
Bayesian Conditional Tensor Factorizations for

High-Dimensional Classification

Supplementary Appendix A: More properties of the con-

ditional tensor factorization model

Matrix form

We format the conditional probability P (y|x1, . . . , xp) as a d1 × · · · × dp vector

V ec{P (y|−)} =
{
P (y|1, . . . , 1, 1), P (y|1, . . . , 1, 2), . . . , P (y|1, . . . , 1, dp), . . . ,

P (y|1, . . . , dp−1, dp), . . . , P (y|d1, . . . , dp−1, dp)
}′

and λh1,...,hp(y) as a k1 × · · · × kp vector

V ec{Λ(y)} =
{
λ1,...,1,1(y), λ1,...,1,2(y), . . . ,

λ1,...,1,kp(y), . . . , λ1,...,kp−1,kp(y), . . . , λk1,...,kp(y)
}′
.

Let π(j) be a dj × kj matrix with π
(j)
v (u) as the (u, v)th element. It is a stochastic matrix, so

rows sum to one, by constraint (3). Then representation (2) can be written in vector form:

V ec{P (y|−)} =
(
π(1) ⊗ π(2) ⊗ · · · ⊗ π(p)

)
V ec{Λ(y)}, for y = 1, . . . , d0, (A.1)
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where ⊗ denotes the Kronecker product. Furthermore, if we let Mat(P ) and Mat(Λ) be

two stochastic matrices with the yth column V ec{P (y|−)} and V ec{Λ(y)} respectively for

y = 1, . . . , d0, then we can write the above d0 identities together as:

Mat(P ) =
(
π(1) ⊗ π(2) ⊗ · · · ⊗ π(p)

)
Mat(Λ).

Bias-variance trade-off

In tensor factorization model (2), the multirank k controls the sparsity, characterizing the

impact of each predictor Xj through the “effective category count” kj. For example, if the

level of X1, say 1, 2, 3, can be divided into 2 classes {1} and {2, 3} such that P (Y = y|X1 =

2, . . . , Xp = xp) ≡ P (Y = y|X1 = 3, . . . , Xp = xp), then k1 is equal to 2. The following

illustration suggests that to select k, we can use a hard clustering approximation by setting

π
(j)
hj

(xj) to be either zero or one (section 4.2).

We initially provide a heuristic argument to demonstrate the tendency of our model to

produce low mean squared error (MSE), which is defined as:

MSE(P̃ ) =

∫ d0∑
y=1

E
(
P̃ (y|x1, . . . , xp)− P0(y|x1, . . . , xp)

)2
G(dx1, . . . , dxp)

=

∫ d0∑
y=1

(
EP̃ (y|x1, . . . , xp)− P0(y|x1, . . . , xp)

)2
G(dx1, . . . , dxp)

+

∫ d0∑
y=1

V arP̃ (y|x1, . . . , xp)G(dx1, . . . , dxp)

,Bias2(P̃ ) + Var(P̃ ), (A.2)

where P̃ is an estimator of the truth P0, G is the joint marginal distribution of the covariates

X and the expectation is taken with respect to the joint distribution of (X, Y ). Our focus is

on obtaining accurate estimates of the conditional probability P (Y |X); accurate estimates
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will lead to accurate classification while containing information on classification uncertainty,

of critical importance in medical decision making among other areas.

For simplicity of exposition, assume the response Y to be binary. Denote by T the set of

all conditional probability tensors parameterized by (2). Let T0 be a subset of T consisting of

models with π
(j)
hj

(xj) being either zero or one. Then given k and π, π(j) uniquely determines

a hard clustering of Xj: Xj = xj belongs to the hj(xj)th cluster, where hj(xj) is the unique

hj such that π
(j)
hj

(xj) = 1. Consider approximating P0 by this subset T0. Intuitively, the best

MSE attained within T0 gives an upper bound on the optimal MSE achievable by the whole

model class T . To demonstrate the bias-variance trade-off in terms of the selection of the

multirank k, we compare the MSE of the maximum likelihood estimators (MLE) in model

space T0 under different k and the clustering scheme determined by π. Define

εM = inf
P∈T0:|k(P )|≤M

||P − P0||,

where |k(P )| denotes the size of the multirank of the conditional probability tensor P and

||P − P0|| =
{∫ 2∑

y=1

|P (y|x1, . . . , xp)− P0(y|x1, . . . , xp)|2G(dx1, . . . , dxp)

}1/2

. (A.3)

εM can be interpreted as the smallest error or bias caused by approximating P0 using P ∈ T0

with size |k(P )| ≤M , related to compressibility of P0.

Under degeneracy of the π’s, P (y|x1, . . . , xp) = λh1(x1)...hp(xp)(y), where hj(xj) is defined

previously as the unique hj such that π
(j)
hj

(xj) = 1. Given k and π, the MLE of λh1...hp is

the sample frequencies of Yi = y among all observations with covariates Xi = (Xi1, . . . , Xip)

satisfying hj(Xij) = hj for each j = 1, . . . , p:

λ̂h1...hp(i) =

∑
(x1,...,xp):hj(xj)=hj

∑n
i=1 I(Xi1 = x1, . . . , Xip = xp, Yi = i)∑

(x1,...,xp):hj(xj)=hj

∑n
i=1 I(Xi1 = x1, . . . , Xip = xp)

, i = 1, 2,
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where 0/0 is defined to be 0 for simplicity. Although given k and π an unbiased estimator

does not exist due to model misspecification, the following lemma shows that this MLE is

still optimal in terms of minimizing the bias. A proof is sketched in the appendix.

Lemma 1 Given k and π, among all estimators of λ’s, the MLE defined above minimizes

the Bias2(P̃ ) in (A.2).

This lemma indicates that the εM has another characterization as

εM = min
(k,π):|k|≤M,π degenerate

Bias
(
P̂ (k, π)

)
,

where P̂ (k, π) is the MLE of P given (k, π).

Intuitively, under the degeneracy of π, n samples are separated into |k| clusters to estimate

the corresponding λ’s, and the variance term in (A.2) should be of order |k|/n. The following

lemma formalizes this and a proof is sketched in the appendix.

Lemma 2 Given k and π, the Var(P̃ ) as defined in (A.2) for the MLE P̂ satisfies

Var
(
P̂ (k, π)

)
= C|k|/n+O(|k|/n2), (A.4)

where the constant C ∈ [a, b], where a, b > 0 only depends on P0 and G.

Combining Lemma 1 and 2, given k and π, the MSE of MLE P̂ satisfies:

MSE
(
P̂ (k, π)

)
≥ ε2|k| + C

|k|
n

+O(|k|/n2).

This reflects the so-called bias-variance trade-off for our model: as |k| increases, the model

becomes more complex and thus the bias term decreases; however, the variance term increases

as more parameters are introduced. Therefore, there exists an optimal model size |k| that
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solves |k| = nε2|k| minimizing the MSE. This typical trade-off also appears in the Assumption

B in section 3.2 where the posterior convergence rate is studied.

Borrowing of information

The previous section discussed the bias-variance trade-off for a subclass of models specified by

(2), where π’s are degenerate at zero and one. In this section, we illustrate another desirable

property by allowing π’s to be continuous on [0, 1]: borrowing of information across cells

corresponding to each combination of X1, . . . , Xp. Letting wh1,...,hp(x1, . . . , xp) =
∏

j π
(j)
hj

(xj),

model (2) is equivalent to

P (Y = y|X1 = x1, . . . , Xp = xp) =
∑

h1,...,hp

wh1,...,hp(x1, . . . , xp)λh1...hp(y), (A.5)

and constraints (3) imply
∑

h1,...,hp
wh1,...,hp(x1, . . . , xp) = 1. In the special case when π is

degenerate, λh1...hp(y) is just the conditional probability of Y = y given the observations in

cluster h1(X1) = h1, . . . , hp(Xp) = hp (for details, refer to the descriptions in the paragraph

before (A.3)). If π’s are allowed to be continuous, then our model essentially uses a kernel

estimate that allows borrowing of information across clusters via a weighted average of the

cluster frequencies.

To illustrate the strength of this, consider a simplified example involving one covariate X

with m categories and a binary response Y . In fact, each category of X can correspond to

a cluster as in the preceding paragraph and the implications can be extended to our model

by changing the notations. Let Pj = P (Y = 1|X = j) for j = 1, . . . ,m. Then the MLE

for (P1, . . . , Pm) is sample frequencies (s1/n1, . . . , sm/nm), denoted by (P̂1, . . . , P̂m), where

sj = ]{i : yi = 1 and xi = j} and nj = ]{i : xi = j}. Instead, kernel estimates (A.5) are

P̃k =

{
1−

∑
j 6=k

wjk

}
P̂k +

∑
j 6=k

wjkP̂j, k = 1, . . . ,m,
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where wjk could be considered as the weight of the contribution to cluster k by cluster j.

MLE corresponds to a special case when wjk = 0 for all j 6= k. We use squared loss to

compare these two estimators. After some calculations,

E{L(P̂ , P )} =
m∑
j=1

E(P̂j − Pj)2 =
m∑
j=1

Pj(1− Pj)
nj

,

and E{L(P̃ , P )} =
∑m

j=1 E(P̃j − Pj)2 is a function of wjk’s, whose partial derivative with

respect to wjk(j 6= k) at zero is

∂E{L(P̃ , P )}
∂wjk

∣∣∣∣
wst=0,∀s 6=t

= −2
Pk(1− Pk)

nk
.

This implies that E{L(P̃ , P )} will be reduced by 2Pk(1−Pk)
nk

for every unit increasing of wjk

near zero. Particularly when nk is small, borrowing information from other cluster j( 6= k)

will considerably reduce E{L(P̃ , P )} compare to MLE. In the special case when all wjk are

equal, E{L(P̃ , P )} can attain a minimum

E{L(P̂ , P )}
[
1−

(
1− 1

m

)
E{L(P̂ , P )}

E{L(P̂ , P )}+ 1
m−1

∑
i<j(Pi − Pj)2

]
∈
(

1

m
E{L(P̂ , P )}, E{L(P̂ , P )}

)
.

This suggests that when Pj’s are similar, the estimate P̃ can reduce the risk up to only

1/m the risk of estimating P̂ separately. If Pj’s are not similar, P̃ can still reduce the risk

considerably when the cell counts {nj} are small.

Another interesting feature of our tensor model is the special structure of the weights

w’s in (A.5). Consider a class of continuous π̃’s indexed by a single parameter c ∈ (0, 1)
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characterizing the strength of borrowing information,

π̃
(j)
hj

(xj) = (1− kjc)I
{
hj = hj(xj)

}
+ cI

{
hj 6= hj(xj)

}
,

for hj ≤ kj and all possible xj’s. This π̃ still satisfies constraint (A.12) and the weight

becomes

w̃h1,...,hp(x1, . . . , xp) =

p∏
j=1

(1− kjc)I{hj=hj(xj)}cI{hj 6=hj(xj)}.

When c is small, given x, the weight of the contribution by the cluster indexed by (h1, . . . , hp)

is approximately equal to cs, where s =
∑p

j=1 I{hj 6= hj(xj)} is the number of latent classes

not shared by (h1, . . . , hp) and (h1(x1), . . . , hp(xp)), i.e. the Hamming distances between

the latent class indices. This special structure in the weights suggests that similar clusters

should share more information.

Supplementary Appendix B: Proof of Lemma 1

Given the degeneracy of π, the bias square term can be written as

Bias2 =
2∑
y=1

∑
h1,...,hp

∫
Ah1...hp

(
Eλ̃h1...hp(y)− P0(y|x1, . . . , xp)

)2
G(dx1, . . . , dxp),

where Ah1...hp = {(x1, . . . , xp) : hj(xj) = hj, j = 1, . . . , p} and λ̃’s are arbitrary estimators of

λ’s. It can be verified that the above expression is minimized if and only if:

Eλ̃h1...hp(y) =

∫
Ah1...hp

P0(y|x1, . . . , xp)G(dx1, . . . , dxp)∫
Ah1...hp

G(dx1, . . . , dxp)
(A.6)
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holds for all possible (h1, . . . , hp). So we only need to check the the MLE λ̂’s satisfy this

condition.

Let Nx1,...,xp =
∑n

i=1 I(Xi1 = x1, . . . , Xip = xp), N̄h1,...,hp =
∑

Ah1...hp
Nx1,...,xp , X =

{X1, . . . , Xp} and Y = {Y1, . . . , Yp}. By the iterative expectation formula:

EX,Y λ̂h1...hp(y) =
∑

Ah1...hp

EX
Nx1,...,xp

N̄h1,...,hp

P0(y|x1, . . . , xp). (A.7)

Note that

Nx1,...,xp

∣∣N̄h1,...,hp ∼ Bin

(
N̄h1,...,hp ,

G(x1, . . . , xp)∫
Ah1...hp

G(dx1, . . . , dxp)

)
. (A.8)

Combining this and the iterative expectation formula:

EX
Nx1,...,xp

N̄h1,...,hp

P0(y|x1, . . . , xp) =
G(x1, . . . , xp)∫

Ah1...hp
G(dx1, . . . , dxp)

P0(y|x1, . . . , xp). (A.9)

Combining (A.7) and (A.9) together, we can prove that (A.6) holds for the MLE λ̂.

Supplementary Appendix C: Proof of Lemma 2

Under the same notation as in Lemma 1,

Var =
2∑
y=1

∑
h1,...,hp

∫
Ah1...hp

EX,Y
(
λ̂h1...hp − EX,Y λ̂h1...hp

)2
G(dx1, . . . , dxp)

=
2∑
y=1

∑
h1,...,hp

∫
Ah1...hp

EXV arY |X
(
λ̂h1...hp − EY |X λ̂h1...hp

)2
G(dx1, . . . , dxp)

+
2∑
y=1

∑
h1,...,hp

∫
Ah1...hp

EX
(
EY |X λ̂h1...hp − EX,Y λ̂h1...hp

)2
G(dx1, . . . , dxp)

,S1 + S2,
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where EY |X and V arY |X stand for taking conditional expectation and variance given X,

respectively.

Estimation of S1: First, we estimate the integrand in S1 similar to (A.7):

EXV arY |X
(
λ̂h1...hp − EY |X λ̂h1...hp

)2

=
∑

Ah1...hp

EX
Nx1,...,xp

N̄2
h1,...,hp

P0(y|x1, . . . , xp)
(
1− P0(y|x1, . . . , xp)

)
=

∫
Ah1...hp

P0(y|x1, . . . , xp)
(
1− P0(y|x1, . . . , xp)

)
G(dx1, . . . , dxp)∫

Ah1...hp
G(dx1, . . . , dxp)

EX
I(N̄h1,...,hp > 0)

N̄h1,...,hp

,

where the last step is by (A.8) and the iterative expectation formula. Since N̄h1,...,hp ∼

Bin
(
n,
∫
Ah1...hp

G(dx1, . . . , dxp)
)
, by the asymptotic expansion for the expectation of recipro-

cal of Binomial random variables in Stephan (1945),

EX
I(N̄h1,...,hp > 0)

N̄h1,...,hp

=
1

n
∫
Ah1...hp

G(dx1, . . . , dxp)
+O(n−2), (A.10)

we obtain

S1 = C1

2∑
y=1

∑
h1,...,hp

(1/n+ o(n−2)) = 2C1|k|/n+O(|k|/n2),

where C1 is some constant with lower and upper bounds independent of n.

Estimation of S2: By (A.9), the integrand in S2 is:

EX
(
EY |X λ̂h1...hp − EX,Y λ̂h1...hp

)2

=EX

( ∑
Ah1...hp

(
Nx1,...,xp

N̄h1,...,hp

− G(x1, . . . , xp)∫
Ah1...hp

G(dx1, . . . , dxp)

)
P0(y|x1, . . . , xp)

)2

.

Similar to (A.8), the joint conditional distribution of Nx1,...,xp given N̄h1,...,hp follows a multi-
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nomial distribution:

{Nx1,...,xp : (x1, . . . , xp) ∈ Ah1...hp}
∣∣N̄h1,...,hp

∼ Multi

(
N̄h1,...,hp ,

{
G(x1, . . . , xp)∫

Ah1...hp
G(dx1, . . . , dxp)

: (x1, . . . , xp) ∈ Ah1...hp
})

.

As a result, by the iterative expectation formula, EX
(
EY |X λ̂h1...hp − EX,Y λ̂h1...hp

)2
is also

proportional to EX
I(N̄h1,...,hp

>0)

N̄h1,...,hp
. Therefore, by (A.10)

S2 = C2

2∑
y=1

∑
h1,...,hp

(1/n+ o(n−2)) = 2C2|k|/n+O(|k|/n2),

where C2 is some constant with lower and upper bounds independent of n.

Combining the estimation of S1 and S2, we obtain the desired results with C = 2C1+2C2.

Supplementary Appendix D: Proof of Theorem 2

The following two lemmas are needed to prove this theorem. The proof of lemma 1 can be

found in Jiang (2006), and the proof of lemma 2 follows the line of Ghosal et al. (2000) and

is given here.

Lemma 3 Let P be a subset of all probability measures of X, P0 ∈ P and d be the total

variance distance, then for each ε > 0 and n > 0, there exists a test φn such that

P n
0 φn ≤ N

(
ε

4
,P , d

)
exp

(
− n

8
ε2
)
,

sup
P∈P∩{P :d(P,P0)≥ε}

P n(1− φn) ≤ exp

(
− n

8
ε2
)
,

where P n is the n−fold of P .

Lemma 4 If Πn(P : || log P
P0
||∞ < ε2n) > exp(−Cnε2n), then for any test φn, the following
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inequality holds:

EP0Πn(P : d(P, P0) ≥ εn|X1, . . . , Xn) ≤

P n
0 φn + exp((1 + C)nε2n)Πn(Pcn) + exp((1 + C)nε2n) sup

Pn∩{P :d(P,P0)≥εn}
P n(1− φn).

Lemma 2 We can divide the l.h.s. into two pieces

EP0Πn(P : d(P, P0) ≥ εn|X1, . . . , Xn) =

EP0Πn(P : d(P, P0) ≥ εn|X1, . . . , Xn)φn

+EP0Πn(P : d(P, P0) ≥ εn|X1, . . . , Xn)(1− φn). (A.11)

The first term satisfies

EP0Πn(P : d(P, P0) ≥ εn|X1, . . . , Xn)φn ≤ P n
0 φn. (A.12)

Next we will estimate the second term. By definition, we have

EP0Πn(P : d(P, P0) ≥ εn|X1, . . . , Xn)(1− φn) =

EP0

∫
d(P,P0)≥εn

∏n
i=1

P
P0

(Xi)dΠn(P )(1− φn)∫ ∏n
i=1

P
P0

(Xi)dΠn(P )
. (A.13)

Let Kn = {P : || log P
P0
||∞ < ε2n}. Using the condition Πn(Kn) > exp(−Cnε2n), we have

∫ n∏
i=1

P

P0

(Xi)dΠn(P ) ≥
∫
Kn

n∏
i=1

P

P0

(Xi)dΠn(P )

≥ Πn(Kn) exp(−nε2n) ≥ exp(−(1 + C)nε2n) a.s.P n
0 .
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By Fubini’s theorem and the fact 0 ≤ φn ≤ 1

EP0

∫
d(P,P0)≥εn

n∏
i=1

P

P0

(Xi)dΠn(P )(1− φn)

≤ Πn(Pcn) +

∫
Pn∩{P :d(P,P0)≥εn}

P n(1− φn)dΠn(P )

≤ Πn(Pcn) + sup
Pn∩{P :d(P,P0)≥εn}

P n(1− φn).

Combining the above assertions and equation (A.13), we can see that

EP0Πn(P : d(P, P0) ≥ εn|X1, . . . , Xn)(1− φn)

≤ exp((1 + C)nε2n)EP0

∫
d(P,P0)≥εn

n∏
i=1

P

P0

(Xi)dΠn(P )(1− φn)

≤ exp((1 + C)nε2n)Πn(Pcn) + exp((1 + C)nε2n) sup
Pn∩{P :d(P,P0)≥εn}

P n(1− φn).

(A.14)

Combining (A.11), (A.12) and (A.14) will lead to the conclusion.

Theorem 4 in the paper Let the test in the lemma 2 to be the test φn defined in lemma

1 with ε = Mεn and M2 > 16 + 8C. Using the condition (a), (b) in the Theorem 4, we have

EP0Πn(P : d(P, P0) ≥Mεn|X1, . . . , Xn) ≤

exp(−nε2n) + exp(−nε2n) + exp(−nε2n) = 3 exp(−nε2n).

So

EP0

∑
n

Πn(P : d(P, P0) ≥Mεn|X1, . . . , Xn) ≤ 3
∑
n

exp(−nε2n) <∞.
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Thus we have ∑
n

Πn(P : d(P, P0) ≥Mεn|X1, . . . , Xn) <∞ a.s.P n
0 ,

and

Πn(P : d(P, P0) ≥Mεn|X1, . . . , Xn)→ 0 a.s.P n
0 .
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