2H), 3.77 (s, 3H), 2.36 (s, 3H); <sup>13</sup>**C NMR** (101 MHz, **DMSO**-*d*<sub>6</sub>)  $\delta$  160.9, 147.1, 143.9, 143.5, 136.6, 130.1, 129.8, 127.8, 123.7, 113.3, 112.9, 61.7, 55.7, 21.5; **HRMS** (ESI) m/z calcd for C<sub>16</sub>H<sub>19</sub>N<sub>2</sub>O<sub>4</sub>S<sup>+</sup> (M+H)<sup>+</sup> 335.10600, found 335.10626. *N*-(2-(hydroxymethyl)-5-methylbenzylidene)-4-methylbenzenesulfonohydrazide (82y)

**Ne Vield 77%**, white solid;  $R_f = 0.30$  (petroleum ether : ethyl acetate **OH** = 1 : 1); <sup>1</sup>**H NMR (600 MHz, DMSO-***d*<sub>6</sub>**)**  $\delta$  11.43 (s, 1H), 8.15 (s, 1H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.39 (s, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.16 (dd, *J*<sub>1</sub> = 7.8 Hz, *J*<sub>2</sub> = 1.2 Hz, 1H), 5.15 (t, *J* = 5.4 Hz, 1H), 4.49 (d, *J* = 5.4 Hz, 2 H), 2.35 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  146.9, 144.0, 138.5, 136.8, 136.6, 131.3, 130.8, 130.2, 128.6, 127.8, 127.7, 61.6, 21.5, 21.1; **HRMS (ESI)** m/z calcd for C<sub>16</sub>H<sub>19</sub>N<sub>2</sub>O<sub>3</sub>S<sup>+</sup> (M+H)<sup>+</sup> 319.11109, found 319.11136.

*N*-((6-(hydroxymethyl)benzo[*d*][1,3]dioxol-5-yl)methylene)-4-methylbenzenesulfo nohydrazide (S2z)

Yield 63%, white solid;  $R_f = 0.30$  (petroleum ether : ethyl acetate = 1 : 2); <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  11.28 (s, 1H), 8.11 (s, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.10 (s,

1H), 6.95 (s, 1H), 6.03 (s, 2H), 5.20 (t, J = 5.4 Hz, 1H), 4.44 (d, J = 5.4 Hz, 2 H), 2.36 (s, 3H); <sup>13</sup>C NMR (151 MHz, DMSO- $d_6$ )  $\delta$  149.1, 147.0, 146.0, 143.9, 136.9, 136.6, 130.1, 127.8, 125.4, 108.9, 105.5, 101.9, 61.1, 21.5; HRMS (ESI) m/z calcd for  $C_{16}H_{17}N_2O_5S^+$  (M+H)<sup>+</sup> 349.08527, found 349.08563.

# General procedure for the synthesis of lactones

#### General procedure for the synthesis of seven-membered lactones



An oven-dried reaction tube containing a stirring bar was charged with  $Pd(OAc)_2$  (5 mol%) or  $[(\eta-C_3H_6)PdCl]_2$  (2.5 mol%), Xantphos (7.5 mol%), K<sub>2</sub>CO<sub>3</sub> (3.0 equiv.), *N*-tosylhydrazone S2 (0.4 mmol) and S1 (if solid) (0.2 mmol). After evacuating and back filling with dry argon, the procedure was repeated for three times, solvent THF or dioxane (2.0 mL) and S1 (if liquid) (0.2 mmol) were added via syringe. The mixture was stirred at 80 °C. When the reaction was completed, the crude mixture was cooled to room temperature. The mixture was filtered through a short pad of celite. After removing the solvent under reduced pressure, the residual was purified by column chromatography on silica gel.

## General procedure for the synthesis of eight-membered lactones



An oven-dried schlenk tube containing a stirring bar was charged with  $[(\eta-C_3H_6)PdCl]_2$  (5 mol%), *N*-tosylhydrazone **S2** (0.4 mmol, 2 equiv), bis(diphenylphosphanyl)butane (dppb) (7.5 mol%), K<sub>2</sub>CO<sub>3</sub> (3.0 equiv) and 2-formylaryl trifluoromethanesulfonate **S1** (0.2 mmol, in case it is solid). After

evacuating and back filling with dry argon, the procedure was repeated for three times. 2-formylaryl trifluoromethanesulfonate S1 (0.2 mmol, in case it is liquid) and tetrahydrofuran (THF) (2.0 mL) were added via syringe. The mixture was stirred at 80 <sup>o</sup>C for 10 hours. The crude mixture was cooled to room temperature. The mixture was filtered through a short pad of celite. After removing the solvent under reduced pressure, the residual was purified by silica gel column chromatography to obtain the eight-membered lactone compound.

### Dibenzo[*b*,*e*]oxepin-6(11*H*)-one (3)

Yield 76% (32.0 mg) from o-bromobenzaldehyde for 10 h; Yield 80% (34.1 mg) from 2-formylphenyl trifluoromethanesulfonate for 9 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 **MHz, CDCl<sub>3</sub>**)  $\delta$  7.89 (d, J = 8.0 Hz, 1H), 7.45 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.33  $(td, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.27-7.19 (m, 4H), 7.14-7.09 (m, 1H), 4.00 (s, 2H);$ <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.1, 150.7, 142.6, 133.4, 132.7, 132.6, 128.2, 128.1, 128.0, 127.4, 127.1, 125.8, 120.7, 37.4.

### 9-Methyldibenzo[*b*,*e*]oxepin-6(11*H*)-one (4)



Yield 82% (37.0 mg) for 16 h, white solid;  $R_{\rm f}$  = 0.25 (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, **CDCl<sub>3</sub>**)  $\delta$  7.79 (d, J = 8.0 Hz, 1H), 7.26-7.18 (m, 3H), 7.13-7.07 (m, 3H), 3.95 (s, 2H), 2.35 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.1,

150.8, 144.4, 142.5, 132.9, 132.7, 128.2, 128.1, 128.0, 127.8, 125.8, 125.1, 120.7,

37.4, 21.5; **HRMS (ESI)** m/z calcd for  $C_{15}H_{13}O_2^+$  (M+H)<sup>+</sup> 225.09101, found 225.09140.

### 9-Methoxydibenzo[*b*,*e*]oxepin-6(11*H*)-one (5)



white solid;  $R_f = 0.20$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 8.8 Hz, 1H), 7.26-7.18 (m, 3H), 7.14-7.09 (m, 1H), 6.81 (dd,  $J_I = 8.8$  Hz,  $J_2 = 2.4$  Hz, 1H), 6.75 (d, J = 2.4 Hz, 1H), 3.96 (s, 2H), 3.83 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 163.4, 150.9, 144.7, 135.3, 132.4, 128.12, 128.09, 125.7, 120.7, 120.1, 112.61, 112.57, 55.4, 37.8; HRMS (ESI) m/z calcd for  $C_{15}H_{13}O_3^+$  (M+H)<sup>+</sup> 241.08592, found 241.08603.

#### 9-Fluorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (6)



Yield 80% (38.2 mg) for 11 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94-7.90 (m, 1H), 7.31-7.22 (m, 5H), 7.27-7.22 (m, 3H),

7.16-7.12 (m, 1H), 7.04-6.96 (m, 2H), 3.99 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 165.28 (d, J = 257.2 Hz), 165.1, 150.7, 145.4 (d, J = 8.7 Hz), 135.7, 135.6, 131.9, 128.3 (d, J = 18.7 Hz), 126.0, 124.3 (d, J = 3.1 Hz), 120.8, 114.7 (d, J = 21.8 Hz), 114.3 (d, J = 22.4 Hz), 37.3 (d, J = 1.0 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -104.4; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>10</sub>FO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 229.06593, found 229.06566.

#### 9-Chlorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (7)



Yield 67% (32.8 mg) for 10 h, white solid;  $R_f = 0.25$ (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.0 Hz, 1H), 7.31-7.22 (m, 5H),

7.17-7.12 (m, 1H), 3.97 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 150.6, 144.0, 139.5, 134.3, 131.8, 128.4, 128.3, 127.8, 127.3, 126.5, 126.1, 120.8, 37.1; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>10</sub>ClO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 245.03638, found 245.03671.

#### 8-Methyldibenzo[*b*,*e*]oxepin-6(11*H*)-one (8)

We Yield 73% (33.0 mg), white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.69 (s, 1H), 7.26-7.07 (m, 6H), 3.94 (s, 2H), 2.31 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.3, 150.7, 139.7, 137.3, 134.1, 132.98, 132.92, 128.04, 127.96, 127.7, 127.1, 125.8, 120.6, 36.9, 20.7. HRMS (ESI) m/z calcd for  $C_{15}H_{13}O_2^+$  (M+H)<sup>+</sup> 225.09101, found 225.09117.

#### 8-Methoxydibenzo[*b*,*e*]oxepin-6(11*H*)-one (9)



18 h, white solid;  $R_f = 0.20$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (d, J = 1.4 Hz, 1H), 7.24-7.08 (m, 5H), 7.00-6.98 (m, 1H), 3.93 (s, 2H), 3.78 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.0, 158.7, 150.6, 135.1,

133.2, 128.7, 128.4, 128.0, 125.8, 120.6, 120.3, 116.3, 55.5, 36.5; **HRMS (ESI)** m/z calcd for  $C_{15}H_{13}O_3^+$  (M+H)<sup>+</sup> 241.08592, found 241.08545.

#### 8-Fluorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (10)

Yield 65% (30.0 mg) for 14 h, white solid;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (dd,  $J_I = 8.8$  Hz,  $J_2 = 2.8$  Hz, 1H), 7.26-7.21 (m, 4H), 7.17-7.11 (m, 2H), 3.97 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.8 (d, J = 2.6 Hz), 161.6 (d, J = 248.0 Hz), 150.4, 138.6 (d, J = 3.4 Hz), 132.5, 129.7, 129.6, 129.0 (d, J = 7.6 Hz), 128.2 (d, J = 16.9 Hz), 126.0, 120.8, 120.3 (d, J = 21.5 Hz), 119.3 (d, J = 23.7 Hz), 36.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -114.3; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>10</sub>FO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 229.06593, found 229.06554.

## 8-Chlorodibenzo[b,e]oxepin-6(11H)-one (11)

Yield 65% (32.1 mg) for 10 h, white solid;  $R_f = 0.25$ (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, J = 2.0 Hz, 1H), 7.40 (dd,  $J_I = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.26-7.20 (m, 4H), 7.16-7.11 (m, 1H), 3.97 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 164.8, 150.4, 140.9, 133.3, 133.2, 132.3, 132.1, 129.5, 128.6, 128.4, 128.2, 126.1, 120.7, 36.7; HRMS (ESI) m/z calcd for  $C_{14}H_{10}ClO_2^+$  (M+H)<sup>+</sup> 245.03638, found 245.03674.

#### 8,9-Dimethoxydibenzo[*b*,*e*]oxepin-6(11*H*)-one (12)



(iii, 111), 0.72 (s, 111), 5.95 (s, 511), 5.87 (s, 511), C HWK (101 MHZ, CDCI3) 0 165.8, 153.0, 150.9, 148.0, 137.1, 133.0, 128.0, 127.9, 125.7, 120.7, 119.4, 114.9, 109.8, 56.09, 56.07, 37.2; **HRMS (ESI)** m/z calcd for  $C_{16}H_{15}O_4^+$  (M+H)<sup>+</sup> 271.09649, found 271.09689.

#### [1,3]Dioxolo[4',5':4,5]benzo[1,2-*e*]benzo[*b*]oxepin-5(11*H*)-one (13)



Yield 75% (38.4 mg) for 12 h, white solid;  $R_f = 0.25$ (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 (s, 1H), 7.24-7.21 (m, 3H), 7.14-7.09 (m, 1H),

6.70 (s, 1H), 5.98 (s, 2H), 3.89 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.4, 151.7, 150.8, 146.9, 138.9, 132.8, 128.1, 127.9, 125.8, 121.0, 120.6, 112.1, 107.4, 102.0, 37.2; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>11</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 255.06519, found 255.06525.

## Benzo[b]naphtho[1,2-e]oxepin-7(13H)-one (14)



Yield 55% (28.9 mg) for 12 h, white solid;  $R_f = 0.30$  (petroleum ether : ethyl acetate = 20 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (d, J = 8.4 Hz, 1H), 7.87-7.82 (m, 2H), 7.77 (d, J = 8.8 Hz,

1H), 7.69-7.59 (m, 2H), 7.35 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.26-7.18 (m, 2H), 7.09 (td,  $J_1 = 7.2$  Hz,  $J_2 = 1.6$  Hz, 1H), 4.44 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.8, 151.2, 140.7, 135.6, 132.3, 129.0, 128.8, 128.2, 128.1, 128.0, 127.6, 127.4, 127.2, 125.7, 125.3, 124.0, 120.3, 30.4; **HRMS (ESI)** m/z calcd for  $C_{18}H_{13}O_2^+$  (M+H)<sup>+</sup> 261.09101, found 261.09131.

#### 4-Methyldibenzo[b,e]oxepin-6(11H)-one (15)

Yield 74% (33.3 mg) for 22 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.89 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.25 (d, J =7.6 Hz, 1H), 7.08-6.98 (m, 3H), 3.96 (s, 2H), 2.37 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.9, 149.1, 142.9, 133.3, 132.8, 132.6, 130.0, 129.7, 128.0, 127.3, 127.1, 125.6, 125.5, 37.5, 16.4; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>13</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 225.09101, found 225.09082.

## 4-Fluorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (16)

Yield 58% (26.6 mg) for 5 h, white solid;  $R_f = 0.20$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, J = 8.0 Hz, 1H), 7.49 (td,  $J_I = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.09-6.88 (m, 3H), 4.03 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.9, 153.1 (d, J = 252.8 Hz), 142.1, 138.4 (d, J = 11.5 Hz), 135.3, 133.7, 133.0, 127.6, 127.5 (d, J = 38.6 Hz), 126.2 (d, J = 7.6 Hz), 122.9 (d, J = 3.7 Hz), 115.4 (d, J = 18.7 Hz), 37.3 (d, J = 2.3 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -128.9; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>10</sub>FO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 229.06593, found 229.06569.

#### 4-Chlorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (17)

Yield 60% (29.4 mg) for 6 h, white solid;  $R_f = 0.20$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.29-7.26 (m, 2H), 7.15 (d, J = 7.6 Hz, 1H), 7.06-7.03 (m, 1H), 4.02 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 146.8, 142.1, 134.8, 133.7, 132.9, 129.0, 127.7, 127.4, 127.3, 126.4, 126.3, 126.0, 37.5; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>10</sub>ClO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 245.03638, found 245.03621.

#### 3-Fluorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (18)

Yield 60% (27.7 mg) for 10 h, white solid;  $R_f = 0.20$ (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (dd,  $J_1 = 8.0$ ,  $J_2 = 1.2$  Hz, 1H), 7.48 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.34 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.26-7.19 (m, 2H), 6.97 (dd,  $J_1 = 8.8$  Hz,  $J_2 =$ 2.4 Hz, 1H), 6.83 (td,  $J_1 = 8.4$  Hz,  $J_2 = 2.8$  Hz, 1H), 3.97 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.4, 161.8 (d, J = 248.1 Hz), 151.2 (d, J = 11.6 Hz), 142.4, 133.6, 132.8, 128.8 (d, J = 9.3 Hz), 128.5 (d, J = 3.5 Hz), 127.7, 127.6, 127.1, 112.6 (d, J = 21.3Hz), 108.7 (d, J = 24.9 Hz), 36.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -113.2; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>10</sub>FO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 229.06593, found 229.06551.

#### 3-Chlorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (19)



Yield 66% (32.3mg) for 6 h, white solid;  $R_f = 0.20$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.88 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.26-7.18 (m, 3H), 7.09 (dd,  $J_1 = 8.0$ ,  $J_2 = 2.0$  Hz, 1H), 3.97 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.3, 151.0, 142.1, 133.6, 133.2, 132.8, 131.2, 128.9, 127.72, 127.66, 127.1, 125.9, 121.2, 36.9; **HRMS (ESI)** m/z calcd for  $C_{14}H_{10}ClO_2^+$  (M+H)<sup>+</sup> 245.03638, found 245.03674.

## 2-Methyldibenzo[b,e]oxepin-6(11H)-one (20)



Yield 82% (37.0 mg) for 6 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.88 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.2 Hz, 1H), 7.31 (t, J =

7.6 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 7.05 (s, 1H), 7.00 (d, J= 8.4 Hz, 1H), 3.94 (s, 2H), 2.29 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 148.5, 142.6, 135.6, 133.3, 132.7, 132.3, 128.6, 128.5, 128.1, 127.4, 127.1, 120.3, 37.4, 20.6.

## 2-Methoxydibenzo[b,e]oxepin-6(11H)-one (21)



Yield 53% (25.5 mg) for 6 h, white solid;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 **MHz, CDCl<sub>3</sub>**)  $\delta$  7.89 (dd,  $J_1$  = 7.6 Hz,  $J_2$  = 1.2 Hz, 1H), 7.46

(td,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.33 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.25 (d, J = 1.2 Hz, 1H), 7.25 (d, J = 1.2

6.4 Hz, 1H), 7.14 (d, J = 8.8 Hz, 1H), 6.77 (d, J = 2.8 Hz, 1H), 6.71 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 3.2$  Hz, 1H), 3.95 (s, 2H), 3.77 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.5, 157.1, 144.4, 142.4, 133.8, 133.3, 132.8, 128.1, 127.5, 127.2, 121.5, 113.4, 112.4, 55.6, 37.7; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>13</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 241.08592, found 241.08601.

### 2-Fluorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (22)



Yield 86% (39.3 mg) for 3 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.48 (td,  $J_1 = 7.6$  Hz,  $J_2$ 

= 1.2 Hz, 1H), 7.35 (td,  $J_1$  = 7.6 Hz,  $J_2$ = 0.8 Hz, 1H), 7.26 (d, J = 7.6 Hz, 1H), 7.18 (dd,  $J_1$  = 8.8 Hz,  $J_2$  = 4.8 Hz, 1H), 6.97 (dd,  $J_1$  = 8.4 Hz,  $J_2$  = 3.2 Hz, 1H), 6.89 (td,  $J_1$  = 8.4 Hz,  $J_2$  = 3.2 Hz, 1H), 3.97 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 165.7, 159.8 (d, J = 246.5 Hz), 146.7 (d, J = 2.9 Hz), 141.9, 134.5 (d, J = 8.1 Hz), 133.5, 132.9, 127.8, 127.7, 127.2, 122.1 (d, J = 8.9 Hz), 114.8 (d, J = 23.9 Hz), 114.44 (d, J = 23.3 Hz), 37.30 (d, J = 0.9 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -116.6; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>10</sub>FO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 229.06593, found 229.06558.

### 2-Chlorodibenzo[b,e]oxepin-6(11H)-one (23)



Yield 77% (37.6 mg) for 3 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, *J* = 7.6 Hz, 1H), 7.48 (td, *J*<sub>1</sub> = 7.2 Hz, *J*<sub>2</sub> = 0.8 Hz, 1H),

7.35 (t, J = 7.6 Hz, 1H), 7.27-7.14 (m, 4H), 3.96 (s, 2H); <sup>13</sup>C NMR (101 MHz,

**CDCl<sub>3</sub>**)  $\delta$  165.5, 149.2, 141.7, 134.2, 133.6, 132.8, 130.8, 128.0, 127.72, 127.67, 127.2, 122.0, 37.1; **HRMS (ESI)** m/z calcd for C<sub>14</sub>H<sub>10</sub>ClO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 245.03638, found 245.03653.

#### 2-Bromodibenzo[*b*,*e*]oxepin-6(11*H*)-one (24)



Yield 62% (35.8 mg) for 5 h, white solid;  $R_f = 0.20$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.89 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 1.0$  Hz, 1H), 7.48 (td,  $J_1 = 7.2$  Hz,  $J_2$ 

= 1.2 Hz, 1H), 7.41-7.25 (m, 4H), 7.10 (d, J = 8.4 Hz, 1H), 3.96 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.4, 149.8, 141.8, 134.7, 133.6, 132.8, 131.0, 130.9, 127.8, 127.7, 127.2, 122.4, 118.5, 37.1; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>10</sub>BrO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 288.98587, found 288.98636.

# 1-Methoxydibenzo[*b*,*e*]oxepin-6(11*H*)-one (25)

Yield 58% (28.1 mg) for 4 h, white solid;  $R_f = 0.30$  (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.44 (td,  $J_1 = 7.2$  Hz,  $J_2 = 1.2$ Hz, 1H), 7.31 (td,  $J_1 = 7.6$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.05 (t, J =7.6 Hz, 1H), 6.83-6.80 (m, 2H), 3.98 (s, 2H), 3.86 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.7, 150.7, 142.8, 139.6, 134.4, 133.3, 132.8, 128.0, 127.4, 127.2, 126.1, 119.3, 111.1, 56.0, 37.3; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>13</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 241.08592, found 241.08583.

#### 1-Fluorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (26)



ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (dd,  $J_1 = 8.0$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.48 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$ Hz, 1H), 7.37-7.30 (m, 2H), 7.16 (td,  $J_1 = 8.0$  Hz,  $J_2 = 6.4$  Hz, 1H), 7.04 (d, J = 8.4Hz, 1H), 6.91 (t, J = 8.8 Hz, 1H), 4.06 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.4, 158.96 (d, J = 247.5 Hz), 151.8 (d, J = 5.9 Hz), 141.6, 133.6, 132.9, 128.2, 127.9 (d, J = 9.7 Hz), 127.7, 127.6, 120.8 (d, J = 20.3 Hz), 116.4 (d, J = 3.5 Hz), 112.6 (d, J = 22.5 Hz), 28.4 (d, J = 3.9 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -119.6; HRMS (ESI) m/z calcd for  $C_{14}H_{10}FO_2^+(M+H)^+$  229.06593, found 229.06546.

Yield 64% (29.4 mg) for 10 h, white solid;  $R_f = 0.25$  (petroleum

#### 1-Chlorodibenzo[b,e]oxepin-6(11H)-one (27)



calcd for  $C_{14}H_{10}ClO_2^+$  (M+H)<sup>+</sup> 245.03638, found 245.03622.

#### 2-((Trimethylsilyl)ethynyl)dibenzo[*b*,*e*]oxepin-6(11*H*)-one (28)



Yield 67% (41.3 mg) from 2-bromobenzaldehyde for 5 h; Yield 86% (52.6)mg) from 2-formylphenyl trifluoromethanesulfonate for 5 h, white solid;  $R_f = 0.50$ 

(petroleum ether : ethyl acetate = 100 : 1); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, TMS)  $\delta$  7.86 (dd,  $J_I = 7.8$  Hz,  $J_2 = 1.8$  Hz, 1H), 7.45 (td,  $J_I = 7.8$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.38 (d, J =2.4 Hz, 1H), 7.34-7.29 (m, 2H), 7.23 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 3.95 (s, 2H), 0.23 (s, 9H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 150.6, 142.0, 133.5, 132.7, 132.7, 131.8, 131.7, 127.8, 127.6, 127.2, 120.8, 120.7, 103.7, 94.8, 37.1, -0.2. HRMS (ESI) m/z calcd for C<sub>19</sub>H<sub>19</sub>O<sub>2</sub>Si<sup>+</sup> (M+H)<sup>+</sup> 307.11488, found 307.11478.

## 2-(Phenylethynyl)dibenzo[*b*,*e*]oxepin-6(11*H*)-one (29)



Yield 81% (50.3 mg) for 6 h, white solid;  $R_f = 0.50$ (petroleum ether : ethyl acetate = 25 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 7.2 Hz, 1H), 7.51-7.44 (m,

4H), 7.39-7.33 (m, 5H), 7.26 (d, J = 7.2 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 3.99 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 165.7, 150.4, 142.0, 133.6, 132.8, 132.7, 131.5, 131.4, 131.3, 128.43, 128.35, 127.9, 127.6, 127.2, 122.8, 120.93, 120.90, 89.8, 88.1, 37.2. HRMS (ESI) m/z calcd for C<sub>22</sub>H<sub>15</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 311.10666, found 311.10690.

### (S)-3-methoxy-11-phenyldibenzo[b,e]oxepin-6(11H)-one (30)



Yield 42% (26.7 mg) for 10 h, colorless oil;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83-7.81 (m, 2H), 7.54-7.47 (m, 4H),

7.40-7.29 (m, 3H), 6.84-6.82 (m, 1H), 6.72 (s, 1H), 6.34-6.32 (m, 2H), 3.68 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.6, 150.8, 146.4, 136.7, 135.4, 129.30, 129.27, 128.7, 128.6, 127.8, 124.8, 122.0, 121.9, 120.0, 106.2, 102.5, 100.9, 88.4, 55.2.
#### Methyl 6-oxo-6,11-dihydrodibenzo[b,e]oxepine-2-carboxylate (31)



Yield 37% (20.2 mg) from 2-bromobenzaldehyde for 5 h; Yield 37% (19.8 mg) from 2-formylphenyl trifluoromethanesulfonate for 8 h, white solid;  $R_f = 0.25$ 

(petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, J = 1.6 Hz, 1H), 7.93-7.88 (m, 2H), 7.49 (td,  $J_1$  = 7.6 Hz,  $J_2$  = 1.2 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.30-7.27 (m, 2H), 4.06 (s, 2H), 3.90 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.0, 165.2, 154.1, 141.9, 133.7, 132.8, 132.7, 129.9, 127.71, 127.69, 127.6, 127.3, 120.9, 52.3, 37.2; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>13</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 269.08084, found 269.08090.

#### N-(6-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetamide (32)



Yield 44% (23.5 mg) for 6 h, white solid;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 1 : 1); <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  10.03 (s, 1H), 7.76 (d, J = 7.2 Hz, 1H),

7.71 (d, J = 2.4 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.34 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 2.4$  Hz, 1H), 7.18 (d, J = 8.8 Hz, 1H), 4.05 (s, 2H), 2.03 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta$  168.8, 165.9, 145.9, 143.4, 137.5, 134.1, 133.9, 132.6, 128.2, 128.04, 127.98, 121.1, 119.1, 118.8, 36.6, 24.4; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>14</sub>NO<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 268.09682, found 268.09711.

#### 1-Isopropyl-4-methyldibenzo[b,e]oxepin-6(11H)-one (33)



Yield 52% (27.8 mg) for 6 h, colorless oil;  $R_f = 0.30$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, J = 7.6 Hz, 1H), 7.46 (td,  $J_I = 7.6$ ,  $J_2 = 1.2$  Hz, 1H), 7.34-7.26

(m, 2H), 7.02 (m, 2H), 4.07 (s, 2H), 3.32 (hept, J = 6.8 Hz, 1H), 2.35 (s, 3H), 1.26 (d, J = 7.2 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 149.3, 143.3, 133.4, 133.3, 132.6, 130.9, 129.0, 128.2, 127.4, 127.3, 127.2, 122.1, 31.8, 29.2, 23.7, 16.3; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>19</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 267.13796, found 267.13745.

#### 4-Isopropyl-1-methyldibenzo[*b*,*e*]oxepin-6(11*H*)-one (34)



Yield 50% (26.8 mg) for 11 h, colorless oil;  $R_f = 0.30$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 1.0$  Hz, 1H), 7.45 (td,  $J_1 = 7.6$ ,  $J_2 = 1.2$  Hz,

1H), 7.34-7.27 (m, 2H), 7.02 (d, J = 7.6 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 4.01 (s, 2H), 3.46 (hept, J = 6.8 Hz, 1H), 2.41 (s, 3H), 1.22 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 148.4, 143.1, 138.0, 133.3, 132.5, 132.4, 131.9, 128.1, 127.38, 127.36, 126.9, 124.3, 32.7, 27.4, 22.9, 19.2; HRMS (ESI) m/z calcd for  $C_{18}H_{19}O_2^+$  (M+H)<sup>+</sup> 267.13796, found 267.13748.

## 2-Allyl-4-methoxydibenzo[b,e]oxepin-6(11H)-one (35)



(petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 6.66 (s, 1H), 6.64 (s, 1H), 5.96-5.86 (m, 1H), 5.12-5.07 (m, 2H), 3.95 (s, 2H), 3.85 (s, 3H), 3.31 (d, J = 6.4 Hz, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.9, 150.5, 142.8, 138.3, 137.8, 136.7, 134.1, 133.2, 132.8, 128.0, 127.4, 127.2, 119.2, 116.3, 111.2, 55.9, 39.9, 37.4; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>17</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 281.11722, found 281.11765.

(3*aR*,3*bS*,14*bR*,16*aR*)-3b,16a-dimethyl-3,3a,3b,4,5,13,14b,15,16,16a-decahydro-1 H-benzo[*e*]cvclopenta[7,8]phenanthro[2,3-*b*]oxepine-1,8(2*H*)-dione (36)



Yield 64% (49.4 mg) from 2-bromobenzaldehyde for 16 h; Yield 77% (59.5 mg) from 2-formylphenyl trifluoromethanesulfonate for 11 h, white solid;  $R_f =$ 

0.25 (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (d, J = 7.2 Hz, 1H), 7.45 (dt,  $J_I = 7.6$  Hz,  $J_2 = 0.9$  Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.17 (s, 1H), 6.96 (s, 1H), 3.95 (s, 2H), 2.86-2.84 (m, 2H), 2.54-2.41 (m, 2H), 2.25-1.95 (m, 5H), 1.67-1.36 (m, 6H), 0.89 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  220.7, 166.4, 148.4, 142.7, 137.3, 136.6, 133.3, 132.6, 129.7, 128.1, 127.3, 127.0, 125.0, 120.6, 50.2, 47.8, 43.9, 37.9, 37.4, 35.7, 31.4, 28.9, 26.2, 25.8, 21.5, 13.7; HRMS (ESI) m/z calcd for C<sub>26</sub>H<sub>27</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 387.19547, found 387.19577. (S)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(6-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl) propanoate (37)

Yield 77% (68.8 mg) from 2-bromobenzaldehyde for 5 h; Yield 81% (71.8 mg) from 2-formylphenyl trifluoromethanesulfonate for 4 h, white solid;  $R_f =$ 0.30 (petroleum ether : ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, J = 7.2 Hz, 1H), 7.74-7.68 (m, 4H), 7.39 (t, J = 7.2 Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 7.11-7.01 (m, 4H), 5.12 (dd,  $J_I = 10.8$  Hz,  $J_2 = 5.6$  Hz, 1H), 3.95-3.77 (m, 5H), 3.57-3.45 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 167.3, 165.9, 149.4, 142.3, 134.4, 134.1, 133.3, 132.7, 132.6, 131.3, 128.5, 128.4, 127.8, 127.2, 126.9, 123.4, 120.7, 52.9, 52.8, 37.2, 33.8; HRMS (ESI) m/z calcd for C<sub>26</sub>H<sub>20</sub>NO<sub>6</sub><sup>+</sup> (M+H)<sup>+</sup> 442.12851, found 442.12897.

## 2,8-Dimethyldibenzo[*b*,*e*]oxepin-6(11*H*)-one (38)



7.14-6.97 (m, 4H), 3.90 (s, 2H), 2.31 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.7, 148.5, 139.8, 137.2, 135.5, 134.1, 133.0, 132.6, 128.5, 128.4, 127.8, 127.0, 120.3, 36.9, 20.7, 20.6; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 239.10666, found 239.10661.

#### 2,8-Dimethoxydibenzo[b,e]oxepin-6(11H)-one (39)



J = 8.4 Hz, 2H), 6.99 (dd,  $J_1 = 8.4$  Hz,  $J_2 = 2.4$  Hz, 1H), 6.75 (d, J = 2.8 Hz, 1H), 6.69 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 2.8$  Hz, 1H), 3.88 (s, 2H), 3.78 (s, 3H), 3.76 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 158.7, 157.0, 144.3, 134.9, 134.3, 128.7, 128.5, 121.4, 120.2, 116.3, 113.2, 112.2, 55.6, 55.5, 36.7; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 271.09649, found 271.09668.

#### 1,7-Dimethoxydibenzo[b,e]oxepin-6(11H)-one (40)



found 271.09671.

#### 2,8-Dibromodibenzo[b,e]oxepin-6(11H)-one (41)



Yield 42 % (31 mg) for 5 h, white solid;  $R_f = 0.50$ (petroleum ether : ethyl acetate = 20 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (s, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.39 (s, 1H), 7.34 (d, J = 8.8 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 8.8 Hz, 1H), 3.92 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.0, 149.5, 140.6, 136.4, 135.4, 134.1, 131.3, 131.0, 129.4, 128.9, 122.5, 121.4, 118.8, 36.5; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>8</sub>Br<sub>2</sub> NaO<sub>2</sub><sup>+</sup> [M+Na]<sup>+</sup> 388.8783, found 388.8773.

#### 2,8-Difluorodibenzo[*b*,*e*]oxepin-6(11*H*)-one (42)



Yield 63% (31 mg) for 10 h, white solid;  $R_f = 0.50$ (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (dd,  $J_I = 8.4$  Hz,  $J_2 = 2.4$  Hz, 1H),

7.27-7.16 (m, 3H), 7.00-6.89 (m, 2H), 3.96 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 164.5 (d, J = 2.2 Hz), 161.7 (d, J = 247.8 Hz), 159.8 (d, J = 245.9 Hz), 146.4 (d, J = 2.8 Hz), 137.9 (d, J = 3.3 Hz), 134.4 (d, J = 8.3 Hz), 129.4 (d, J = 7.4 Hz), 129.1 (d, J = 7.6 Hz), 122.2 (d, J = 8.8 Hz), 120.5 (d, J = 21.5 Hz), 119.4 (d, J = 23.6 Hz), 114.8 (d, J = 14.8 Hz), 114.6 (d, J = 14.0 Hz), 36.4; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -113.8, -116.2; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>9</sub>F<sub>2</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 247.05651, found 247.05618.

## 4,8-Dimethyldibenzo[b,e]oxepin-6(11H)-one (43)



125.45, 37.0, 20.7, 16.4; **HRMS (ESI)** m/z calcd for  $C_{16}H_{15}O_2^+$  (M+H)<sup>+</sup> 239.10666, found 239.10674.

## 2-Methoxy-8-methyldibenzo[*b*,*e*]oxepin-6(11*H*)-one (44)



Yield 71% (36.2 mg) for 7 h, white solid;  $R_f = 0.20$ (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (s, 1H), 7.26-7.24 (m, 1H),

7.15-7.12 (m, 2H), 6.76 (d, J = 2.8 Hz, 1H), 6.69 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 2.8$  Hz, 1H), 3.90 (s, 2H), 3.76 (s, 3H), 2.32 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.8, 157.0, 144.4, 139.5, 137.3, 134.1, 134.0, 133.0, 127.7, 127.1, 121.4, 113.3, 112.3, 55.5, 37.2, 20.7; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 255.10157, found 255.10164.

## 1-Methoxy-8-methyldibenzo[b,e]oxepin-6(11H)-one (45)



Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H), 6.82-6.79 (m, 2H), 3.93 (s, 2H), 3.85 (s, 3H), 2.31 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.0, 150.7, 139.9, 139.5, 137.2, 134.7, 134.0, 133.0, 127.6, 127.1, 126.0, 119.2, 110.9, 55.9, 36.9, 20.7; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 255.10157, found 255.10127.

#### 2,7-Dimethoxydibenzo[*b*,*e*]oxepin-6(11*H*)-one (46)



Hz, 1H), 6.86-6.81 (m, 2H), 6.74-6.68 (m, 2H), 3.85 (s, 5H), 3.76 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.3, 159.6, 156.7, 144.24, 144.22, 134.0, 133.1, 121.0, 118.6, 116.8, 113.3, 112.3, 110.5, 56.1, 55.6, 37.4; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 271.09649, found 271.09625.

## 1,8-Dimethoxydibenzo[b,e]oxepin-6(11H)-one (47)



Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H), 6.97 (dd,  $J_I = 8.4$  Hz,  $J_2 = 2.4$  Hz, 1H), 6.80 (d, J = 7.6 Hz, 2H), 3.91 (s, 2H), 3.85 (s, 3H), 3.77 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.7, 158.6, 150.7, 139.4, 135.3, 135.0, 128.54, 128.46, 126.1, 120.2, 119.1, 116.2, 110.9, 55.9, 55.4, 36.3; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 271.09649, found 271.09683.

#### 7-Methoxy-2-methyldibenzo[*b*,*e*]oxepin-6(11*H*)-one (48)



J = 8.4 Hz, 2H), 3.84 (s, 5H), 2.27 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  163.2, 159.5, 148.3, 144.5, 135.1, 133.1, 132.5, 128.5, 128.4, 119.9, 118.5, 116.8, 110.4, 56.1, 37.1, 20.6; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 255.10157, found 255.10165.

## 3-Chloro-8-methoxydibenzo[*b*,*e*]oxepin-6(11*H*)-one (49)

Yield 60% (33 mg) for 12 h, white solid;  $R_f = 0.40$ (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, J = 2.4 Hz, 1H), 7.23 (s, 1H), 7.16 (t, J = 7.6 Hz, 2H), 7.09 (d, J = 8.0 Hz, 1H), 7.01 (dd,  $J_1 = 8.4$  Hz,  $J_2 = 2.4$  Hz, 1H), 3.90 (s, 2H), 3.80 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 158.8, 150.9, 134.5, 133.0, 131.8, 128.7, 128.5, 128.4, 125.9, 121.2, 120.5, 116.4, 55.6, 36.0; HRMS (ESI) m/z calcd for  $C_{15}H_{12}ClO_3^+$  (M+H)<sup>+</sup> 275.04695, found 275.04706.

### 8-(Benzyloxy)dibenzo[*b*,*e*]oxepin-6(11*H*)-one (50)

Yield 73% (46.7 mg) for 6 h, light yellow solid;  $R_f = 0.20$ (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.87 (d, J = 8.4 Hz, 1H), 7.40-7.33 (m, 5H), 7.25-7.19 (m, 3H), 7.14-7.09 (m, 1H), 6.89-6.84 (m, 2H), 5.09 (s, 2H), 3.95 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.8, 162.6, 150.9, 144.7, 135.8, 135.3, 132.3, 128.7, 128.3, 128.13, 128.11, 127.5, 125.8, 120.7, 120.3, 113.5, 113.2, 70.1, 37.8; HRMS (ESI) m/z calcd for C<sub>21</sub>H<sub>17</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 317.11722, found 317.11731.

#### 8-(Benzyloxy)-2-methoxydibenzo[b,e]oxepin-6(11H)-one (51)



7.39-7.33 (m, 5H), 7.13 (d, J = 8.8 Hz, 1H), 6.88 (dd,  $J_I = 8.7$  Hz,  $J_2 = 2.4$  Hz, 1H), 6.83-6.75 (m, 1H), 6.77 (d, J = 2.8 Hz, 1H), 6.70 (dd,  $J_I = 8.9$  Hz,  $J_2 = 2.9$  Hz, 1H), 5.08 (s, 2H), 3.90 (s, 2H), 3.76 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 162.4, 157.0, 144.6, 144.4, 135.8, 135.3, 133.4, 128.6, 128.2, 127.4, 121.4, 120.3, 113.5, 113.3, 113.2, 112.4, 70.1, 55.5, 37.9; HRMS (ESI) m/z calcd for C<sub>22</sub>H<sub>19</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 347.12779, found 347.12796.

#### 8-(Benzyloxy)-2-methyldibenzo[*b*,*e*]oxepin-6(11*H*)-one (52)



5H), 7.10 (d, J = 8.2 Hz, 1H), 7.05 (s, 1H), 7.00 (d, J = 8.2 Hz, 1H), 6.88 (dd,  $J_I = 8.8$  Hz,  $J_2 = 2.4$  Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 5.09 (s, 2H), 3.91 (s, 2H), 2.29 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 162.5, 148.7, 144.8, 135.8, 135.5, 135.3, 132.0, 128.67, 128.63, 128.5, 128.3, 127.5, 120.4, 113.5, 113.1, 70.1, 37.8, 20.7; HRMS (ESI) m/z calcd for C<sub>22</sub>H<sub>19</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 331.13287, found 331.13297.

#### 8-(Benzyloxy)-2-chlorodibenzo[b,e]oxepin-6(11H)-one (53)



5H), 7.23 (s, 1H), 7.18-7.13 (m, 2H), 6.90 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 2.4$  Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 5.10 (s, 2H), 3.92 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 162.7, 149.4, 143.9, 135.7, 135.4, 134.0, 130.7, 128.7, 128.3, 127.9, 127.4, 122.0, 119.9, 113.6, 113.5, 70.1, 37.4; HRMS (ESI) m/z calcd for C<sub>21</sub>H<sub>16</sub>ClO<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 351.07825, found 351.07843.

### 8-(Benzyloxy)-2-bromodibenzo[b,e]oxepin-6(11H)-one (54)



7H), 7.09 (d, J = 8.8 Hz, 1H), 6.90 (dd,  $J_I = 8.4$  Hz,  $J_2 = 2.0$  Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 5.10 (s, 2H), 3.92 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 162.7, 150.0, 143.9, 135.7, 135.5, 134.4, 131.0, 130.9, 128.7, 128.3, 127.5, 122.5, 119.9, 118.4, 113.6, 113.5, 70.2, 37.4; HRMS (ESI) m/z calcd for C<sub>21</sub>H<sub>16</sub>BrO<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 395.02773, found 395.02777.

#### 2-Bromo-8-fluorodibenzo[b,e]oxepin-6(11H)-one (55)



Yield 65% (40 mg) for 6 h, white solid;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, J = 7.6 Hz, 1H), 7.40-7.09 (m, 5H),

3.94 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.1 (d, J = 2.2 Hz), 161.7 (d, J = 249.0 Hz), 149.5, 137.7 (d, J = 3.2 Hz), 134.5, 131.2, 130.9, 129.3 (d, J = 7.6 Hz), 129.1 (d, J = 7.6 Hz), 122.5, 120.6 (d, J = 21.4 Hz), 119.4 (d, J = 23.8 Hz), 118.7, 36.2; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>9</sub>BrFO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 306.97645, found 306.97629.

## 8-((Trimethylsilyl)ethynyl)dibenzo[b,e]oxepin-6(11H)-one (56)

**TMS**Yield 70% (43.0 mg) for 12 h, white solid;  $R_f = 0.50$ <br/>(petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR(600 MHz, CDCl<sub>3</sub>, TMS)  $\delta$  7.98 (d, J = 1.8 Hz, 1H), 7.51 (dd,  $J_I = 7.8$  Hz,  $J_2 = 1.8$ <br/>Hz, 1H), 7.24-7.19 (m, 4H), 7.13-7.10 (m, 1H), 3.98 (s, 2H), 0.22 (s, 9H); <sup>13</sup>C NMR(151 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 150.5, 142.4, 136.2, 132.1, 128.3, 128.24, 128.19, 127.2,<br/>126.0, 122.9, 120.7, 103.0, 96.0, 37.3, -0.2. HRMS (ESI) m/z calcd for C<sub>19</sub>H<sub>19</sub>O<sub>2</sub>Si<sup>+</sup><br/>(M+H)<sup>+</sup> 307.11488, found 307.11453.





7.37-7.22 (m, 4H), 7.08 (d, J = 7.2 Hz, 1H), 5.15 (s, 2H), 4.13 (s, 2H), 0.27 (s, 9H);

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.6, 136.4, 135.2, 134.4, 133.6, 132.5, 131.2, 130.22, 130.17, 129.3, 128.5, 127.2, 122.8, 103.2, 96.1, 71.5, 40.1, -0.2; HRMS (ESI) m/z calcd for C<sub>20</sub>H<sub>21</sub>O<sub>2</sub>Si<sup>+</sup> (M+H)<sup>+</sup> 321.13053, found 321.13077.

## 7,12-Dihydro-5*H*-dibenzo[*c*,*f*]oxocin-5-one (58)

Yield 76% (34 mg), white solid;  $R_f = 0.40$  (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.20-7.15 (m, 3H), 7.10-7.07 (m, 1H), 6.93 (d, J = 7.6 Hz, 1H), 5.01 (s, 2H), 4.00 (s, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  172.2, 136.5, 133.9, 133.4, 132.0, 131.8, 129.8, 129.8, 128.8, 128.1, 127.3, 127.2, 126.7, 71.1, 39.7; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>13</sub>O<sub>2</sub><sup>+</sup> [M + H]<sup>+</sup> 225.09101 , found 225.09116.

## 3-Fluoro-7,12-dihydro-5*H*-dibenzo[*c*,*f*]oxocin-5-one (59)

Yield 70% (34 mg), white solid;  $R_f = 0.40$  (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.35-7.13 (m, 6H), 7.07 (d, J = 7.2 Hz, 1H ), 5.16 (s, 2H), 4.10 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.1 (d, J = 2.6 Hz), 161.6 (d, J = 248.3 Hz), 136.6, 133.9 (d, J = 7.5 Hz), 133.5, 132.1 (d, J = 7.8 Hz), 130.3 (d, J = 3.6 Hz), 130.2, 129.3, 129.5, 127.2, 119.2 (d, J = 21.3 Hz), 114.7 (d, J = 23.6 Hz), 71.6, 39.4; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -113.6; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>12</sub>FO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 243.08158, found 243.08176.

#### **3-Bromo-7,12-dihydro-5***H***-dibenzo**[*c*,*f*]oxocin-5-one (60)

Yield 51% (31 mg), white solid;  $R_f = 0.40$  (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 1.8 Hz, 1H), 7.58 (dd,  $J_I = 8.4$  Hz,  $J_2 = 2.4$  Hz, 1H), 7.32 (td,  $J_I = 7.8$  Hz,  $J_2 =$ 1.2 Hz, 1H), 7.28 (d, J = 7.2 Hz, 1H), 7.22 (td,  $J_I = 7.2$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 7.2 Hz, 1H), 5.16 (s, 2H), 4.09 (s, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  170.9, 136.1, 135.1, 134.1, 133.5, 133.4, 131.8, 130.5, 130.2, 129.3, 128.5, 127.2, 121.2, 71.6, 39.7; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>11</sub>BrNaO<sub>2</sub><sup>+</sup> (M + Na)<sup>+</sup> 324.9835, found 324.9831.

### 3-Methyl-7,12-dihydro-5*H*-dibenzo[*c*,*f*]oxocin-5-one (61)

Yield 84% (40 mg), white solid;  $R_f = 0.40$  (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (s, 1H), 7.32-7.25 (m, 3H), 7.20-7.16 (m, 2H), 7.03 (d, J = 6.8 Hz, 1H), 5.13 (s, 2H), 4.08 (s, 2H), 2.36 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.8, 137.4, 137.1, 133.8, 132.9, 132.1, 131.3, 130.04, 130.02, 129.1, 128.4, 128.1, 126.9, 71.5, 39.7, 20.8; HRMS (ESI) m/z calcd for  $C_{16}H_{15}O_2^+$  (M+H)<sup>+</sup> 239.10666, found 239.10683.

## 9-Methoxy-7,12-dihydro-5*H*-dibenzo[*c*,*f*]oxocin-5-one (62)



6.61 (d, J = 2.0 Hz, 1H), 5.09 (s, 2H), 4.07 (s, 2H), 3.77 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.7, 158.3, 134.99, 134.91, 132.2, 132.1, 131.2, 130.0, 129.0, 127.7, 127.4, 114.4, 113.6, 71.4, 55.3, 39.3; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 255.10157, found 255.10168.

### 10-Methyl-7,12-dihydro-5*H*-dibenzo[*c*,*f*]oxocin-5-one (63)



Yield 73% (35 mg), white solid;  $R_f = 0.40$  (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (dd,  $J_1 = 7.8$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.45 (td,  $J_1 = 7.2$  Hz,  $J_2 = 1.2$  Hz,

1H), 7.35 (td,  $J_1 = 7.2$  Hz,  $J_2 = 0.6$  Hz, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.13 (s, 1H), 7.01 (d, J = 7.2 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 5.10 (s, 2H), 4.08 (s, 2H), 2.36 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  172.7, 139.0, 136.5, 134.3, 132.3, 132.0, 130.9, 130.7, 130.0, 128.4, 127.6, 127.45, 127.41, 71.4, 40.1, 20.9; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>15</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 239.10666, found 239.10678.

## Methyl 6-oxo-6,11-dihydrodibenzo[b,e]oxepine-8-carboxylate (64)

Yield 36% (19.4 mg) for 4 h, white solid;  $R_f = 0.25$ (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.55 (d, J = 1.2 Hz, 1H), 8.12 (dd,  $J_I = 8.0$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.28-7.24 (m, 3H), 7.17-7.12 (m, 1H), 4.06 (s, 2H), 3.91 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  165.6, 165.2, 150.5, 147.0, 134.2, 134.1, 131.7, 129.8, 128.5, 128.4, 128.3, 127.5, 126.1, 120.8, 52.4, 37.4; HRMS (ESI) m/z calcd for  $C_{16}H_{13}O_4^+$  (M+H)<sup>+</sup> 269.08084, found 269.08075.

#### N-(6-oxo-6,11-dihydrodibenzo[*b*,*e*]oxepin-8-yl)acetamide (65)



7.87 (s, 1H), 7.75 (d, J = 2.0 Hz, 1H), 7.26-7.19 (m, 4H), 7.12 (td,  $J_I = 6.8$  Hz,  $J_2 = 2.0$  Hz, 1H), 3.96 (s, 2H), 2.19 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  168.8, 166.1, 150.5, 138.2, 137.5, 132.7, 128.2, 128.13, 128.1, 126.0, 125.2, 123.4, 120.7, 36.8, 24.4; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>14</sub>NO<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 268.09682, found 268.09698.

# (2*aR*,5*aR*,5*bS*,16*bR*)-2a-Methyl-2,2a,5,5a,6,7,9,16b-octahydro-1H-benzo[*b*]cyclop enta[7,8]phenanthro[2,3-e]oxepine-3,15(4*H*,5*bH*)-dione (66)



Yield 70% (54.6 mg) for 10 h, white solid;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (s, 1H), 7.25-7.18 (m,

3H), 7.14-7.09 (m, 1H), 6.99 (s, 1H), 3.94 (dd,  $J_1 = 34.4$  Hz,  $J_2 = 13.6$  Hz, 2H), 2.97-2.84 (m, 2H), 2.53-2.43 (m, 2H), 2.23-1.95 (m, 5H), 1.66-1.37 (m, 6H), 0.87 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  220.5, 166.4, 150.8, 143.0, 139.9, 139.3, 132.9, 130.1, 128.1, 128.0, 127.7, 125.8, 125.2, 120.7, 50.3, 47.8, 43.9, 37.7, 37.0, 35.7, 31.3, 29.3, 26.0, 25.5, 21.5, 13.7; HRMS (ESI) m/z calcd for C<sub>26</sub>H<sub>27</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 387.19547, found 387.19522.

#### 8-Allyl-10-methoxydibenzo[*b*,*e*]oxepin-6(11*H*)-one (67)



6.85 (s, 1H), 5.94-5.84 (m, 1H), 5.11-5.07 (m, 2H), 4.05 (s, 2H), 3.87 (s, 3H), 3.35 (d, *J* = 6.4 Hz, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.3, 154.7, 151.2, 140.1, 136.3, 133.0, 129.28, 129.26, 128.4, 127.8, 125.6, 123.8, 120.4, 116.7, 115.2, 56.1, 39.9, 27.2; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>17</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 281.11722, found 281.11737.

## 7-Isopropyl-10-methyldibenzo[*b*,*e*]oxepin-6(11*H*)-one (68)



Yield 52% (27.6 mg) for 9 h, white solid;  $R_f = 0.45$  (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.24-7.13 (m, 5H), 7.06 (td,  $J_1 = 7.2$  Hz,  $J_2 = 1.2$  Hz, 1H), 3.90 (s,

2H), 3.40-3.29 (m, 1H), 2.42 (s, 3H), 1.20 (d, J = 7.2 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.2, 150.9, 147.7, 140.3, 133.1, 132.8, 130.1, 128.0, 127.7, 127.6, 125.2, 124.5, 119.6, 32.1, 29.9, 24.0, 19.4; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>19</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 267.13796, found 267.13785.

(S)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(6-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-8-yl)propanoate (69)



Yield 64% (57.3 mg) for 10 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77-7.74 (m, 1H), 7.71-7.68 (m, 2H), 7.31 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.20-7.06 (m, 3H), 5.10 (dd,  $J_1 = 10.4$  Hz,  $J_2 = 5.2$  Hz, 1H), 3.94-3.86 (m, 1H), 3.76 (s, 2H), 3.61-3.48 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 167.4, 165.6, 150.5, 141.2, 136.3, 134.2, 133.7, 133.2, 132.4, 131.4, 128.1, 128.0, 127.6, 125.7, 123.5, 120.6, 53.0, 52.7, 37.0, 34.0; HRMS (ESI) m/z calcd for C<sub>26</sub>H<sub>20</sub>NO<sub>6</sub><sup>+</sup> (M+H)<sup>+</sup> 442.12851, found 442.12909.

## *N*-(5-oxo-7,12-dihydro-5*H*-dibenzo[*c*,*f*]oxocin-3-yl)acetamide (70)



Hz,  $J_2 = 1.8$  Hz, 1H), 7.38 (d, J = 7.2 Hz, 1H), 7.34-7.31 (m, 2H), 7.22 (td,  $J_1 = 7.8$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.17 (d, J = 6.6 Hz, 1H), 5.13 (s, 2H), 4.01 (s, 2H), 2.05 (s, 3H); <sup>13</sup>C NMR (151 MHz, DMSO- $d_6$ )  $\delta$  172.1, 169.1, 139.1, 137.4, 134.4, 132.9, 131.1, 130.7, 129.5, 129.1, 128.9, 127.3, 122.8, 117.9, 71.3, 38.9, 24.5; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>16</sub>NO<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 282.11247, found 282.11264.

(3*aR*,3*bS*,15*bR*,17*aR*)-17a-Methyl-3,3a,4,5,7,12,15b,16,17,17a-decahydrobenzo[*c*] cyclopenta[7,8]phenanthro[2,3-f]oxocine-1,14(2*H*,3*bH*)-dione (71)



Yield 72% (58 mg), white solid;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (s, 1H), 7.31-7.27 (m,

2H), 7.19 (td,  $J_1 = 6.8$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 7.02 (s, 1H), 5.16 (s, 2H), 4.08 (s, 2H), 2.91-2.87 (m, 2H), 2.55-2.43 (m, 2H), 2.31-2.26 (m, 1H), 2.20-1.97 (m, 4H), 1.61-1.41 (m, 6H), 0.90 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  220.4, 173.0, 141.3, 139.5, 137.2, 133.9, 131.9, 130.7, 130.1, 129.8, 129.1, 128.3, 126.9, 125.0, 71.6, 50.4, 47.8, 44.0, 39.8, 37.9, 35.7, 31.4, 29.3, 26.2, 25.6, 21.5, 13.7; **HRMS (ESI)** m/z calcd for C<sub>27</sub>H<sub>29</sub>O<sub>3</sub><sup>+</sup> (M+H)<sup>+</sup> 401.21112, found 401.21170. (2*aS*,2*bR*,5*aR*,7*aR*)-5a-Methyl-2,2a,3,4,5a,6,7,7a,11,17-decahydro-[1,3]dioxolo[4',

5':4,5|benzo[1,2-c]cyclopenta[7,8]phenanthro[2,3-f]oxocine-5,9(1H,2bH)-dione

(72)



Yield 78% (69 mg), white solid;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 5 : 1); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (s, 1H), 7.00

(s, 1H), 6.77 (s, 1H), 6.55 (s, 1H), 5.95 (s, 2H), 5.06 (s, 2H), 3.98 (s, 2H), 2.92-2.88 (m, 2H), 2.55-2.43 (m, 2H), 2.31-2.26 (m, 1H), 2.20-197 (m, 4H), 1.66-1.41 (m, 6H), 0.91 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 220.5, 173.0, 147.8, 146.1, 141.4, 139.4, 132.2, 131.0, 130.5, 129.7, 127.2, 125.1, 110.7, 108.8, 101.3, 71.3, 50.3, 47.8, 44.0, 39.5, 37.8, 35.7, 31.4, 29.3, 26.1, 25.6, 21.5, 13.7; HRMS (ESI) m/z calcd for C<sub>28</sub>H<sub>29</sub>O<sub>5</sub><sup>+</sup> (M+H)<sup>+</sup> 445.20095, found 445.20068.

Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-(5-oxo-7,12-dihydro-5*H*-dibenzo[*c*,*f*]oxocin-3-yl)propanoate (73)



Yield 78% (71 mg), white solid;  $R_f = 0.30$ (petroleum ether : ethyl acetate = 5 : 1); <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (q, J = 3.0 Hz, 2H),

7.65 (q, *J* = 3.0 Hz, 2H), 7.33 (q, *J* = 1.8 Hz, 1H), 7.26-7.24 (m, 2H), 7.19 (d, *J* = 6.6 Hz, 1H), 7.14 (td, *J*<sub>1</sub> = 7.8 Hz, *J*<sub>2</sub> = 1.2 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 6.97 (d, *J* =

7.2 Hz, 1H), 5.09 (q, J = 5.4 Hz, 1H), 4.93-4.85 (m, 2H), 4.02-3.94 (m, 2H), 3.75 (s, 3H), 3.59 (dd,  $J_1 = 14.4$  Hz,  $J_2 = 5.4$  Hz, 1H), 3.51 (dd,  $J_1 = 14.4$  Hz,  $J_2 = 10.8$  Hz, 1H), <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  172.0, 168.8, 167.2, 136.7, 136.5, 134.2, 133.7, 132.8, 132.6, 132.5, 131.3, 130.4, 130.1, 129.1, 128.3, 128.1, 126.9, 123.4, 71.2, 52.90, 52.88, 39.6, 34.1; HRMS (ESI) m/z calcd for C<sub>27</sub>H<sub>22</sub>NO<sub>6</sub><sup>+</sup> (M+H)<sup>+</sup> 456.14416, found 456.14447.

#### Methyl 5-oxo-7,12-dihydro-5*H*-dibenzo[*c*,*f*]oxocine-3-carboxylate (74)



Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.35-7.30 (m, 2H), 7.23 (td,  $J_1 = 7.2$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 5.14 (s, 2H), 4.18 (s, 2H), 3.93 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.5, 165.7, 139.2, 135.9, 133.6, 133.1, 132.6, 130.4, 130.3, 129.6, 129.3, 129.1, 128.5, 127.3, 71.5, 52.4, 40.2; HRMS (ESI) m/z calcd for  $C_{17}H_{15}O_4^+$  (M+H)<sup>+</sup> 283.09649, found 283.09698.

(3*aR*,5*aR*,11*aS*,11*bR*,14*aR*,16*aR*,21*aS*,21*bR*)-3a,14a-Dimethyl-1,3a,4,5,5a,11,11a,1 2,13,14a,15,16,16a,18,20,21,21a,21b-octadecahydrocyclopenta[7,8]phenanthro[2, 3-*b*]cyclopenta[7,8]phenanthro[2,3-*e*]oxepine-3,7,14(2*H*,10*H*,11b*H*)-trione (75)



Yield 74% (83.6 mg) for 21 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, **CDCl<sub>3</sub>)**  $\delta$  7.80 (s, 1H), 7.15 (s, 1H), 6.98 (s, 1H), 6.95 (s, 1H), 3.89 (dd,  $J_1$  = 38.4 Hz,  $J_2$  = 11.6 Hz, 2H), 2.92-2.82 (m, 4H), 2.53-2.41 (m, 4H), 2.24-1.94 (m, 10H), 1.64-1.36 (m, 12H), 0.89 (s, 3H), 0.87 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  220.7, 220.5, 166.7, 148.6, 142.8, 140.0, 139.1, 137.2, 136.5, 130.0, 129.9, 127.6, 125.3, 124.9, 120.6, 50.22, 50.19, 47.8, 47.7, 43.9, 43.8, 37.9, 37.7, 36.9, 35.73, 35.69, 31.4, 31.3, 29.3, 28.9, 26.2, 26.0, 25.8, 25.5, 21.4, 13.69, 13.65; HRMS (ESI) m/z calcd for C<sub>38</sub>H<sub>43</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 563.31559, found 563.31580.

(2*aR*,5*aR*,5*bS*,16*bR*)-11-Allyl-13-methoxy-2a-methyl-2,2a,5,5a,6,7,9,16b-octahydr o-1H-benzo[b]cyclopenta[7,8]phenanthro[2,3-*e*]oxepine-3,15(4H,5*bH*)-dione (76)



Yield 43% (38.8 mg) for 8 h, white solid;  $R_f$ = 0.50 (petroleum ether : ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (s,

1H), 6.97 (s, 1H), 6.64 (s, 1H), 6.62 (s, 1H), 5.96-5.86 (m, 1H), 5.12- 5.07 (m, 2H), 3.93 (s, 2H), 3.84 (s, 3H), 3.31 (d, J = 6.4 Hz, 2H), 2.97-2.84 (m, 2H), 2.53-2.42 (m, 2H), 2.23-1.94 (m, 5H), 1.66-1.39 (m, 6H), 0.87 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  220.5, 166.2, 150.6, 142.8, 140.1, 139.2, 138.2, 138.0, 136.7, 134.4, 130.2, 127.7, 125.2, 119.1, 116.3, 111.2, 56.0, 50.3, 47.8, 43.9, 39.9, 37.8, 37.0, 35.7, 31.3, 29.3, 26.0, 25.5, 21.5, 13.7; HRMS (ESI) m/z calcd for C<sub>30</sub>H<sub>33</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 457.23734, found 457.23764. (*S*)-Methyl 2-(1,3-dioxoisoindolin-2-yl)-3-((2*aR*,5*aR*,5*bS*,16*bR*)-2a-methyl-3,15dioxo-2,2a,3,4,5,5a,5b,6,7,9,15,16b-dodecahydro-1H-benzo[*b*]cyclopenta[7,8]phen anthro[2,3-*e*]oxepin-11-yl)propanoate (77)



Yield 64% (79.2 mg) for 5 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz,

**CDCl<sub>3</sub>)**  $\delta$  7.80-7.70 (m, 5H), 7.08-6.97 (m, 3H), 6.91 (d, J = 6.8 Hz, 1H), 5.15-5.10 (m, 1H), 3.95-3.77 (m, 5H), 3.58-3.45 (m, 2H), 2.97-2.92 (m, 2H), 2.53-2.37 (m, 2H), 2.22-1.94 (m, 5H), 1.66-1.36 (m, 6H), 0.87 (d, J = 2.4 Hz, 3H); <sup>13</sup>**C NMR (101 MHz, CDCl<sub>3</sub>)**  $\delta$  220.4, 169.1, 167.4, 166.2, 149.6, 142.9, 139.6, 139.2, 134.3, 134.2, 132.92, 132.90, 131.4, 129.98, 129.97, 128.5, 128.4, 128.3, 128.2, 127.62, 127.58, 125.1, 123.5, 120.82, 120.78, 52.9, 52.82, 52.76, 50.2, 47.8, 43.8, 37.7, 36.9, 35.7, 33.8, 31.3, 29.3, 26.0, 25.4, 21.4, 13.7; **HRMS (ESI)** m/z calcd for C<sub>38</sub>H<sub>36</sub>NO<sub>7</sub><sup>+</sup> (M+H)<sup>+</sup> 618.24863, found 618.24878.

(3*aR*,5*aR*,16*aS*,16*bR*)-10-Allyl-8-methoxy-3a-methyl-3a,4,5,5a,15,16,16a,16b-octa hydro-1H-benzo[*e*]cyclopenta[7,8]phenanthro[2,3-*b*]oxepine-3,12(2*H*,7*H*)-dione (78)





7.16 (s, 1H), 6.93 (s, 1H), 6.84 (s, 1H), 5.93-5.83 (m, 1H), 5.11-5.06 (m, 2H),

4.04-3.95 (m, 2H), 3.87 (s, 3H), 3.34 (d, J = 6.8 Hz, 2H), 2.84 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 4.0$  Hz, 2H), 2.54-2.43 (m, 2H), 2.22-1.96 (m, 5H), 1.67-1.48 (m, 6H), 0.90 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  220.8, 166.7, 154.6, 149.0, 140.0, 137.0, 136.34, 136.31, 130.1, 129.4, 125.3, 123.8, 120.3, 116.6, 115.2, 56.1, 50.3, 47.9, 44.0, 39.9, 37.9, 35.8, 31.5, 29.0, 27.1, 26.8, 26.2, 25.8, 21.5, 13.8; HRMS (ESI) m/z calcd for C<sub>30</sub>H<sub>33</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 457.23734, found 457.23749.

## 2,8-Diallyl-4,10-dimethoxydibenzo[b,e]oxepin-6(11H)-one (79)



Yield 53% (37.5 mg) for 13 h, white solid;  $R_f = 0.25$  (petroleum ether : ethyl acetate = 20 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (s, 1H), 6.84 (s,

1H), 6.67 (s, 1H), 6.61 (s, 1H), 5.96-5.83 (m, 2H), 5.12-5.06 (m, 4H), 4.00 (s, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.32 (dd,  $J_I = 11.4$  Hz,  $J_2 = 6.8$  Hz, 4H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 154.7, 150.3, 140.0, 138.4, 138.0, 136.8, 136.3, 134.4, 129.5, 129.3, 124.0, 119.6, 116.6, 116.2, 115.2, 111.0, 56.1, 55.9, 40.0, 39.9, 27.1; HRMS (ESI) m/z calcd for C<sub>22</sub>H<sub>23</sub>O<sub>4</sub><sup>+</sup> (M+H)<sup>+</sup> 351.15909, found 351.15933.

(*S*)-Methyl 3-(8-allyl-10-methoxy-6-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoate (80)





4H), 7.22 (s, 1H), 7.09 (s, 1H), 7.01-6.97 (m, 2H), 6.80 (s, 1H), 5.93-5.83 (m, 1H),

5.15-5.06 (m, 3H), 3.91 (s, 2H), 3.84 (s, 3H), 3.77 (s, 3H), 3.57-3.45 (m, 2H), 3.33 (d, J = 6.8 Hz, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.1, 167.4, 166.2, 154.6, 150.0, 140.0, 136.2, 134.2, 134.1, 133.1, 131.4, 129.1, 129.0, 128.8, 128.1, 123.7, 123.4, 120.4, 116.6, 115.2, 56.0, 52.9, 39.9, 33.8, 27.0; HRMS (ESI) m/z calcd for  $C_{30}H_{26}NO_7^+$  (M+H)<sup>+</sup> 512.17038, found 512.17053.

(*S*)-methyl 2-(1,3-dioxoisoindolin-2-yl)-3-((3*aR*,3*bS*,14*bR*,16*aR*)-16a-methyl-1,8dioxo-2,3,3a,3b,4,5,8,13,14b,15,16,16a-dodecahydro-1H-benzo[*e*]cyclopenta[7,8]p henanthro[2,3-*b*]oxepin-10-yl)propanoate (81)



Yield 31% (38.2 mg) for 28 h, white solid;  $R_f = 0.20$  (petroleum ether : ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400

**MHz, CDCl<sub>3</sub>)**  $\delta$  7.79-7.68 (m, 5H), 7.31-7.27 (m, 1H), 7.12-7.10 (m, 2H), 6.90 (d, J = 3.6 Hz, 1H), 5.10 (dd,  $J_1 = 10.4$  Hz,  $J_2 = 5.2$  Hz, 1H), 3.85 (s, 2H), 3.76 (s, 3H), 3.61-3.49 (m, 2H), 2.83 (d, J = 4.8 Hz, 2H), 2.53-2.34 (m, 2H), 2.21-1.94 (m, 5H), 1.66-1.33 (m, 6H), 0.88 (s, 3H); <sup>13</sup>C **NMR (101 MHz, CDCl<sub>3</sub>)**  $\delta$  220.7, 169.0, 167.4, 165.9, 148.4, 141.3, 137.2, 136.6, 136.2, 134.2, 133.6, 133.2, 131.5, 129.5, 128.3, 127.6, 125.0, 123.6, 120.58, 120.56, 53.0, 52.8, 50.3, 47.8, 43.9, 37.9, 37.0, 35.8, 33.9, 31.4, 28.9, 26.2, 25.8, 21.5, 13.7; **HRMS (ESI)** m/z calcd for C<sub>38</sub>H<sub>36</sub>NO<sub>7</sub><sup>+</sup> (M+H)<sup>+</sup> 618.24863, found 618.24884.

(*S*)-Methyl 3-(2-allyl-4-methoxy-6-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-8-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoate (82)



Yield 47% (48.1 mg) for 11 h, white solid;  $R_f = 0.24$  (petroleum ether : ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 

7.79-7.69 (m, 5H), 7.30 (dd,  $J_I = 8.0$  Hz,  $J_I = 1.6$  Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 6.60 (d, J = 1.2 Hz, 2H), 5.94-5.84 (m, 1H), 5.12-5.06 (m, 3H), 3.84 (s, 2H), 3.82 (s, 3H), 3.76 (s, 3H), 3.61-3.48 (m, 2H), 3.29 (d, J = 6.8 Hz, 2H).; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 167.4, 165.4, 150.5, 141.4, 138.2, 137.8, 136.7, 136.3, 134.2, 133.9, 133.5, 133.4, 131.5, 128.2, 127.7, 123.6, 119.2, 116.3, 111.2, 55.9, 53.0, 52.8, 39.9, 37.0, 34.0; HRMS (ESI) m/z calcd for C<sub>30</sub>H<sub>26</sub>NO<sub>7</sub><sup>+</sup> (M+H)<sup>+</sup> 512.17038, found 512.17078.

## **Deuterium-labeling experiments**

## In the presence of D<sub>2</sub>O:



An oven-dried reaction tube containing a stirring bar was charged with  $[(\eta-C_3H_6)PdCl]_2$  (2.5 mol%), Xantphos (7.5 mol%), K<sub>2</sub>CO<sub>3</sub> (3.0 equiv.) and **2a** (0.4 mmol, 116 mg). After degassed and filled with dry argon repeated three times, dioxane (2.0 mL), **1c** (0.2 mmol, 51 mg) and D<sub>2</sub>O (10.0 equiv.) were added via syringe. The mixture was stirred at 80 °C for 5 h. The crude mixture was cooled to room temperature. EtOAc was added to the mixture. The reaction mixture was filtered through a short pad of celite. After removing the solvent under reduced pressure, the residual was purified by silica gel column chromatography to obtain the seven-membered lactone (**3**).

## 8.2 [D]-1c instead of 1c:



Following the general procedure for the synthesis of seven-membered lactone, the reaction was generate the deuterated product (**[D]-3**) in 75% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (dd,  $J_1$  = 7.6 Hz,  $J_2$  = 0.8 Hz, 1H), 7.46 (td,  $J_1$  = 7.6 Hz,  $J_2$  = 1.2

Hz, 1H), 7.32 (td, *J*<sub>1</sub> = 7.6 Hz, *J*<sub>2</sub> = 0.8 Hz, 1H), 7.27-7.19 (m, 4H), 7.15-7.10 (m, 1H), 3.99 (s, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.1, 150.6, 142.5, 133.4, 132.7, 132.6, 128.13, 128.10, 128.0, 127.4, 127.1, 125.8, 120.7, 37.4, 37.1 (t, *J* = 20.0 Hz).

## Kinetic isotope effect experiment:



a) One-pot experiment

One-pot experiment was conducted using 0.2 mmol 1c, 0.2 mmol [D]-1c, 0.2 mmol 2a as the substrates. Following the general procedure for the synthesis of seven-membered lactone, the reaction was stopped after 7 h. The crude mixture was cooled to room temperature. EtOAc was added to the mixture. The reaction mixture was filtered through a short pad of celite. After removing the solvent under reduced pressure, the residual was purified by silica gel column chromatography to obtain the seven-membered lactone (3/[D]-3) compound. The KIE value ( $K_H/K_D = 0.96$ ) was determined on the basis of <sup>1</sup>H NMR analysis.

## b) Parallel experiments



Parallel experiments were conducted using 1c and [D]-1c as substrates. Following the general procedure for the synthesis of seven-membered lactone, the two reactions were stopped after 45 min. The crude mixture was cooled to room temperature. EtOAc was added to the mixture. The mixture was filtered through Celite. The solvents were evaporated and the yields of the products (3/[D]-3) were estimated by GC using *n*-decane as the internal standard. KIE = 8.5/8.8 = 0.97 was obtained.

# **Representative synthetic application**



To a mixture of LiAlH<sub>4</sub> (1.01 equiv) in 3 mL of THF at 0 °C, a solution of **3** (161 mg, 0.76 mmol) in 7 mL of THF was added slowly. The reaction mixture was stirred for 4 h and carefully quenched with 2 mL of aq. NH<sub>4</sub>Cl solution. 15 mL of EtOAc and 3 mL of 10% aq. NaOH solution were added sequentially and stirred for another 15

minutes at room temperature. The resulting mixture was then filtered. The filtrate was extracted with EtOAc (3×15 mL). The combined EtOAc layer was washed with 5 mL of 10% aq. HCl, brine and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under reduced pressure. The residues were purified by column chromatography on silica gel to get product (**83**) (162 mg, 99%) as a white solid.  $R_f = 0.5$  (petroleum ether : ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  7.11 (s, 1H), 7.00-6.79 (m, 1H), 6.82-6.80 (m, 2H), 6.73-6.65 (m, 3H), 6.44-6.40 (m, 2H), 4.29 (d, *J* = 4.8 Hz, 2H), 3.60 (s, 2H), 3.20 (t, *J* = 4.8 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>CN)  $\delta$  155.3, 139.5, 139.3, 131.4, 130.2, 128.6, 128.20, 128.15, 127.4, 126.8, 120.4, 115.9, 62.8, 32.2; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>15</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 215.10666, found 215.10617.

Compound **85** was prepared from **83** using the literature procedure.<sup>8</sup> Diol **84** (128.4 mg, 0.60 mmol), triphenylphosphine (165.2 mg, 0.63 mmol) in toluene (6 mL) solution of diethyl diazene-1,2-dicarboxylate (95  $\mu$ L, 0.60 mmol) was added dropwise at room temperature, the reaction mixture was stirred under argon 6 hours at 70 °C. The solvent of the reaction mixture was evaporated, and the residue was purified by column chromatography to give compound **85** (116.8 mg, 98%) as light yellow liquid; R<sub>f</sub> = 0.7 (petroleum ether : ethyl acetate = 50 : 1); <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  7.06-6.97 (m, 1H), 6.87 (d, *J* = 7.2 Hz, 1H), 6.82 (t, *J* = 7.2 Hz, 1H), 6.58 (t, *J* = 7.2 Hz, 1H), 6.48 (d, *J* = 8.4 Hz, 1H), 5.04 (s, 1H), 3.98 (s, 1H); <sup>13</sup>C NMR (101 MHz, CD<sub>3</sub>CN)  $\delta$  157.3, 141.3, 136.6, 131.6, 129.4, 128.8, 128.7, 128.4, 127.7, 126.1, 121.9, 120.0, 70.6, 38.6.

To a mixture of LiAlH<sub>4</sub> (2.5 equiv) in 3 mL of THF at 0 °C, a solution of **58** (150 mg, 0.66 mmol) in 7 mL of THF was added slowly. The reaction mixture was stirred for 3 h and carefully quenched with 2 mL of aq. NH<sub>4</sub>Cl solution. 15 mL of EtOAc and 3 mL of 10% ag. NaOH solution were added sequentially and stirred for another 15 minutes at room temperature. The resulting mixture was then filtered. The filtrate was extracted with EtOAc (3×15 mL). The combined EtOAc layer was washed with 5 mL of 10% aq. HCl, brine and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under reduced pressure and the residual solid was washed and filtered again using DCM. The pure compound 84 (150 mg, 99%) was obtained as a white solid.  $R_f = 0.3$ (petroleum ether : ethyl acetate = 1 : 1); <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  7.43 (d, J = 7.2 Hz, 2H), 7.21 (td,  $J_1$  = 7.2 Hz,  $J_2$  = 0.6 Hz, 2H), 7.14 (td,  $J_1$  = 7.2 Hz,  $J_2$  = 0.6 Hz, 2H), 6.84 (d, J = 7.2 Hz, 2H), 5.13 (t, J = 5.4 Hz, 2H), 4.47 (d, J = 5.4 Hz, 4H), 3.98 (s, 2H); <sup>13</sup>C NMR (151 MHz, DMSO-d<sub>6</sub>) δ 140.7, 137.7, 129.3, 127.4, 127.2, 126.5, 61.2, 34.0; **HRMS (ESI)** m/z calcd for  $C_{15}H_{17}O_2^+$  (M+H)<sup>+</sup> 229.12231, found 229.12238.

Compound **S84** was prepared from **84** using an oxidation method described in literature.<sup>9</sup> To a stirred mixture of **84** (160 mg, 0.7 mmol) in dichloromethane (10 mL) at room temperature was added sequentially *tert*-butyl alcohol (10 equiv) and Desse-Martin periodinane (3 equiv). After stirring for 5 h, saturated aqueous sodium hydrogen carbonate (5 mL) and saturated aqueous sodium thiosulfate (5 mL) were added to the mixture, which was extracted with dichloromethane ( $2 \times 20$  mL). The organic layer was washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was

evaporated under reduced pressure and the residue was purified by silica gel column to get **S84** (140 mg, 89% yield) as colourless liquid;  $R_f = 0.3$  (petroleum ether : ethyl acetate = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.16 (s, 2H), 7.84 (d, J = 7.2 Hz, 2H), 7.46-7.37 (m, 4H), 7.01 (d, J = 7.6 Hz, 2H), 4.88 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.5, 141.9, 133.7, 133.6, 132.8, 130.8, 126.8, 34.6; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>13</sub>O<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> 225.09101, found 225.09125.

Compound **86** was prepared from **S84** using the literature procedure.<sup>10</sup> In a two-neck round-bottom flask containing **S84** (60 mg, 0.27 mmol) and zinc dust (6.0 equiv) in dry THF (10 mL) was added pyridine (12.0 equiv). The stirred mixture was cooled to 0 °C and titanium(IV) chloride (3.0 equiv) was added dropwise. The mixture was then heated at 80 °C for 6 h before being cooled to room temperature and quenched with saturated aqueous NaHCO<sub>3</sub> solution. It was then filtered through a pad of celite. The filtrate was extracted with DCM (2×20 mL), washed brine and dried over Na<sub>2</sub>SO<sub>4</sub>. Evaporation of the solvent under reduced pressure and purification of the crude product by column chromatography afforded **86** (43 mg, 83%) as white solid;  $R_f = 0.6$  (petroleum ether : ethyl acetate = 20 : 1); <sup>1</sup>H NMR (400 MHz, CDCI<sub>3</sub>)  $\delta$  7.35-7.29 (m, 6H), 7.22 (td,  $J_I = 7.2$  Hz,  $J_2 = 1.6$  Hz, 2H), 7.05 (s, 2H); 3.76 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCI<sub>3</sub>)  $\delta$  138.1, 135.1, 131.5, 128.4, 128.1, 127.8, 126.0, 41.6; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>13</sub><sup>+</sup> (M+H)<sup>+</sup> 193.10118, found 193.10083

## **Computational details**

The geometries were optimized by hybrid functional B3LYP<sup>[11-12]</sup> with the LANL2DZ<sup>[13-15]</sup> effective core potential for Pd and Br, and 6-31G\* basis set for the rest atoms. The same level calculation of vibrational frequency was carried out to check the stationary point or transition state as minima or saddle point, and to obtain the thermodynamic corrections. Single point energy was performed by meta-GGA hybrid functional M06<sup>[16]</sup> with def2-TZVP<sup>[17]</sup> basis set for all atoms. Solvation energy was obtained by SMD<sup>[18]</sup> continuum solvation model in 1,4-Dioxane solution. The changes in Gibbs free energy with single point and solvation energy are reported in the content. All the calculations were performed in Gaussian09 package.<sup>[19]</sup>

## Pathway for ligand dissociation

Following one reviewer's suggestion, the possibility of the pathway through attack of **2a'** to **Int2** was further explored. However, all attempts to locate an intermediate with one Pd-P opened with **2a'** failed, presumably because the steric hindrance of ligands prevents the binding of **2a'** to the metal center.

In order to compare with the favorable pathway already shown in the manuscript, we further explored another two possible reaction pathways. As can be seen from the following Fig. SII-1, the direct dissociation of Br<sup>-</sup> anion from **Int2** to **Int3'** is energetically unfavorable as this process requires the energy of 48.9 kcal/mol. Another process involves the dissociation of one arm of the bidentated ligand to form **Int3** without counter anion exchange, followed by the reaction of **Int3** with **2a'** leading to dediazonation. Such a process is energetically unfavorable as it needs to

overcome a large barrier of 38.2 kcal/mol relative to **Int2**. All in all, these two pathways are not favored compared to the one shown in Figure 3 in the manuscript.



Supplementary Figure 3. Reaction Energy Profiles of Ligand Dissociation Calculated at M06/def2-TZVP//B3LYP/6-31G(d)(LANL2DZ) Level.

# Crystal data and structure refinement for 66



Supplementary Figure 4. X-ray structure of 66. The thermal ellipsoid was drawn at

the 50% probability level.

| Empirical formula               | $C_{26}H_{26}O_3$                  |
|---------------------------------|------------------------------------|
| Formula weight                  | 386.47                             |
| Temperature                     | 293(2) K                           |
| Wavelength                      | 0.71073 A                          |
| Crystal system, space group     | Orthorhombic, P212121              |
| Unit cell dimensions            | a = 9.841(2)  Å alpha = 90 deg.    |
|                                 | b = 13.449(3) Å beta = 90 deg.     |
|                                 | c = 15.601(3)  Å gamma = 90 deg.   |
| Volume                          | 2064.8(7) Å <sup>3</sup>           |
| Z, Calculated density           | 4, 1.243 Mg/m <sup>3</sup>         |
| Absorption coefficient          | $0.080 \text{ mm}^{-1}$            |
| F(000)                          | 824                                |
| Crystal size                    | 0.90 x 0.45 x 0.30 mm              |
| Theta range for data collection | 2.88 to 27.48 deg.                 |
| Limiting indices                | -12<=h<=12, -17<=k<=16, -20<=l<=20 |

| Reflections collected / unique    | 16011 / 4666 [R(int) = 0.0219]               |
|-----------------------------------|----------------------------------------------|
| Completeness to theta $= 27.48$   | 98.7 %                                       |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup>  |
| Data / restraints / parameters    | 4666 / 0 / 264                               |
| Goodness-of-fit on F <sup>2</sup> | 1.077                                        |
| Final R indices [I>2sigma(I)]     | $R_1 = 0.0370, wR_2 = 0.1000$                |
| R indices (all data)              | $R_1 = 0.0383, wR_2 = 0.1012$                |
| Absolute structure parameter      | 1.4(11)                                      |
| Largest diff. peak and hole       | $0.160 \text{ and } -0.157 \text{ e.A}^{-3}$ |




Supplementary Figure 5 <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra for compound S1t.





Supplementary Figure 6 <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra for compound S1w.





S1x





S1y



Supplementary Figure 9<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S20



Supplementary Figure 10 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S2p



Supplementary Figure 11 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S2m



Supplementary Figure 11 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S2n



Supplementary Figure 12 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S2u



Supplementary Figure 13  $^1\!H$  NMR and  $^{13}\!C$  NMR spectra for compound S2v



Supplementary Figure 14 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S2w



Supplementary Figure 15 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S2x



Supplementary Figure 16 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S2y



Supplementary Figure 17 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S2z





Supplementary Figure 19<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 4



Supplementary Figure 20 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 5







## compound 6



Supplementary Figure 22 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 7



Supplementary Figure 23 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 8



Supplementary Figure 24 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 9





Supplementary Figure 25 <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra for compound 10



Supplementary Figure 26 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 11



Supplementary Figure 27 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 12



Supplementary Figure 28 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 13



Supplementary Figure 29 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 14



Supplementary Figure 30 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 15





Supplementary Figure 31 <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra for compound 16



Supplementary Figure 32 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 17


yyh-34-41C





Supplementary Figure 34 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 19



Supplementary Figure 35 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 20



Supplementary Figure 36 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 21







Supplementary Figure 38 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 23



Supplementary Figure 39 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 24



Supplementary Figure 40 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 25









Supplementary Figure 42 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 27



Supplementary Figure 43 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 28



Supplementary Figure 44 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 29



Supplementary Figure 45 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 30



Supplementary Figure 46 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 31



Supplementary Figure 47 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 32



Supplementary Figure 48 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 33



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1(ppm)

Supplementary Figure 49 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 34



Supplementary Figure 50 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 35



Supplementary Figure 51 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 36



Supplementary Figure 52 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 37



Supplementary Figure 53 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 38



Supplementary Figure 54 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 39



Supplementary Figure 55 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 40



Supplementary Figure 56 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 41







Supplementary Figure 58 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 43



Supplementary Figure 59 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 44



Supplementary Figure 60 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 45



Supplementary Figure 61 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 46



Supplementary Figure 62 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 47



Supplementary Figure 63 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 48



Supplementary Figure 64 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 49



Supplementary Figure 65 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 50


Supplementary Figure 66 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 51



Supplementary Figure 67 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 52







Supplementary Figure 69 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 54





## compound 55



Supplementary Figure 71 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 56



Supplementary Figure 72 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 57



Supplementary Figure 73 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 58





## compound 59



Supplementary Figure 75 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 60



Supplementary Figure 76 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 61



Supplementary Figure 77 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 62



Supplementary Figure 78 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 63



Supplementary Figure 79 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 64



Supplementary Figure 80 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 65



Supplementary Figure 81 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 66





Supplementary Figure 83 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 68



Supplementary Figure 84 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 69



Supplementary Figure 85 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 70



Supplementary Figure 86 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 71



Supplementary Figure 87 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 72



Supplementary Figure 88 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 73



Supplementary Figure 89 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 74





Supplementary Figure 90 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 75





Supplementary Figure 91 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 76





Supplementary Figure 92 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 77





Supplementary Figure 93 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 78



Supplementary Figure 94 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 79



Supplementary Figure 95 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 80





Supplementary Figure 96 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 81



Supplementary Figure 97 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 82



Supplementary Figure 98 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound [D]-3



Supplementary Figure 99 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 83


Supplementary Figure 100 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 84



Supplementary Figure 101 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound S84



Supplementary Figure 102 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 85



Supplementary Figure 102 <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra for compound 86

## **Supplementary References**

1. Ma, C., Lo, A., Abdolmaleki, A. & MacLachlan, M. J. Synthesis and metalation of novel fluorescent conjugated macrocycles. *Org. Lett.* **6**, 3841-3844 (2004).

2. Casiraghi, G., Casnati, G., Puglia, G., Sartori, G., Terenghi, G. Selective reactions between phenols and formaldehyde. A novel route to salicylaldehydes. *J. Chem. Soc., Perkin Trans. 1*, 1862-1865 (1980).

Hansen, T. V.; Skattebøl, L. Ortho-formylation of phenols; preparation of
3-bromosalicylalehyde. Org. Synth. 82, 64-68 (2005).

4. Hofsløkken, N. U., Skattebøl, L. Convenient method for the ortho-Formylation of phenols. *Acta Chem. Scand.* **53**, 258-262 (1999).

5. Sun, P., Gao, S., Yang, C., Guo, S., Lin, A., Yao, H. Controllable Rh(III)-catalyzed annulation between salicylaldehydes and diazo compounds: divergent synthesis of chromones and benzofurans. *Org. Lett.* **18**, 6464-6467 (2016).

6. Mori, K., Ichikawa, Y., Kobayashi, M., Shibata, Y., Yamanaka, M., Akiyama, T. Enantioselective synthesis of multisubstituted biaryl skeleton by chiral phosphoric acid catalyzed desymmetrization/kinetic resolution sequence. *J. Am. Chem. Soc.* **135**, 3964-3970 (2013).

 Xia, Y., Xia, Y., Zhang, Y., Wang, J. Palladium-catalyzed coupling of *N*-tosylhydrazones and β-bromostyrene derivatives: new approach to 2*H*-chromenes.
*Org. Biomol. Chem.* 12, 9333-9336 (2014).

Sayama, M., Inoue, A., Nakamura, S., Jung, S., Ikubo, M., Otani, Y., Uwamizu,
A., Kishi, T., Makide, K., Aoki, J., Hirokawa, T., Ohwada, T. Probing the

hydrophobic binding pocket of G-protein-coupled lysophosphatidylserine receptor GPR34/LPS<sub>1</sub> by docking-aided structure-activity analysis. *J. Med. Chem.* **60**, 6384-6399 (2017).

9. Caldwell, C. G., Rupprecht, K. M., Bondy, S. S. & Davis, A. A. Synthesis of the lipophilic side chain of the cyclic hexadepsipeptide antibiotic L-156,602. *J. Org. Chem.* **55**, 2325-2332 (1990).

10. Dinh, T. N., Chen, A. & Chai, C. L. L. A pattern recognition approach to 14-epi-hydrophenanthrene core of the morphine alkaloids based on shikimic acid *Tetrahedron*, **67**, 3363-3368 (2011).

11. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.

12. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785-789.

13. Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. *J. Chem. Phys.* **1985**, *82*, 270-283.

14. Wadt, W. R.; Hay, P. J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. *J. Chem. Phys.* **1985**, *82*, 284-298.

15. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states,

and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

16. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, *113*, 6378-6396.

M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; G. A. Petersson; H. Nakatsuji; X. Li; M. Caricato; A. Marenich; J. Bloino; B. G. Janesko; R. Gomperts; B. Mennucci; H. P. Hratchian; J. V. Ortiz; A. F. Izmaylov; J. L. Sonnenberg; D. Williams-Young; F. Ding; F. Lipparini; F. Egidi; J. Goings; B. Peng; A. Petrone; T. Henderson; D. Ranasinghe; V. G. Zakrzewski; J. Gao; N. Rega; G. Zheng; W. Liang; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; K. Throssell; J. A. Montgomery; Jr., J. E. P.; F. Ogliaro; M. Bearpark; J. J. Heyd; E. Brothers; K. N. Kudin; V. N. Staroverov; T. Keith; R. Kobayashi; J. Normand; K. Raghavachari; A. Rendell; J. C. Burant; S. S. Iyengar; J. Tomasi; M. Cossi; J. M. Millam; M. Klene; C. Adamo; R. Cammi; J. W. Ochterski; R. L. Martin; K. Morokuma; O. Farkas; J. B. Foresman; Fox, D. J. *Gaussian 09*, Revision E.01; Gaussian, Inc., Wallingford CT, 2016.