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Binding probability for a monovalent ligand on a multivalent target. We derive an equation for the 
binding probability of a monovalent ligand to a surface coated with multiple receptors. There are 
various way to do this, each with a slightly different interpretation. For clarity and to understand the 
implicit assumptions, we will provide two different derivations, using first a grand-canonical and then 
a canonical description.  
One possible derivation can be done by treating ligand binding as a Langmuir adsorption problem (10) 
where a surface with 𝑁𝑇  adsorbing sites, each of which carries 𝑁𝑅 ligands. In this case, we interpret 
the fraction of sites with a ligand adsorbed, 𝜃 = 𝑁/𝑁𝑇, as the adsorption probability. Note that since 
in the Langmuir adsorption problem each site is independent from each other, this is the same as 
calculating the probability that a single site has a bound ligand attached. Thus, following the classical 
Langmuir model, we write 
 

𝜃 =
𝑎𝑞

1+𝑎𝑞
                                                                              (S1) 

 
where 𝑎 is the ligand activity which for dilute solutions is given as  𝑎 ≈ 𝜌𝑣0. With 𝜌 being there the 
number concentration of ligands 𝜌 = [𝐿]𝑣0, where [𝐿] is the molar concentration of ligands and 𝑁𝐴 
Avogadro's number and 𝑣0 the so-called binding volume, i.e. the volume in which a ligand must be 
confined to be considered bound to the site. Note that 𝑞 is formally the ratio of the partition function 
for a bound ligand with respect to an unbound, one once the ligand has been confined within a volume 
𝑣0 around the receptor. In other words it is the change in free-energy if we turned on the interaction 
potential between the ligand and the receptor, keeping the ligand within the binding volume. If there 
are 𝑁𝑅 receptor per site, and a ligand can only bind one of them at any one time, we have that 
 

𝑞 = 𝑁𝑅𝑒𝑥𝑝(−𝛽𝛥𝐺0)                                                              (S2) 
 
where 𝛽 = 1/𝑘𝐵𝑇 and 𝛥𝐺0  is the ligand-receptor binding free-energy. In order to understand the 
exact meaning of these quantities, it is important to give a proper definition of this energy. The value 
of 𝛥𝐺0  is linked to the internal partition function of ligands and receptors in the bound state, 
𝑧𝐿𝑅 ,compared to the free ones, 𝑧𝐿 and 𝑧𝑅, respectively. More precisely, if 𝑀 and 𝑚 are the degrees 
of freedom of a ligand and receptor, respectively, 𝑧𝐿𝑅  is the 𝑚+𝑀 − 6  dimensional integral of 
𝑒𝑥𝑝(−𝛽𝐻({𝑥})), 𝐻 being the Hamiltonian of the system, over all the degrees of freedom {𝑥} of the 
bound ligand-receptor complex once its centre of mass has been fixed and the ligand (or, by 
symmetry, the receptor) is furthermore confined within a volume 𝑣0 around the receptor. Similarly, 
𝑧𝐿 and 𝑧𝑅 are the 𝑀− 3 and 𝑚− 3dimensional integral over the degrees of freedom of the ligand 
and receptor, respectively, once their centre of mass has been fixed in space. With these definitions, 
we have that 

 

𝑒𝑥𝑝(−𝛽𝛥𝐺0) =
𝑧𝐿𝑅

𝑧𝐿𝑧𝑅
                                                           (S3) 

 
How do the microscopic quantities in Eq. S3 relate to experimentally measurable parameters? An 
equation connecting microscopic and macroscopic quantities can be derived by comparing the 
microscopic definition of the chemical potential for a bound ligand receptor pair and an unbound 
ligand or receptor to their thermodynamic definition. The derivation is a bit long and we will not 
reproduce it here but it can be taken from  [ Leunissen et al, J. Am. Chem. Soc. 2010, 132, 1903–1913 ]. 
This provides the following equation 
 
 



𝑒𝑥𝑝(−𝛽𝛥𝐺0)𝑣0 = 𝐾𝐴 =
𝑒𝑥𝑝(−𝛽𝛥𝐺𝑏𝑖𝑛𝑑)

𝜌∘
                                              (S4) 

 
where 𝐾𝐴 = 𝐾𝐷

−1 is the experimentally measurable equilibrium association constant for free ligands 
and receptors in solution ( 𝐾𝐷 being the dissociation constant), while 𝜌∘ = 1𝑀  is the standard 
concentration of ligands and receptors at which the equilibrium constant is measured. The presence 
of this concentration in the equation connecting the binding energy and the association constant is 
very important but often creates confusion. We will come back to this aspect later, let us first 
comment on the meaning of equation S4 and provide a final expression for the binding probability 𝜃. 
Equation S4 makes explicit that the thermodynamically-defined binding free-energy for the reaction 
binding reaction between ligand and receptors 𝐿 + 𝑅 → 𝐿𝑅, 𝛥𝐺𝑏𝑖𝑛𝑑, is not exactly the bond energy 
𝛥𝐺0 as defined here, and it actually depends on the definition of the chosen value for 𝑣0. This should 
not really come as a surprise. In an experiment, the equilibrium concentration of bound and unbound 
complexes can be measured to calculate the equilibrium association constant from the definition 

𝐾𝐴 =
[𝐿𝑅]

[𝐿][𝑅]
, where [𝐿𝑅]  and [𝐿] ( [𝑅] )are the equilibrium molar concentration of bound ligand-

receptor pairs and unbound ligands(receptors), respectively. However, clearly what we define as 
bound or unbound will depend on what cutoff distance we decide to choose to decide that two 
reactants A and B are forming an AB complex, which defines our volume 𝑣0. Now by substituting Eqs 
S3 and S4 into Eq. S1 we finally obtain 
 

𝑝𝐵 = 𝜃 =
𝜌𝑣0𝑁𝑅𝑒𝑥𝑝(−𝛽𝛥𝐺0)

1+𝜌𝑣0𝑁𝑅𝑒𝑥𝑝(−𝛽𝛥𝐺0)
=

𝜌𝑁𝑅𝐾𝐴

1+𝜌𝑁𝑅𝐾𝐴
                                           (S5) 

 
which is our final expression for  Eq. 1 in the main text. 
Let us now quickly see where the factor 𝜌∘ comes from, which is the source of confusion and can make 
expression appear dimensionally not correct, if the exact definition or interpretation of concentrations 
or densities is not given. Binding between a ligand and receptor in solution can be described as a 
bimolecular reaction 𝐿 + 𝑅 → 𝐿𝑅 ,  for which the textbook definition of the equilibrium constant is 
 

𝐾𝐴
𝑝
=

[𝐿𝑅]

[𝐿][𝑅]
= 𝑒𝑥𝑝(−𝛽𝛥𝐺𝑏𝑖𝑛𝑑)                                                 (S6) 

 

This expression makes sense only if 𝐾𝐴
𝑝

 (the superscript 𝑝 will be clear in a second) is non-dimensional, 
which also means that all the concentrations [𝐿], [𝑅] and [𝐿𝑅] must be non-dimensional, which is 
true if they are intended as scaled by some reference value. However, the association constant is 
typically reported in inverse molar 𝑀−1, creating confusion. The difference is what has been sometime 
referred to as the ''physics'' vs the ''chemistry'' definition of the association constant. When writing 
Eq. S6, [𝐿], [𝑅] and [𝐿𝑅] in fact are not the molar concentration, but the molar concentration scaled 
by the reference value of the ''reactants'' 𝐿 and 𝑅 at which the equilibrium association constant is 
measured. By convention, this value is 𝜌∘ = 1𝑀.  
If we insist to interpret [𝐿], [𝑅] and [𝐿𝑅] instead as unscaled concentrations, the correct expression 
for Eq. S6 is 

 

𝐾𝐴
𝑝
=

[𝐿𝑅]/𝜌∘

[𝐿]/𝜌∘[𝑅]/𝜌∘
=

[𝐿𝑅]𝜌∘

[𝐿][𝑅]
= 𝑒𝑥𝑝(−𝛽𝛥𝐺𝑏𝑖𝑛𝑑)                                         (S7) 

 
or in other words 

[𝐿𝑅]

[𝐿][𝑅]
≡ 𝐾𝐴

𝑐 = 𝐾𝐴
𝑝
/𝜌∘ =

𝑒𝑥𝑝(−𝛽𝛥𝐺𝑏𝑖𝑛𝑑)

𝜌∘
                                                 (S8) 

 
where 𝐾𝐴

𝑐 is now what we called the ''chemistry'' definition of the association constant and has indeed 
the recognisable dimensions of an inverse concentration 𝑀−1. 



We now shown another possible route to derive Eq. 1, this time using a ''canonical'' approach rather 
than the grand-canonical one implicit in the derivation of the Langmuir isotherm, Eq S1. We do that 
because it helps clarify some of the assumptions we are making in defining this binding probability. 
Consider 𝑁 monovalent ligands in a volume 𝑉 and a target bearing 𝑁𝑅 receptors. We assume that, if 
one of the 𝑁𝑅  receptors is occupied, then no other ligand can bind to the other 𝑁𝑅 − 1 receptors 
present, e.g., due to steric repulsion. We consider dilute solutions, where we can assume ligands in 
the bulk are almost never in proximity hence their partition function will be that of an ideal gas. 
Ligands instead gain an energy 𝛥𝐺0 upon binding with a receptor (i.e. when they are within a volume 
𝑣0  containing the receptor). Given these assumptions, the bound partition function 𝑞𝐵 can be 
calculated considering all configurations where one of the ligands is bound to any of the receptors, 
and in this case is confined in a volume 𝑣0 around it, whereas the other 𝑁 − 1 ligands are free to float 
in the rest of the volume 𝑉 − 𝑁𝑅𝑣0. This is given by 
 

𝑞𝐵 =
1

(𝑁−1)!
(𝑉 − 𝑁𝑅𝑣0)

𝑁−1[𝑁𝑅𝑣0𝑒𝑥𝑝(−𝛽𝛥𝐺0)]                                          (S9) 

 

where the factor 
1

(𝑁−1)!
 comes from the fact that we consider indistinguishable ligands, although we 

can still tell apart whether a ligand is bound or unbound (for example, checking that it is not in the 
volume 𝑣0 where it can interact with the receptor). Note that if we want to assume that all ligands are 
distinguishable nothing changes, as long as we do that consistently for both the bound and unbound 
state, and we would have exactly the same final expression, as shown later. 
The unbound partition function 𝑞𝑈 is when no ligand is bound, which means they are all free to float 
outside the volume where they interact with the receptor, thus giving 
 

𝑞𝑈 =
1

𝑁!
(𝑉 − 𝑁𝑅𝑣0)

𝑁                                                            (S10) 

 
Now the probability to observe the bound state is given by 

 

𝑝𝐵 =
𝑞𝐵

𝑞𝐵 + 𝑞𝑈
=

1
(𝑁 − 1)!

(𝑉 − 𝑁𝑅𝑣0)
𝑁−1(𝑁𝑅𝑣0𝑒𝑥𝑝(−𝛽𝛥𝐺)

1
𝑁! (𝑉 − 𝑁𝑁𝑅𝑣0)

𝑁 +
1

(𝑁 − 1)!
(𝑉 − 𝑁𝑅𝑣0)

𝑁−1(𝑁𝑅𝑣0𝑒𝑥𝑝(−𝛽𝛥𝐺)
= 

 

=
𝑁

1

𝑉−𝑁𝑅𝑣0
𝑁𝑅𝑣0𝑒𝑥𝑝(−𝛽𝛥𝐺)

1+𝑁
1

𝑉−𝑁𝑅𝑣0
𝑁𝑅𝑣0𝑒𝑥𝑝(−𝛽𝛥𝐺)

≈
𝑁

𝑉
𝑁𝑅𝑣0𝑒𝑥𝑝(−𝛽𝛥𝐺)

1+
𝑁

𝑉
𝑁𝑅𝑣0𝑒𝑥𝑝(−𝛽𝛥𝐺)

=
𝜌𝑁𝑅𝐾𝐴

1+𝜌𝑁𝑅𝐾𝐴
     (S11) 

 
where the approximation we used is that 𝑉 ≫ 𝑁𝑅𝑣0 , or in other words the binding volume occupied 
by the receptors is a very small fraction compared to the bulk volume of the solution. Finally, we also 
replaced𝑁/𝑉 = 𝜌 and 𝑣0𝑒𝑥𝑝(−𝛽𝛥𝐺) = 𝐾𝐴 . Clearly, Eq. S11 is exactly the same equation we had 
derived in the grand-canonical ensemble starting from Eq 1, which was interpreted as the probability 
for a binding site in the Langmuir picture to be occupied by a ligand (note the analogy between a single 
target in the canonical ensemble here and an adsorption site in the Langmuir description, each of 
which bears 𝑁𝑅  receptors).   
We note here that, as previously stated, if all ligands were considered completely distinguishable, 

nothing would have changed. In the definition of the bound partition function, Eq. S9, the factor 
1

(𝑁−1)!
 

would have been replaced by a factor of 𝑁, the number of distinguishable configuration with one 

bound ligand. At the same time, the unbound partition function would have had no 
1

𝑁!
factor at all, 

since this comes from indistinguishability of particles. Overall, this gives again the same final 
expression for 𝑝𝐵. One curiosity about this derivation is that it makes clear that we are not counting 
the contribution to the bound state coming from configurations where more than a single ligand is 



bound at the same time to the target (which is also an assumption in the derivation of the classical 
Langmuir model, Eq. S1). In practice, this means the expression we provide is valid for low bond 
energies / low ligand concentrations, where this probability is small. In any case, due to this 
approximation, Eq. S9 actually represents an upper bound to the probability of a single target with 
multiple receptors to have at least one ligand bound to it. 
 
Single bond derivation We now specialise the case of equations 7 and 8 in order to provide an explicit 
value for the system under consideration. If a single ligand-receptor pair type 𝜁 is present, we obtain 
 

𝐸𝑏𝑜𝑛𝑑
𝜁

𝑘𝐵𝑇
= 𝑁𝐿,𝜁[𝑙𝑛(𝑝𝐿𝜁 +

1

2
(1 − 𝑝𝐿𝜁)] + 𝑁𝑅,𝜉[𝑙𝑛(𝑝𝑅𝜁) +

1

2
(1 − 𝑝𝑅𝜁)]                     S.12 

 
where 𝑁𝐿,𝜉  is the number of ligands on a nanoparticle that can bind to the corresponding 𝑁𝑅,𝜉  

receptors on the surface of the target and the subscript 𝜁 specifies a possible pair. Note that 𝑁𝐿  is not 
necessarily the total number of ligands on the surface of the nanoparticle, as also pointed out by 
Martinez-Veracoechea and Frenkel, (11) but only those that can, due to the nanoparticle orientation, 
bind to the surface. In Eq. S.12, 𝑝𝐿(𝑅)𝜁is the probability that a ligand(receptor) is unbound, which for 

a single type of ligand-receptor pair present in the system is given by the following system of coupled 
equations 

 

{
𝑝𝐿 +𝑁𝑅𝑝𝑅𝑝𝐿𝜒 − 1 = 0
𝑝𝑅 +𝑁𝐿𝑝𝑅𝑝𝐿𝜒 − 1 = 0

                                                               S.13 

 
where we have dropped the subscript 𝜁 for simplicity. In writing Equation S13, we assumed that each 
ligand can bind to each of the receptors on the target i.e. the so-called radial topology of binding(7). 
Other binding topologies can be similarly considered without changing the  qualitative features of the 
results obtained (11). The only physical solutions of the system in Equation S13 is 

 

𝑝𝐿 =
(𝑁𝐿−𝑁𝑅)𝜒−1+√4𝑁𝐿𝜒+(1+(𝑁𝑅−𝑁𝐿)𝜒)

2

2𝑁𝐿𝜒
                                                      S14 

 
 

𝑝𝑅 =
(𝑁𝑅−𝑁𝐿)𝜒−1+√4𝑁𝑅𝜒+(1+(𝑁𝐿−𝑁𝑅)𝜒)

2

2𝑁𝑅𝜒
                                                    S15 

 
whose substitution in  Equation  S.12  gives  the  binding  free-energy.   
For the multiplexed case, equation S.12 is still valid for each ligand-receptor pair if one assumes that 
each ligand type can only bind a specific type of receptor. In other words, either no or weak cross-
interactions with non-cognate receptors must be present. In this case, one can simply solve the same 
set of coupled equations for each ligand-receptor pair separately and sum up the resulting free-energy 
contribution over all possible pairs to provide the total binding energy. 
 
 
 



 
 
 
 

Fig. S1. Scaling principles in superselectivity continued. Heat maps showing the fraction of bound particle 
θ as a function of the numbers of receptors <NR> and number of the polymer and glycocalyx interference 
parameter δP (a) the glycocalyx spacing, dG (b) and particle concentration [P] (c). Each map was analysed 
to calculate the selectivity αmax and the corresponding <NR>onset and the graph of these as function of the 
varying parameter are reported alongside.  
  



 
 
 
 
 
 
 
 
 
 
 

Fig. S2. Polymersome characterization. Particle size distributions measured by dynamic light scattering 
for POEGMA-PDPA/Angiopep (a) POEGMA-PDPA/PMPC (b) and POEGMA-PDPA/PMPC + Angiopep  (c) 
polymersomes. Representative transmission electron micrographs of POEGMA-PDPA/Angiopep (25 
ligands) and POEGMA-PDPA/PMPC  (1000 ligands) formulations. 
  



 
 
 
 
 

 
 
 
 
 

 

Fig. S3. Polymersome cellular uptake. Micrograph of polymersome bearing 22 angiopep2 ligands uptake 
in brain endothelial cells (BEnd3) after 1hr incubation. Note the polymersomes were labelled by Cy3 (Red) 
and the cell DNA by DAPI (Blue)  
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