1	SUPPLEMENTARY MATERIAL
2	
3	Autofluorescence mediated red spherulocyte sorting provides insights
4	into the source of spinochromes in sea urchins
5	Authors: Jonathan Hira ^{1,*} , Deanna Wolfson ² , Aaron John Christian Andersen ¹ , Tor Haug ¹ and Klara
6	Stensvåg ^{1,*}
7	
8	¹ The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics,
9	UiT The Arctic University of Norway, Tromsø, Norway
10	² Affiliation Department of Physics and Technology, The Faculty of Science and Technology, UiT
11	The Arctic University of Norway, Tromsø, Norway
12	
13	* Correspondence: klara.stensvag@uit.no and jonathan.hira@uit.no
14	
15	

1 Text S1

\mathbf{r}
7

3							
4	Analysis of the HCl treated, diethyl ether extracted, H2O extract of the RSCs revealed an absence of th						
5	sulphated analogues, and the appearance of molecular features corresponding to their de-sulphated						
6	counterparts. Each of these de-sulphated derivatives had no detectable indication of the in-source						
7	fragmentation of SO ₃ , each had increased retention times (relative to their sulphate ester counterpart						
8	indicating a decrease in polarity (Fig. S8). Furthermore, a change in UV absorption spectre (Fig. S9						
9	support the conclusion that these are indeed de-sulphated derivatives. These results show that low pH						
10	conditions typically utilised in Echinoidea extraction procedures have the potential to hydrolyse the						
11	sulphate esters of PHNQ, and may explain the absence or low abundance of sulphated derivatives seen						
12	in previous studies. It is likely, that the mild H ₂ O extraction produce utilised for the RSCs may preserved						
13	the metabolite profile of these cells. Preserving these constituents for analysis may provide insight into						
14	the function of these metabolites in vivo, and is necessary to assess their biological activity.						
15							
16							
17							
18							
10							
20							
21	Videos						
22 23							
24							
25 26	Video S1: Timelapse fluorescence depiction of MPCs and RSCs population.						
27	Video S2: Timelapse fluorescence depiction of single RSCs.						
28 29	Video S3: Timelapse fluorescence and brightfield depiction of RSCs.						
30							

- Figures

- Figure S1: Fluorescence image of pure RSCs population.
- (A) Orange fluorescence image. (B) Brightfield image and (C) Merged between fluorescence and
- brightfield image. Scale bar 5 μ m.

3 Figure S2: UV-vis absorption chromatogram at 400-600 nm for RSCs (red), and MPCs (blue).

4 Chromatogram of high wavelength absorption, showing the difference between the absorption of the RSCs extract and the MPCs extract at

- 5 400-600 nm, range which includes characteristic absorption maxima of PHNQ.
- 6
- 7

Figure S3: Fragmentation pattern and UV-vis absorption spectrum of tentatively identified spinochrome E sulphate iso 1.

3 Fragmention of the $[M-SO_3-H]^-$ ion m/z 252.9990 with a CID energy of 25 CeV. Approximate eluent: 25% ACN 0.1% formic acid.

Figure S4: Fragmentation pattern and UV-vis absorption spectrum of suspected spinochrome D sulphate.

3 Fragmention of the $[M-SO_3-H]^-$ ion m/z 237.0041 with a CID energy of 25 CeV. Approximate eluent: 30% ACN 0.1% formic acid.

Figure S5: Fragmentation pattern and UV-vis absorption spectrum of suspected spinochrome 536 dimer sulphate.

3 Fragmention of the $[M-SO_3-H]^-$ ion m/z 535.0366 with a CID energy of 25 CeV. Approximate eluent: 38% ACN 0.1% formic acid.

Figure S6: Fragmentation pattern and UV-vis absorption spectrum of suspected spinochrome C sulphate.

3 Fragmention of the $[M-SO_3-H]^-$ ion m/z 279.0146 with a CID energy of 30 CeV. Approximate eluent: 40% ACN 0.1% formic acid.

Figure S7: Fragmentation pattern and UV-vis absorption spectrum of suspected spinochrome 502 dimer sulphate.

3 Fragmention of the $[M-SO_3-H]^-$ ion m/z 501.0311 with a CID energy of 25 CeV. Approximate eluent: 45% ACN 0.1% formic acid.

2 **Figure S8:** Comparison of retention times of suspected spinochrome sulphate derivatives to that of de-sulphated forms.

3 Extracted ion chromatograms of [M-SO₃-H]⁻ ions in water extract in blue, and extracted ion chromatograms of [M-H]⁻ ions in acidic extract in

4 red. +: potential additional minor isomer of sulphated spinochrome 502 dimer. *: potential additional minor isomer of sulphated spinochrome

5 C.

1

Figure S9: UV-vis absorption spectrum of tentatively identified de-sulphated spinochromes.
UV-vis absorption spectrum of tentatively identified de-suphated spinochromes from acidic
extracted cells. Approximate eluent (top to bottom) in 0.1% formic acid: 30% ACN;

5 35% ACN; 40% ACN; 46% ACN; 49% ACN.

- **Table S1:** Target list of known spinochrome-like metabolites used for the purpose of LC-MS dereplication.
- 2

Molecular									
#	Compound name	formula	Exact mass	Genus	Species				
1	Echinochrome A	$C_{12}H_{10}O_7$	266.04266	Arbacia	stellata				
2	Spinochrome A	$C_{12}H_8O_7$	264.02701	Echinus	esculentus				
3	Spinochrome B	$C_{10}H_6O_6$	222.01643	Paracentrotus	lividus				
4	Spinochrome C	$C_{12}H_8O_8$	280.0187	Paracentrotus	lividus				
5	Spinochrome D	$C_{10}H_6O_7$	238.01135	Mesocentrotus	nudus				
6	Spinochrome E	$C_{10}H_6O_8$	254.00627	Mesocentrotus	nudus				
7	Spinochrome G	$C_{12}H_8O_7$	264.02701	Echinothrix	diadema				
8	Spinochrome S	$C_{12}H_8O_7$	264.02701	Salmacis	sphaeroides				
9	2-Hydroxy-3-acetylnaphthazarin	$C_{12}H_8O_6$	248.03209	Echinothrix	diadema				
10	2,3,7-trihydroxy-6-ethyljuglone	$C_{12}H_{10}O_{6}$	250.04775	Echinothrix	diadema				
11	6-Ethyl-2-hydroxynaphthazarin	$C_{12}H_{10}O_4$	218.05791	Echinothrix	diadema				
12	Naphthopurpurin	$C_{10}H_6O_5$	206.02153	Echinothrix	diadema				
13	6-Ethyl-2-hydroxynaphthazarin	$C_{12}H_{10}O_5$	234.05283	Echinothrix	calamaris				
14	6-Acetyl-2,7-dihydroxyjuglone	$C_{12}H_8O_6$	248.03209	Echinothrix	diadema				
15	6-Acetyl-2-hydroxynaphthazarin	$C_{12}H_8O_6$	248.03209	Echinothrix	diadema				
16	Mompain (2,7-Dihydroxy-naphthazarin) Ethylmompain (3-Ethyl-2,7-	$C_{10}H_6O_6$	222.01643	Echinothrix	diadema				
17	dihydroxynaphthazarin) 6-Ethyl-3.7-dihydroxy-2-methoxy-	$C_{12}H_{10}O_{6}$	250.04775	Echinothrix	diadema				
18	naphthazarin 6-Ethyl-2,7-dihydroxy-3-methoxy-	$C_{13}H_{12}O_7$	280.0583	Diadema	antillarum				
19	naphthazarin 3-Acetyl-2,7-dihydroxy-6-	$C_{13}H_{12}O_7$	280.0583	Diadema	antillarum				
20	methylnaphthazarin	$C_{13}H_{10}O_7$	278.04266	Mesocentrotus	nudus				
21	Echinamine A	$C_{12}H_{11}O_6N$	265.0586	Scaphechinus	mirabilis				
22	Echinamine B	$C_{12}H_{11}O_6N$	265.0586	Scaphechinus	mirabilis				
23	Aminopentahydroxynaphthoquinone	$C_{10}H_6O_7N$	253.0145	Mesocentrotus	nudus				
24	Spinamine E	$C_{10}H_6O_7N$	253.015	Strongylocentrotus	pallidus				
25	Spinazarin	$C_{10}H_6O_6$	222.01643	Scaphechinus	mirabilis				
26	Ethylspinazarin	$C_{12}H_{10}O_{6}$	250.04775	Scaphechinus	mirabilis				
27	Tetrahydroxydimethoxynaphthoquinone	$C_{12}H_{10}O_8$	282.03757	Strongylocentrotus	polyacanthus				
28	Namakochrome Ethylidene-6,60-bis(2,3,7-	$C_{11}H_8O_8$	268.02192	Strongylocentrotus	droebachiensis				
29	trihydroxynaphthazarin) Ethylidene-3,30-bis(2,6,7-	$C_{22}H_{14}O_{14}$	502.03836	Strongylocentrotus	intermedius				
30	trihydroxynaphthazarin) Anhydroethylidene-6,60-bis(2,3,7-	$C_{22}H_{14}O_{14}$	502.03836	Spatangus	purpureus				
31	trihydroxynaphthazarin) Anhydroethylidene-3,30-bis(2,6,7-	$C_{22}H_{12}O_{13}$	484.0203	Strongylocentrotus	droebachiensis				
32	trihydroxynaphthazarin) Mirabiquinone A (7,50Anhydro-ethylidene-	C ₂₂ H ₁₁ O ₁₃	484.0203	Spatangus	purpureus				
33	6,60-bis(2,3,7-trihydroxynaphthazarin))	$C_{22}H_{12}O_{13}$	484.0205	Scaphechinus	mirabilis				
34	Pyranonaphthazarin	$C_{14}H_{10}O_6$	274.04774	Echinothrix	diadema				
35	Acetylaminotrihydroxynaphthoquinone	$C_{10}H_9O_6N$	263.0352	Mesocentrotus	nudus				
36	Spinochrome dimer	$C_{22}H_{16}O_{16}$	536.0359	Strongylocentrotus	droebachiensis				
37	Spinochrome B sulfate derivative	$C_{10}H_5O_9S$	300.96543	Psammechinus	miliaris				
38	Spinochrome E sulfate derivative	$C_{10}H_5O_{11}S$	333.9553	Psammechinus	miliaris				
39	Spinochrome A—Iso 2	$C_{12}H_8O_7$	264.027	Toxopneustes	pileolus				
40	Spinochrome D—Iso 1	$C_{10}H_6O_7$	238.01135	Diadema	savignyi				
41	Spinochrome D—Iso 3	$C_{10}H_6O_7$	238.01135	Tripneustes	gratilla				