
Tutorial for “A roadmap for the computation of persistent

homology”

1 Introduction

In this tutorial, we give detailed guidelines for the computation of persistent homology and for several of
the functionalities that are implemented by the libraries in Table 2 in the main manuscript. We first give
some advice on how to install the various libraries, and we then give guidelines for how to compute PH for
every step of the pipeline in Fig. 3 of the main paper. We explain how to compute PH for networks with the
weight rank clique filtration (WRCF); for point clouds with the VR, alpha, Čech, and witness complexes;
and for image data sets with cubical complexes. We then give guidelines for visualizing the outputs of
the computations and for computing the bottleneck and Wasserstein distances with Dionysus and Hera.
In addition to the bottleneck and Wasserstein distances, there are also other tools (such as persistence
landscapes and confidence sets) that are useful for statistical assessment of barcodes, but we do not discuss
them here, as there are already comprehensive tutorials [4,5] for the packages that implement these methods.
All MATLAB scripts written for this tutorial are available at https://github.com/n-otter/PH-roadmap/
tree/master/matlab. In Fig. 1, we give instructions for how to navigate this tutorial.

Many tears and much sweat and blood were spent learning about the different libraries, writing this
tutorial, and the scripts. If you find this tutorial helpful, please acknowledge it.
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Figure 1: Schematic for how to navigate the tutorial.
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2 Installation

In this section, we give guidelines on how to get and/or install the software packages.

2.1 Dionysus

The code for Dionysus is available at http://www.mrzv.org/software/dionysus/get-build-install.

html, where one can also find information on dependencies and how to build the library.
The library is written in C++, but it also supports python bindings (i.e., there is a python interface

to some of the functionalities that are implemented in the library). Depending on the machine on which
one is building Dionysus, the python bindings can create some issues. Additionally, from the perspec-
tive of performance, it is better to directly use the C++ code. If one wishes to build the library with-
out the python bindings, one needs to delete the bindings directory and also to delete the (last) line
add_subdirectory (bindings) in the file CMakeLists.txt.

If one seeks to compute the bottleneck or Wasserstein distances with the library (see Section 7), then
before building the library, one needs to amend a mistake in the bottleneck-distance.cpp script as follows:
in the subdirectory examples, one finds the file bottleneck-distance.cpp. One needs to uncomment the
following line (which occurs towards the end of the file):

std::cout << "Distance: " << bottleneck_distance(dgm1, dgm2) << std::endl;

Now one can build the library as follows (from the directory in which the CMakeLists.txt file is):

$ mkdir build

$ cd build

$ cmake ..

$ make

2.2 DIPHA

The DIPHA library is available at https://github.com/DIPHA/dipha. One can build the library as follows
(from the directory in which the CMakeLists.txt file is):

$ mkdir build

$ cd build

$ cmake ..

$ make

2.3 GUDHI

The GUDHI library is available at https://gforge.inria.fr/frs/?group_id=3865. Information about
dependencies and how to build the library is available at http://gudhi.gforge.inria.fr/doc/latest/

installation.html. One can build the library in a similar way as explained for DIPHA.
We note that a python interface was released with the most recent version (at the time of this writing)

of the library GUDHI; in this tutorial, we give instructions on how to use the C++ implementation, and
we point readers who are familiar with python to the documentation available at http://gudhi.gforge.

inria.fr/python/latest/.

2.4 JavaPlex

The JavaPlex library does not require installation or to be built, and all implementations that we listed
in Table 2 in the main text can be found in the directory matlab-examples_x.y.z (where x.y.z stands
for the version number). This directory, and the accompanying tutorial, can be downloaded at https:

//github.com/appliedtopology/javaplex/releases/. All of the scripts in matlab-examples_x.y.z are
written in MATLAB.
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2.5 Hera

The Hera library is available at https://bitbucket.org/grey_narn/hera. The root folder includes two
subfolders: geom_bottleneck contains the source code for computing bottleneck distance, and geom_matching

contains the source code for computing Wasserstein distance.
One can build the library by running the following commands in each of the subfolders geom_bottleneck/

and geom_matching/wasserstein:

$ mkdir build

$ cd build

$ cmake ..

$ make

2.6 jHoles

Ideally, the jHoles library should be available for download at http://cuda.unicam.it/jHoles. However,
this website is often down, so the best way to obtain the library is to contact Matteo Rucco, who is the
corresponding author of the companion paper [3]. The library does not require installation or to be built.

2.7 Perseus

A compiled version of the Perseus library is available at http://people.maths.ox.ac.uk/nanda/perseus/.
Those wishing to build the library from source code can find the source code at the same website.

2.8 Ripser

The Ripser library is available at https://github.com/Ripser/ripser. One can build the library by
running make in the folder that includes the Makefile. Note that Ripser supports several options that can
be passed to make. See https://github.com/Ripser/ripser for more information.

3 Computation of PH for networks

In this section, we explain how to compute PH for undirected weighted networks. We represent the nodes
of a network with N nodes using the natural numbers 1, . . . , N .

3.1 Sample network data

To create weighted networks, one can use the script fractal_weighted.m available at https://github.

com/n-otter/PH-roadmap/tree/master/matlab/synthetic_data_sets_scripts. We recall that a frac-
tal network is determined by three non-negative integers n, b and k (see the main paper for details). The
script fractal_weighted.m takes four parameters as input: (1) a natural number n (the total number
of nodes of the graph is 2n); (2) a natural number b (the number of nodes of the initial network); (3) a
natural number k (this is the connection density parameter); and (4) a string which indicates how weights
are associated to edges: this is either 'random'or 'linear' (see the main paper for details).

Example: The command

>> fractal_weighted(4,2,1,'random')

saves the files fractal_4_2_1_random.txt and fractal_4_2_1_random_edge_list.txt, where the first
file is a text file storing the weighted adjacency matrix of a fractal network with 16 nodes and random
weight on every edge, while the second file is a text file storing the weighted edge list of the same network.

4

https://bitbucket.org/grey_narn/hera
http://cuda.unicam.it/jHoles
http://people.maths.ox.ac.uk/nanda/perseus/
https://github.com/Ripser/ripser
https://github.com/Ripser/ripser
https://github.com/n-otter/PH-roadmap/tree/master/matlab/synthetic_data_sets_scripts
https://github.com/n-otter/PH-roadmap/tree/master/matlab/synthetic_data_sets_scripts


3.2 Adjacency matrix versus edge-list file

We assume that a network is given either as an adjacency matrix in a MAT-file or as a text file with a list
of weighted edges. A typical entry on one line of such a file is a triple “i j wij”, where i and j are the nodes
incident to the edge and wij is the weight of the edge. We call such a file an “edge-list file”. We provide the
script adj_matrix_to_edge_list.m to obtain edge-list files from adjacency matrices. (Note that we also
provide the script edgelist_to_point_cloud_dist_mat.m to obtain distance matrices from edge-list files,
where the distances between nodes are computed using shortest paths.)

3.3 PH with the WRCF (with jHoles)

Using edge-list files, we compute PH by constructing the weight rank clique filtration (WRCF) with the
library jHoles. Here we give instructions on how to compute PH with Version 3 of jHoles. One needs to
run the following command in the terminal:

$ java -Xmx<value> -jar jHoles.jar input-file output-file1 output-file2

where -Xmx<value> is optional and can be used to set the maximum heap size of the garbage collector (we
recommend doing this for networks with a large number of nodes or high density). For example, -Xmx4g
sets the maximum heap size to 4 gigabytes. The file input-file is the edge-list file of the network, and
output-file1 is a file in which information (e.g., number of edges, average degree, etc.) about the network
is saved, and output-file2 is the file in which the intervals are saved.

Example: With the command

$ java -Xmx4g -jar jHoles.jar fractal_4_2_1_random_edge_list.txt fractal_info.txt \

fractal_intervals.txt

one computes PH with the WRCF for the fractal network with parameters (n, b, k) = (4, 2, 1) and random
weight on every edge. The persistence diagram is saved in the file fractal_intervals.txt, where for every
interval also representative cycles are given, while in file fractal_info.txt information such as average
degree, density, or average cluster is given. Note that the backslash in the above command indicates that
the command continues on the next line, and should therefore be omitted if one writes the whole command
on the same line.

3.4 Networks as point clouds

One can construe a connected weighted network as a finite metric space and then compute PH by using
one of the methods from Section 4. We now explain how to compute a distance matrix from an undirected
weighted network using information about shortest paths between nodes. If two nodes i and j are connected
by an edge with weight w, we set the distance between i and j to be 1/w. Otherwise, we define the distance
between i and j to be the minimum of the lengths of all paths between them, where we define the length of
a path to be the the sum of the inverse of the weights of the edges in this shortest path. One can compute
this distance matrix with the script shortest_paths.m. As input, it takes an edge-list file. (See Section
3.2 for how to obtain an edge-list file from a MAT-file that stores an adjacency matrix.) The output of
the script is a text file in which each line gives the entries of a row of the distance matrix. (Note that if
a network is not connected, then one sets the distance between nodes in two distinct components of the
network to be infinite, and one thereby obtains an extended metric space.)

Example:

>> shortest_paths('fractal_4_2_1_random_edge_list.txt')

saves the text file 'fractal_4_2_1_random_edge_list_SP_distmat.txt'.
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Additionally, using tools like multidimensional scaling, one can convert a distance matrix into a finite
set of points in Euclidean space. This is handy if one wants to use a library that does not support distance
matrices as an input type. We provide the script distmat_to_pointcloud.m to obtain a point cloud from
a distance matrix using multidimensional scaling.

Example:

>> distmat_to_pointcloud('fractal_4_2_1_random_edge_list_SP_distmat.txt')

4 Computation of PH for point clouds

In this section, we explain how to compute PH for finite metric spaces.

4.1 Sample point-cloud data

We provide scripts to create point-cloud data. These are available at https://github.com/n-otter/

PH-roadmap/tree/master/matlab/synthetic_data_sets_scripts. To create points clouds in R3 and
R4, one can use the scripts klein_bottle_imm.m and klein_bottle_emb.m, respectively.

Example:

>> klein_bottle_imm(5)

samples 25 points uniformly at random from the image of the immersion of the Klein bottle in R3 and saves
the point cloud in the text file klein_bottle_pointcloud_25.txt, with each line storing the coordinates
of one point, as well as in the MAT-file klein_bottle_25.mat.

4.2 Distance matrices versus points clouds

Given a finite set of points in Euclidean space, one can compute an associated distance matrix. To get a
distance matrix from a point cloud, we provide the script pointcloud_to_distmat.m.

Example:

pointcloud_to_distmat('klein_bottle_pointcloud_25.txt')

computes the distance matrix for the 25 points sampled from the Klein bottle and saves it in the text file
'klein_bottle_pointcloud_25_distmat.txt'.

Conversely, a distance matrix can yield a finite set of points in Euclidean space by using a method such
as multidimensional scaling. We implement such a conversion in the script distmat_to_pointcloud.m.

Example:

>> distmat_to_pointcloud('klein_bottle_pointcloud_25_distmat.txt')

4.3 VR complex

4.3.1 Input data

The standard input for the construction of the VR complex is a distance matrix. The software packages
that take a distance matrix as input are Perseus and DIPHA, but the other packages do not. Instead,
they take a set of points in Euclidean space as input. Note that Perseus can also take a set of points in
Euclidean space as input, but the implementation does not allow one to set a bound on the upper dimension
in the computation of the VR complex, so this implementation is impractical to use for most data sets.
We next compute the VR complex with each library. With most of the libraries, one has to indicate the
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maximum filtration value for which one wants to compute the filtered simplicial complex. We set this value
to the maximum distance between any two points. Note, however, that a smaller value often suffices. To
compute the maximum distance given a text file input-file with the coordinates of a point on each line,
one can type the following in MATLAB:

>> A=load(input-file);

>> D=pdist(A);

>> D=squareform(D);

>> M=max(max(D));

Example:

>> A = load('klein_bottle_pointcloud_25.txt');

>> D=pdist(A);

>> D=squareform(D);

>> M=max(max(D));

>> M

M =

7.0513

The maximum distance is given by M. Similarly, if one is given a text file input-file that stores a distance
matrix, then one can compute the maximum distance by typing

>> D=load(input-file);

>> M=max(max(D));

4.3.2 Dionysus

The library Dionysus takes a point cloud as input. We can use either the standard or dual algorithm. For
the former, we use the command

$ ./rips-pairwise -s max-dimension -m max-distance \

-d output-file input-file

where the file ./rips-pairwise is in the dionysus/build/examples/rips directory, further max-dimension
is the maximum dimension for which we want to compute the simplicial complex, max-distance is the max-
imum parameter value for which we want to compute the complex, output-file is the file to which the
intervals are written, and input-file is a text file with the coordinates of a point on each line. To compute
the intervals with the dual algorithm, we use the command

$ ./rips-pairwise-cohomology -s max-dimension -m max-distance \

-p prime -d output-file input-file

where the file ./rips-pairwise-cohomology is in the dionysus/build/examples/cohomology directory,
further prime is a prime number and indicates the coefficient field for the computation of cohomology. (For
the standard algorithm, there is no choice: one must use p = 2.)

Example:

$ ./rips-pairwise-cohomology -s 3 -m 7.0513 -p 2 -d klein_bottle_25_output.txt \

klein_bottle_pointcloud_25.txt
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4.3.3 DIPHA

The DIPHA library reads and writes to binary files. One can convert the text file that stores the distance
matrix (see Section 4.2 for how to obtain a distance matrix from a point cloud) into a binary file of the right
input type for DIPHA by using the file save_distance_matrix.m provided by the developers of DIPHA,
which can be found in dipha-master/matlab.

Example:

>> D=load('klein_bottle_pointcloud_25_distmat.txt');

>> save_distance_matrix(D,'kleinbottle_25.bin');

To run DIPHA using a single process, one types the command

$ ./dipha [options] --upper_dim d input-file output-file

where options include --benchmark to display profiling information and --dual to run the dual algorithm.
(The default is the standard algorithm.) To run DIPHA on more than one process, one uses the command

$ mpiexec -n N dipha options --upper-dim d input-file output_file

where N is the number of process and the above options are again available.

Example:

$ ./dipha --benchmark --dual --upper_dim 3 klein_bottle_25.bin klein_bottle_out.bin

4.3.4 GUDHI

The library GUDHI takes a point cloud as input. We run the command

$ ./rips_persistence -r max-distance -d max-dimension \

-p prime -o output-file input-file

where max-distance, max-dimension, and prime are as above, output-file is a file to which the intervals
are written, and input-file is a text file with the coordinates of a point on each line.

Example:

$ ./rips_persistence -r 7.0513 -d 3 -p 2 -o klein_bottle_25_output.txt \

klein_bottle_pointcloud_25.txt

4.3.5 JavaPlex

The library JavaPlex takes a point cloud as input. Before starting using this library one has to run the
script load_javaplex.m which is located in the JavaPlex directory matlab_examples. We wrote the
script vietoris_rips_javaplex.m to compute PH with the VR complex in JavaPlex. This script takes
four parameters as input: (1) the name of the text file with the point cloud; (2) the maximum dimension
for which we want to compute the simplicial complex; (3) the maximum filtration step for which we want
to compute the VR complex; and (4) the number of filtration steps for which we compute the VR complex.
The script saves text files containing the barcode intervals, one file for each homological dimension. These
are the files ending with i_right_format.txt where i indicates the homological dimension.

Example:

>> vietoris_rips_javaplex('klein_bottle_pointcloud_25.txt',7.0513,3,20);
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4.3.6 Perseus

The library Perseus takes a distance matrix as input (see Section 4.2 for how to obtain a distance matrix
from a point cloud). One has to prepare the input file by adding two lines at the beginning of the file that
stores the distance matrix. We do this as follows:

N

first-step step-increment steps max-dimension

d11 d12 ...

d21 d22 ...

...

where N is the number of points (and hence the number of rows (or columns) in the distance matrix),
first-step is the value for the first filtration step, step-increment is the step size between any two
filtration steps, steps is the number of total steps, and max-dimension is the maximum dimension for
which we compute the complex. We now can compute PH with the command

$ ./perseus distmat input-file output-file

in the terminal, where input-file is the name of the input file and output-file is the name of the
file in which the intervals will be saved. Perseus creates a series of files named output-file_i.txt for
i ∈ {0, 1, . . . }, where output-file_i.txt contains the intervals for the homological degree i.

Example:

$ ./perseus distmat klein_bottle_25.txt klein_bottle_25_output.txt

where these are the first two lines of the file klein_bottle_25.txt:

25

0 0.1 71 3

4.3.7 Ripser

The library Ripser takes both a point cloud and a distance matrix as input, and it supports four different
format types for the distance matrix. (See https://github.com/Ripser/ripser#description for more
details.) One of the supported input types for the distance matrix is the format accepted by DIPHA (see
Section 4.3.3).

We run the command

$ ./ripser --format input-type --dim max-dimension [options] input-file

where input-type is a string that indicates the type of the input, max-dimension is the maximum dimen-
sion of persistent homology that is computed (note the difference with respect to the other libraries, for
which one indicates the maximum dimension of the complex), and options includes -- modulus p (with
which one can choose the coefficient field Fp). Note that one has to enable this option at compilation (see
Section 2.8). The output of the computation is written to the standard output.

Example:

$ ./ripser --format dipha --dim 2 klein_bottle_25.bin > klein_bottle_25_out.log

where klein_bott_25.bin is the input file from Section 4.3.3 and the standard output is saved to the file
klein_bottle_25_out.log.
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4.4 Alpha

In this section, we explain how to compute PH with the alpha complex with Dionysus and GUDHI.

4.4.1 Dionysus

One can compute PH with the alpha complex for finite subsets of points in R2 or R3. For points clouds in
R2, one runs the command

$ ./alphashapes2d < input-file > output-file

where input-file a text file with coordinates of a point in R2 on each line and output-file is the file to
which the intervals in the persistence diagram are written. For points clouds in R3, one runs the command

$ ./alphashapes3d-cohomology input-file output-file

where input-file and output-file are as above.1

Example:

$ ./alphashapes3d-cohomology klein_bottle_pointcloud_25.txt klein_bottle_25_output.txt

4.4.2 GUDHI

The program GUDHI supports both points clouds in R2 and R3. To compute PH with the alpha complex one
can use the script ./alpha_complex_persistence which is in the folder example/Persistent_cohomology.
The script takes as input an OFF file, as decribed here http://www.geomview.org/docs/html/OFF.html.
Namely, the first lines of the input file are as follows:

OFF

embedding-dimension V 0 0

x11 x12 ... x1d

x21 x22 ... x2d

...

where embedding-dimension is the dimension d of the Euclidean space, V is the number of points, and all
other lines store coordinates xi1,. . . , xid of the points.

One then computes PH by running the following command in the terminal

$ ./alpha_complex_persistence -p prime -o output-file input-file

where p is a prime number and indicates that one does computations over the coefficient field Fp.

Example:

$ ./alpha_complex_persistence -p 2 -o klein_bottle_25_output.txt klein_bottle_25_input.txt

where the first two lines of the file klein_bottle_25_input.txt are as follows:

OFF

3 25 0 0

1There is also a script ./alphashapes3d , but this script has a bug and does not compute.
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4.5 Čech

One can compute PH with the Čech complex for a point cloud in Euclidean space using the implementation
in Dionysus. One runs the command

$ ./cech-complex < input-file > output-file

where input-file is a text file of the following form:

embedding-dimension max-dimension

x11 x12 ... x1d

x21 x22 ... x2d

...

where embedding-dimension is the dimension d of the Euclidean space, max-dimension is the dimension
up to which we compute the complex, and all other lines store coordinates xi1,. . . , xid of the points.

Example:

$ ./cech-complex < klein_bottle_25_input.txt > klein_bottle_output.txt

where the first line of the file klein_bottle_25_input.txt is as follows:

3 3

4.6 Witness

One can compute the witness complex using JavaPlex. Recall that before starting using this library one
has to run the script load_javaplex.m which is located in the JavaPlex directory matlab_examples.
Given a point cloud S, the witness complex is a simplicial complex constructed on a subset L ⊆ S of
so-called “landmark” points. As we explained in the main manuscript, there are several versions of the
witness complex. The ones implemented in JavaPlex are the weak Delaunay complex, which is also just
called the “witness complex”, and parametrized witness complexes, which are also known as “lazy witness
complexes”. Given a point cloud L, one can compute the witness complex or lazy witness complex using
the scripts witness_javaPlex.m and lazy_witness_javaPlex.m.

The script witness_javaPlex.m takes four parameters as input: (1) the name of the text file with the
point cloud; (2) the maximum dimension for which we want to compute the simplicial complex; (3) the
maximum filtration value for which we want to compute PH; and (4) the number of filtration steps for
which we compute the complex.

The script lazy_witness_javaPlex.m takes six parameters as input: (1) the name of the text file with
the point cloud; (2) the maximum dimension for which we want to compute the simplicial complex; (3) the
number of landmark points; (4) how the landmark points are selected (this is either 'random' or 'maxmin');
(5) the value for the parameter ν; and (6) the number of filtration steps for which we compute the complex.

See the scripts for further details on input parameters, and see the main manuscript and the JavaPlex
tutorial [2] for further detail on witness complexes.

Example:

lazy_witness_javaPlex('klein_bottle_pointcloud_25.txt',3,10,'random',2,20)

5 Computation of PH for image data

In this section, we discuss how to compute PH for image data using cubical complexes. The packages
DIPHA, Perseus, and GUDHI support the construction of filtered cubical complexes from grey-scale
image data. As an example of grey-scale image data, we use the data set “Nucleon” from the Volvis
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repository [1]. This is a 3-dimensional grey-scale image data set; one is given a 3-dimensional lattice of
resolution 41× 41× 41, where each lattice point is labeled by an integer that represents the grey-scale value
for the voxel anchored at that lattice point. The .raw data file from [1] is binary, and it stores 8 bits for
each voxel. We read the .raw data file in MATLAB as follows:

>> fileID=fopen('nucleon.raw','r');

>> A=fread(fileID,41*41*41,'int8');

>> B=reshape(A,[41 41 41]);

so B is a 3-dimensional array of size 41× 41× 41 that stores the grey-scale values.
Note for this example that the cubical complex constructed in DIPHA and GUDHI has dimension 3

and size 531441, while the cubical complex constructed with Perseus has dimension 3 and size 571787.
This is because DIPHA and GUDHI implement the optimized way to represent a cubical complex that
was introduced in [7]. However, all three libraries implement the same algorithm for the computation of PH
from cubical complexes. When interpreting the results of the computations with GUDHI and Perseus,
one needs to take into account the rescaling of the grey values (see Section 5.2).

5.1 DIPHA

To save the array in a file that can be given as input to DIPHA, one can use the MATLAB script
save_image_data.m provided by the developers of DIPHA, which can be found in dipha-master/matlab.
One gives the array B as input and a name for the input file. One then proceeds in a similar way as for the
computation of the VR complex (see Section 4.3).

Example:

>> save_image_data(B,'nucleon.bin');

$ ./dipha --benchmark nucleon.bin nucleon_out.bin

5.2 Perseus

To compute PH with cubical complexes with Perseus, one needs to rescale the grey values so that all grey
values are positive, because Perseus does not allow cells to have negative birth times. We wrote the script
save_image_data_perseus.m to save the array in a file that can be given as input to Perseus. This script
takes the array B as input and a name for the input file for Perseus.

Example:

>> save_image_data_perseus(B,'nucleon.txt');

To compute PH with Perseus one then runs the following command:

$ ./perseus cubtop input-file output-file

where input-file is the text file prepared with the script save_image_data_perseus.m, and output-file

is the name of the text file to which the barcode intervals are written.

Example:

$ ./perseus cubtop nucleon.txt nucleon_output.txt

5.3 GUDHI

To compute PH with GUDHI, one can use the same input file as for Perseus. We run the command

$ ./Bitmap_cubical_complex input-file

and the output is then saved to a file with name input-file_persistence.
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5.4 Images as point clouds

As we discussed in Section 5.1 of the main manuscript, one can construe a collection of images as a metric
space, and one can then apply the methods for computing the PH for point clouds that we discussed in
Section 4.

6 Barcodes and persistence diagrams

Once we have computed the intervals, we plot the barcodes and persistence diagrams. The format of the
output files varies widely across the different packages. To address this issue and to interpret the results of
the computations, we first need to change the format of the output files to a common format. In the unified
format, each homological dimension has an accompanying text file in which we store the intervals. In this
file, the entry in line i has the form

xi yi ,

where xi is the left endpoint of the interval and yi is the right endpoint. If the interval is infinite, we set
yi = −1.

• Dionysus: We provide the script dionysus_reformat_output.m to obtain the right format. This
script takes two parameters as input, namely the name of the text file to which the ouput of the
computations with Dionysus were stored, and a string of five letters indicating the type of file:
“dcech” for the output of PH computation with the Čech complex; “alpha” for the output of PH
computation with the alpha complex; “VR-st” for the output of PH computation with a Vietoris–
Rips complex and the standard algorithm; and “VR-co’ for the output of PH computation with a
Vietoris–Rips complex and the dual algorithm.

• DIPHA: We provide the script dipha_reformat_output.m to obtain the right format. The script
takes as input the name of the binary file to which the ouput of the computations with DIPHA were
stored.

• GUDHI: We provide the script gudhi_reformat_output.m to obtain the right format. The script
takes as input the name of the text file to which the output of the computations with GUDHI are
stored.

• JavaPlex: We wrote the three scripts vietoris_rips_javaplex.m, lazy_witness_javaPlex.m, and
witness_javaPlex.m, which have been written to give this type of output.

• jHoles: We provide the script jholes_reformat_output.m to obtain the right format. The script
takes as input the name of the text file to which the barcode intervals obtained with jHoles were
stored.

• Perseus: The output is already in the right format.

• Ripser: The script ripser_reformat_output.m gives the right format.

Example:

>> dionysus_reformat_output('klein_bottle_25_output.txt','alpha')

creates the three files klein_bottle_25_output_0.txt, klein_bottle_25_output_1.txt, and further
klein_bottle_25_output_2.txt, each storing intervals for PH in dimension 0, 1, and 2, respectively.

We can then plot barcodes using the script plot_barcodes.m and plot persistence diagrams using the
script plot_pdg.m. Both scripts take as inputs (1) the name of a text file storing the intervals for PH in a
certain dimension and (2) the title for the plot.

Example:
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>> plot_pdg('klein_bottle_25_output_1.txt','Klein bottle alpha dim 1')

produces the plot in Fig. 2(a) and saves it as a .pdf file klein_bottle_25_output_1.pdf.

Example:

>> plot_barcodes('klein_bottle_25_output_1.txt','Klein bottle alpha dim 1')

produces the plot in Fig. 2(a) and saves it as a .pdf file klein_bottle_25_output_1_barcodes.pdf.
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Figure 2: Visualisation of output for the computation of PH in dimension 1 with the alpha complex (with Dionysus)
for 25 points sampled uniformly at random form the Klein bottle: (a) persistence diagram and (b) barcode.

In the plots in Fig. 2, there are no infinite intervals, so we give an additional example to illustrate how
infinite intervals are plotted with our scripts.

Example:

>> gudhi_reformat_output('klein_bottle_25_output.txt')

>> plot_barcodes('klein_bottle_25_output_0.txt','Klein bottle VR dim 0')

>> plot_pdg('klein_bottle_25_output_0.txt','Klein bottle VR dim 0')

produces the two plots in Fig. 3.

7 Statistical interpretation of barcodes

Once one has computed barcodes, one can interpret the results using available implementations of tools
(such as bottleneck distance, Wasserstein distance, and persistence landscapes) that are useful for statis-
tical assessment of barcodes. In this section, we give instructions for how to compute the bottleneck and
Wasserstein distances with Dionysus and Hera. See the tutorial for the Persistence landscape toolbox [4]
and the TDA package [5] for instructions on how to use these packages. For ease of reference, we recall the
definition of Wasserstein distance from the main manuscript:

Definition 1 Let p ∈ [1,∞]. The pth Wasserstein distance between X and Y is defined as

Wp[d](X,Y ) := inf
φ : X→Y

[∑
x∈X

d[x, φ(x)]p

]1/p

14



(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

birth

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d
e

a
th

Klein bottle VR dim 0

(b)

0 0.5 1 1.5 2

filtration step

0

5

10

15

20

25
Klein bottle VR dim 0

Figure 3: Visualisation of output for the computation of PH in dimension 0 with the VR complex (with GUDHI)
for 25 points sampled uniformly at random form the Klein bottle: (a) persistence diagram and (b) barcode. Infinite
intervals are represented by a square in the persistence diagram, by an arrow in the barcode plot.

for p ∈ [1,∞) and as
W∞[d](X,Y ) := inf

φ : X→Y
sup
x∈X

d[x, φ(x)]

for p =∞, where d is a metric on R2 and φ ranges over all bijections from X to Y .

7.1 Bottleneck distance

The bottleneck distance is the Wasserstein distance for p =∞ and d = L∞ (see Definition 1).

7.1.1 Dionysus

To compute the bottleneck distance between two barcodes, one can use the script bottleneck-distance.cpp
(appropriately modified as explained in Section 2.1) in the Dionysus subdirectory examples. This script
requires right endpoints of infinite intervals to be denoted by inf ; additionally, if there are intervals of
length 0, the script will compute the wrong distance. To make sure that no intervals of length 0 are
in the input files and that the intervals of infinite length are in the right format, one can use the script
bottleneck_dionysus.m. This script takes as input two text files corresponding to two persistence diagrams
in the unified format (see Section 6), with one interval per line, as follows:
>> bottleneck_dionysus('pdg1','pdg2')

and saves the persistence diagrams to two files called diagram1.txt and diagram2.txt to the current
directory. Now one can compute the bottleneck distance as follows:

$ ./bottleneck-distance diagram1.txt diagram2.txt

7.1.2 Hera

To compute the bottleneck distance with Hera, one can use the script bottleneck_dist in the subdirectory
geom_bottleneck/build/example. This script requires right endpoints of infinite intervals to be denoted
by -1 ; this corresponds to the convention in the unified format (see Section 6). One can compute the
bottleneck distance as follows:

$ ./bottleneck_dist diagram1.txt diagram2.txt error

where diagram1.txt and diagram2.txt are two text files corresponding to two persistence diagrams in the
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unified format, and error is a nonnegative real number that is an optional input argument. If error is
nonzero, instead of the exact distance, an approximation to the bottleneck distance with relative error error
will be computed. (See the explanation in [6].) This option can be useful when dealing with persistence
diagrams that include many off-diagonal points, as it can speed up computations.

7.2 Wasserstein distance

With Dionysus, one can compute the Wasserstein distance for d = L∞ and p = 2, and one can compute
this distance for other values of p with a straightforward modification of the source code. With Hera,
one can compute the Wasserstein distance for any choice of metric d = Lq, with q ∈ [1, . . . ,∞], for any
p ∈ [1,∞).

7.2.1 Dionysus

The script bottleneck-distance.cpp computes both the bottleneck distance and the Wasserstein distance
for d = L∞ and p = 2, so one can follow the instructions in 7.1.1 to compute the Wasserstein distance for
these choices. If one wishes to compute the Wasserstein distance for other values of p, one has to modify
the script bottleneck-distance.cpp as follows. Towards the end of the file, in the line

std::cout << "L2-Distance: " << wasserstein_distance(dgm1, dgm2, 2) << std::endl;

one can substitute the third input of the script wasserstein_distance with any number p ∈ [1,∞).

7.2.2 Hera

With Hera, one can compute the approximate Wasserstein distance discussed in [6]. One can use the
script wasserstein_dist in the subdirectory geom_matching/wasserstein/build. This script requires
right endpoints of infinite intervals to be denoted by -1 ; this corresponds to the convention in the unified
format (see Section 6). One can compute the approximate Wasserstein distance as follows:

$ ./wasserstein_dist power error distance diagram1.txt diagram2.txt

where power is the value for p, error is the relative error, distance is the value for q (where d = Lq
is the employed distance), and diagram1.txt and diagram2.txt are two text files corresponding to two
persistence diagrams in the unified format.
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