Supplementary Information

Programmable Meroterpene Synthesis

Shen et al.

Supplementary Note 1. Procedure to prepare diketene from acetyl chloride.

$$\underset{\mathsf{CI}}{\overset{\mathsf{O}}{\overset{\mathsf{Me}}{\longrightarrow}}} \xrightarrow{\mathsf{Et}_3\mathsf{N}} \underset{\mathsf{Et}_2\mathsf{O}, \,\mathsf{rt}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\longrightarrow}}} \overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{O}}{\longrightarrow}}} \mathsf{O}$$

A flame-dried 500mL three-neck flask with a fritted side neck (see Supplementary Figure 1, image **A**, below) was charged with acetyl chloride (3 mL, 42 mmol, 1.2 equiv) and dry Et₂O (100 mL) under nitrogen. Freshly distilled triethylamine (5 mL, 36 mmol, 1 equiv.) was added dropwise and the resulting solution stirred vigorously at room temperature for 15 hr. Under positive nitrogen pressure, the white salts were filtered off and the solution collected in a dry three-neck flask (see Supplementary Figure 1, image **B**, below). The salts were washed with additional Et₂O (3 x 50mL) and the combined ether solution concentrated *in vacuo* using a rotary evaporator with an ice-water cooling bath. Upon removal of diethyl ether, the flask was back-filled with nitrogen and a Hickman distillation head with a side port and cooling jacket was attached (see Supplementary Figure 1, image **C**, below). The cooling jacket was cooled to -78 °C (dry ice and acetone) and the diketene was distilled at room temperature using high vacuum wherein a frozen white solid formed in the neck of the Hickman head. The high vacuum was replaced by a nitrogen atmosphere and the dry ice/acetone cooling jacket warmed to room temperature resulting in diketene as a colorless liquid (0.34 mL, 4.4 mmol 24% yield). Spectroscopic data agreed with the literature and a commercial sample from Sigma Aldrich.

(reaction set-up)

(filtration under N₂)

(Hickman distillation)

Supplementary Figure 1. Diketene synthesis reaction steps. **a** set-up of the reaction **b** filtration of salts under nitrogen atmosphere **c** purification of the product by Hickman distillation.

Supplementary Note 2. Procedure for the diketene annulation of Ketone 16: formation of 17-19.

A 20 mL flame-dried reaction tube was charged with ketone 16 (100 mg, 0.32 mmol, 1.0 equiv). The reaction vessel was evacuated and backfilled with nitrogen (three times in total) followed by the addition of degassed THF (5 mL) and Et₂O (5 mL). The reaction vessel was cooled to -78 °C and freshly prepared lithium 2,2,6,6-tetramethylpiperidide (0.45 M in THF, 0.80 mL, 0.36 mmol, 1.2 equiv) was added dropwise resulting in a light-yellow colored solution. The reaction mixture was stirred for 30 minutes at -78 °C and then 60 minutes at 0 °C. After this period, the reaction mixture was cooled to -40 °C and freshly distilled diketene (30 µL, 0.38 mmol, 1.2 equiv) was rapidly in one portion resulting in a bright vellow solution. The reaction vessel was maintained at this temperature for 90 minutes and then guenched with saturated aq. NH₄Cl (20 mL) at this temperature. The reaction mixture was extracted with EtOAc (3 x 25 mL) and the combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The crude residue was purified by column chromatography (5% EtOAc in hexanes \rightarrow 15% EtOAc in hexanes) to afford the annulated product 17 (44 mg, 35% yield) as a red/orange colored oil and recovered starting material (22 mg, 22% yield). The remaining mixed fractions were concentrated and re-chromatographed (2% Et₂O in hexanes \rightarrow 10% Et₂O in hexanes) to afford 18 (8 mg, 6%) and 19 (17 mg, 14%). Compound 18 (enol tautomer): colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 15.17 (s, 1H), 5.84 (s, 1H), 5.27 - 5.17 (m, 1H), 5.03 - 4.96 (m, 1H), 4.94 - 4.85 (m, 1H), 2.75 (dd, J = 12.8, 5.9 Hz, 1H), 2.55 (dd, J = 14.5, 8.0Hz, 1H), 2.34 (dd, J = 14.6, 7.0 Hz, 1H), 2.16 – 2.07 (m, 1H), 2.02 (s, 3H), 2.00 – 1.96 (m, 2H), 1.96 – 1.79 (m, 3H), 1.77 - 1.71 (s, 3H), 1.69 - 1.65 (s, 3H), 1.65 - 1.62 (m, 6H), 1.59 - 1.57 (m, 3H), 1.53 - 1.49 (m, 3H), 1.53 (m, 3H)3H), 1.37 – 1.24 (m, 3H), 0.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 220.9,194.5, 185.5, 135.3, 132.3, 131.6, 124.1, 122.4, 118.6, 97.8, 65.5, 52.5, 40.1, 36.8, 36.0, 32.4, 28.7, 25.8, 25.8, 25.5, 23.2, 18.7, 17.9, 17.8, 17.4. Compound 19 (mixture of enol and keto tautomers): colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 12.00 (enol tautomer, s, 1H), 5.24 – 4.96 (m, 3H), 3.55 (keto tautomer, s, 2H), 2.69 – 2.52 (m, 2H), 2.30 (s, 10H), 2.15 - 1.81 (m, 20H), 1.69 (dd, J = 3.2, 1.5 Hz, 18H), 1.68 - 1.66 (m, 15H), 1.61 (d, J = 1.4 Hz, 1.64)10H), 1.59 (d, J = 1.3 Hz, 6H), 1.59 – 1.56 (m, 15H), 1.40 – 1.25 (m, 6H), 0.97 (td, J = 7.5, 5.8 Hz, 3H), 0.90 (d, J = 1.8 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 176.5, 170.7, 164.7, 147.1, 147.0, 133.0, 132.8, 132.0, 131.9, 131.2, 131.1, 125.4, 125.0, 124.9, 124.9, 123.3, 123.2, 120.4, 120.3, 89.2, 49.9, 48.7, 48.6, 42.8, 42.4, 38.6, 38.5, 35.7, 35.7, 30.2, 29.2, 26.5, 26.4, 25.8, 25.7, 23.3, 21.3, 19.0, 17.9, 17.7, 17.7, 17.6, 17.5. Compound 17: white solid (m.p. = 99-101 °C); ¹H NMR (600 MHz, CDCl₃) δ 5.11 – 5.00 (m, 2H), 4.95 – 4.89 (m, 1H), 3.66 (d, J = 18.0 Hz, 1H), 3.11 (d, J = 18.0 Hz, 1H), 2.79 – 2.68 (m, 2H), 2.49 (dd, J = 15.2, 7.0 Hz, 1H), 2.46 - 2.36 (m, 2H), 2.17 - 2.06 (m, 2H), 2.06 - 1.97 (m, 1H), 1.94 (s, 1H), 1.80 - 1.72 (m, 1H), 1.68 (s, 9H), 1.62 (s, 3H), 1.59 (s, 6H), 1.41 - 1.30 (m, 2H), 1.26 (t, J = 12.9 Hz, 1H), 1.17 (td, J = 13.2, 4.6 Hz, 1H), 1.02 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.4, 203.8, 135.2, 132.5, 132.3, 124.5, 122.8, 118.4, 84.3, 61.2, 52.0, 50.5, 50.4, 45.0, 37.5, 35.2, 34.7, 29.2, 26.2, 26.0, 25.8, 22.9, 18.3, 18.0, 18.0, 14.9; IR (thin film) vmax 3520, 3375, 2968, 2923, 2878, 1733 cm⁻¹; HRMS (ESI⁻) *m/z* calcd for C₂₆H₃₉O₃ [M-H]⁻: 399.2905, found 399.2904.

Supplementary Note 3. General Procedure for the annulation of lithium enolates with diketene employing enolates generated by ketone deprotonation with Lithium 2,2,6,6-tetramethylpiperidide (LTMP).

A 20 mL flame-dried reaction tube was charged with 2,2,6,6-tetramethylpiperidine (0.19 mL, 1.1 mmol, 1.1 equiv). The reaction vessel was evacuated and backfilled with nitrogen three times followed by the addition of Et₂O (2.5 mL) or THF (2.5 mL). After cooling the reaction vessel to -78° C, *n*-BuLi (2.5 M in hexanes, 0.42 mL, 1.05 mmol was added dropwise resulting in a light-yellow solution. The reaction mixture was stirred for 30 minutes at -78°C and then 15 minutes at 0 °C. After re-cooling the reaction vessel to -78° C, mL) added dropwise as a solution in Et₂O (2.5 mL). The reaction mixture was stirred for 30 minutes at -78° C and then 30 minutes at 0 °C. The reaction mixture was cooled to -40° C and freshly distilled diketene (84 µL, 1.1 mmol, 1.1 equiv) was added rapidly in one portion resulting in the formation of white precipitate. The reaction was maintained at this temperature for 60 minutes then quenched with 1 M HCl (20 mL). The reaction mixture was extracted with EtOAc (3 x 25 mL) and the combined organic layers were washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The crude residue was purified by column chromatography to afford the annulated product.

Diketone **26**. Following the general procedure (0.1 mmol scale) and using Et₂O/THF (v:v = 1:1) as solvent, the title compound was obtained after column chromatography (20% EtOAc in hexanes) as a white solid (14.3 mg, 41% yield): ¹H NMR (700 MHz, CDCl₃) δ 4.33 (d, J = 1.0 Hz, 1H), 3.74 (d, J = 1.1 Hz, 1H), 3.72 (d, J = 5.8 Hz, 1H), 3.26 (dd, J = 17.0, 2.4 Hz, 1H), 3.13 (dd, J = 15.4, 5.9 Hz,

1H), 2.84 (dd, J = 16.1, 2.4 Hz, 1H), 2.67 (d, J = 16.1 Hz, 1H), 1.57 (d, J = 15.4 Hz, 1H), 1.48 (s, 3H), 1.06 (s, 3H), 0.91 (s, 9H), 0.49 (s, 3H), 0.10 (s, 4H), 0.08 (s, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 208.7, 202.0, 83.8, 81.8, 59.8, 54.4, 51.0, 46.6, 42.1, 25.8, 24.1, 22.1, 18.0, 17.9, -4.7, -5.0; IR (thin film) vmax 3464, 2956, 2929, 2884, 1727, 1601 cm⁻¹; HRMS (ESI-) *m*/*z* calcd. for C₁₈H₃₁O₄Si [M-H]⁻: 339.1997, found: 339.1997.

Diketone **27**. Following the general procedure (0.1 mmol scale) and using Et₂O/THF (*v*:*v* = 1:1) as solvent, the title compound was obtained after column chromatography (20% EtOAc in hexanes) as a white solid (19.1 mg, 49% yield): ¹H NMR (600 MHz, CD₂Cl₂) δ 5.07 (td, *J* = 6.9, 3.2 Hz, 1H), 4.29 (s, 1H), 3.75 (d, *J* = 5.7 Hz, 1H), 3.59 (d, *J* = 16.9 Hz, 1H), 3.19 (dd, *J* = 16.9, 2.2 Hz, 1H), 2.96 (dd, *J* = 15.5, 5.8 Hz, 1H), 2.78 (dd, *J* = 16.1, 2.2 Hz, 1H), 2.74 – 2.65 (m, 2H), 2.59 (dd, *J* = 15.0, 6.9 Hz, 1H), 1.70 (d, *J* = 1.5 Hz, 3H), 1.64-1.60 (m, 4H), 1.04 (s, 3H), 0.91

(s, 9H), 0.47 (s, 3H), 0.11 (s, 3H), 0.09 (s, 3H); ¹³C NMR (151 MHz, CD₂Cl₂) δ 207.9, 202.4, 135.7, 119.5, 84.2, 82.3, 64.0, 56.4, 51.40, 47.7, 40.5, 36.3, 26.1, 25.9, 22.2, 18.1, 18.1, 17.9, -4.7, -5.1; IR (thin film) vmax 3468, 2955, 2929, 2929, 2857, 1736, 1606 cm⁻¹; HRMS (ESI-) *m/z* calcd. for C₂₂H₃₇O₄Si [M-H]- : 393.2467, found: 393.2467.

Diketone **28**. Following the general procedure (0.1 mmol scale) and using Et₂O/THF (v:v = 1:1) as solvent, the title compound was obtained after column chromatography (50% EtOAc in hexanes) as a light yellow solid (11 mg, 31% yield): ¹H NMR (600 MHz, CDCl₃) δ 5.75 (dt, J = 9.8, 5.9 Hz, 1H), 5.21 – 5.07 (m, 2H), 4.40 (s, 1H), 3.87 (d, J = 5.5 Hz, 1H), 3.79 – 3.68 (m, 1H), 3.28 (dd, J =

17.3, 2.2 Hz, 1H), 3.07 (dd, J = 15.6, 5.6 Hz, 1H), 2.92 (dd, J = 15.9, 2.2 Hz, 1H), 2.69 (d, J = 15.9 Hz, 1H), 2.64 (dd, J = 14.1, 5.4 Hz, 1H), 2.11 (dd, J = 14.1, 9.2 Hz, 1H), 1.64 (d, J = 15.5 Hz, 1H), 0.94 (s, 9H), 0.47 (s, 3H), 0.17 (s, 3H), 0.13 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 208.7, 202.0, 134.2, 118.6, 84.3, 80.3, 60.0, 54.2, 53.3, 47.1, 41.7, 35.0, 25.9, 24.0, 18.8, 17.9, -4.0, -5.0; IR (thin film) vmax 3458, 2952, 2929, 2857, 1592, 1462, 1408, 1390 cm⁻¹; HRMS (ESI-) *m/z* calcd. for C₂₀H₃₃O₄Si [M-H]-: 365.2154, found: 365.2155.

Diketone **29**. Following the general procedure (0.1 mmol scale) and using Et₂O/THF (*v*:*v* = 1:1) as solvent, the title compound was obtained after column chromatography (50% EtOAc in hexanes) as a light yellow solid (11 mg, 31% yield): ¹H NMR (600 MHz, CDCl₃) δ 5.95 – 5.60 (m, 2H), 5.31 – 4.98 (m, 4H), 4.48 (s, 1H), 3.90 (d, *J* = 5.5 Hz, 1H), 3.59 (d, *J* = 17.3 Hz, 1H), 3.40 – 3.23 (m, 1H), 2.93 (ddd, *J* = 15.9, 5.8, 1.6 Hz, 2H), 2.76 – 2.67 (m, 3H), 2.65 – 2.59 (m,

1H), 2.10 (dd, J = 14.1, 9.1 Hz, 1H), 1.75 (d, J = 16.1 Hz, 1H), 0.95 (s, 9H), 0.49 (s, 3H), 0.17 (s, 3H), 0.14 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 207.0, 201.8, 134.0, 133.3, 118.8, 118.5, 84.5, 80.3, 63.9, 55.7, 53.3, 47.7, 41.7, 39.4, 34.8, 25.8, 18.7, 17.8, -4.1, -5.2; IR (thin film) vmax 3459, 3075, 1952, 1929, 2857, 1736, 1599, 1453, 1435 cm⁻¹; HRMS (ESI-) *m/z* calcd. for C₂₂H₃₅O₄Si [M-H]-: 391.2310, found: 391.2309.

Diketone **30**: Following the general procedure (0.13 mmol scale) and using Et₂O/THF (v:v = 1:1) as solvent, the title compound was isolated by silica gel column chromatography (2% EtOAc in hexanes $\rightarrow 20\%$ EtOAc in hexanes) as a white solid (18.0 mg, 30% yield, 47% BRSM):

m.p. = 205-207 C; ¹H NMR (600 MHz, CDCl₃) δ 3.68 (d, *J* = 18.7 Hz, 1H), 3.14 (dd, *J* = 11.5, 4.6 Hz, 1H), 3.11 (d, *J* = 18.5 Hz, 1H), 2.63 (d, *J* = 15.0 Hz, 1H), 2.58 (dd, *J* = 12.9, 6.3 Hz, 1H), 2.43 (d, *J* = 14.9 Hz, 1H), 1.89 (s, 1H), 1.68-1.56 (m, 2H), 1.54-1.42 (m, 4H), 1.40-1.35 (m, 1H), 1.34 (s, 3H), 1.22-1.14 (m, 1H), 1.08 (s, 3H), 1.02-0.93 (m, 2H), 0.92 (s, 3H), 0.88 (s, 12H), 0.76 (s, 3H), 0.66 (dd, *J* = 12.2, 2.3 Hz, 1H), 0.02 (s, 3H), 0.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.9, 204.2, 82.1, 79.5, 57.8, 56.4, 54.5, 51.1, 50.8, 48.8, 39.5, 38.6, 36.7, 34.6, 30.2, 28.6, 27.6, 26.1, 24.9, 19.0, 18.3, 16.3, 16.3, 15.9, -3.6, -4.8; IR (thin film) vmax 3406, 2927, 2854, 1726, 1701, 1468, 1387, 1362, 1305, 1254, 1104, 1088, 1062, 1045, 1006, 984, 912, 880, 832, 772 cm⁻¹; HRMS (ESI) *m*/*z* calcd. for [C₂₈H₄₇O₄Si]⁻(M-H)⁻⁻: 475.3249, found 475.3242.

Diketone **31**: Following the general procedure (0.42 mmol scale) and using Et₂O/THF (*v*:v = 1:1) as solvent, the title compound was isolated by silica gel column chromatography (50% \rightarrow 60% EtOAc in hexanes) as a white solid (49 mg, 59% yield): m.p. = 108-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.43 (d, J = 20.0 Hz, 1H), 3.38 (d, J = 20.0 Hz, 1H), 2.87 (d, J = 17.0 Hz, 1H), 2.64 (d, J = 17.0 Hz, 1H), 2.10 (sept, J = 6.9 Hz, 1H), 2.02 (bs, 1H), 1.30 (s, 3H), 1.26 (s, 3H), 1.00 (d, J = 6.9 Hz, 3H), 0.95

(d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 207.1, 204.3, 77.7, 53.6, 53.1, 43.4, 34.8, 21.9, 19.1, 18.3, 18.0; IR (thin film) vmax 3595, 3473, 2988, 2970, 2571, 1611 cm⁻¹; HRMS (ESI): *m/z* calcd. for [C₁₁H₁₇O₃]⁻ (M-H)⁻: 197.1183, found 197.1175.

Diketone **32**: Following the general procedure (0.40 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (40% \rightarrow 50% EtOAc in hexanes) as a white solid (41 mg, 44% yield): m.p. = 135-137 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.38 (m, 4H), 7.38 – 7.33 (m, 1H), 3.74 (d, *J* = 16.1 Hz, 1H), 3.65 (d, *J* = 18.4 Hz, 1H), 3.46 (dd, *J* = 18.4, 2.2 Hz, 1H), 2.72 (dd, *J* = 16.2,

2.2 Hz, 1H), 2.23 (bs, 1H), 1.22 (s, 3H), 1.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.7, 202.8, 141.3, 128.4, 128.2, 126.3, 78.3, 54.0, 52.7, 50.8, 22.7, 17.9; IR (thin film) vmax 3379, 2985, 2925, 2892, 1734, 1700 cm⁻¹; HRMS (ESI): *m/z* calcd. for [C₁₄H₁₅O₃]⁻ (M-H)⁻: 231.1027, found 231.1037.

Diketone **33:** Following the general procedure (1.0 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography ($20\% \rightarrow 50\%$ EtOAc in hexanes) as a white crystalline solid (138 mg, 63% yield): m.p. = 171-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 4H), 7.36 – 7.30 (m, 1H), 3.60 (d, J = 20.0 Hz, 1H), 3.55 (d, J = 20.0 Hz, 1H), 3.26 (d, J = 15.8 Hz, 1H), 3.18 (q, J = 6.8 Hz, 1H), 2.88 (dd, J = 15.7, 1.6 Hz, 1H), 2.14 (bs, 1H), 0.94 (d, J = 6.8 Hz, 3H); ¹³C NMR

(150 MHz, CDCl₃) δ 203.0, 201.6, 143.3, 129.1, 127.9, 124.5, 76.2, 57.3, 55.8, 53.4, 8.5; IR (thin film) vmax 3379, 3029, 2996, 2899, 1726, 1700 cm⁻¹; HRMS (EI): *m/z* calcd. for [C₁₃H₁₄O₃]: 218.0941, found 218.0943

Diketone **34:** Following the general procedure (0.4 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (50% EtOAc in hexanes) as a light yellow solid (60 mg, 65% yield): ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.25 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 3.57 (d, *J* = 17.5 Hz, 1H), 3.53 (dd, *J* = 17.5, 2.0 Hz, 1H), 3.23 (d, *J* = 15.7 Hz, 1H), 3.14 (q, *J* = 6.8 Hz, 1H), 2.85 (dd, *J* = 15.7, 2.0 Hz, 1H), 2.37 (s, 3H), 0.93 (d, *J* = 6.8 Hz, 3H); ¹³C

NMR (151 MHz, CDCl₃) δ 203.2, 202.0, 140.3, 137.5, 129.6, 124.3, 76.0, 57.2, 55.7, 53.4, 21.0, 8.4; IR (thin film) vmax 3428, 2986, 2922, 2876, 1731, 1703, 1605, 1513, 1454, 1404 cm⁻¹; HRMS (ESI-) *m/z* calcd. for C₁₄H₁₅O₃ [M-H]⁻: 231.1027, found: 231.1027.

Diketone **35:** Following the general procedure (0.4 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (50% EtOAc in hexanes) as a light yellow solid (48 mg, 52% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.38 (m, 4H), 7.32 (td, *J* = 6.4, 2.5 Hz, 1H), 3.62 (d, *J* = 16.7 Hz, 1H), 3.50 (dd, *J* = 16.8, 2.5 Hz, 1H), 3.21 (d, *J* = 15.6 Hz, 1H), 2.96 (dd, *J* = 9.1, 2.5 Hz, 1H), 2.81 (dd, *J* = 15.7, 2.4 Hz, 1H), 1.78 (ddq, *J* = 14.3, 9.1, 7.2 Hz, 1H), 1.11 (dtd, *J* = 15.0,

7.5, 2.4 Hz, 1H), 0.82 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 202.3, 202.0, 143.7, 129.0, 127.7, 124.5, 76.7, 60.6, 58.4, 56.1, 17.0, 13.5; IR (thin film) vmax 3399, 2059, 3027, 2963, 2932, 2874, 1731, 1703, 1599 1494, 1446 cm⁻¹; HRMS (ESI-) *m/z* calcd. for C₁₄H₁₅O₃ [M-H]⁻: 231.1027, found: 231.1027.

Diketone **36**: Following the general procedure (0.4 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (50% EtOAc in hexanes) as a light yellow solid (56 mg, 56% yield): ¹H NMR (600 MHz, CDCl₃) δ 7.29 (d, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H), 3.58 – 3.52 (m, 2H), 3.23 (d, *J* = 15.7 Hz, 1H), 3.13 (q, *J* = 6.8 Hz, 1H), 2.86 (dd, *J* = 15.7, 1.6

Hz, 1H), 2.10 (s, 1H), 0.95 (d, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.2, 201.9, 159.2, 135.4, 125.8, 114.4, 76.0, 57.3, 56.0, 55.5, 53.6, 8.5; IR (thin film) vmax 3446, 3398, 2988, 2940, 1733, 1706, 1653, 1609, 1559, 1533, 1512 cm⁻¹; HRMS (ESI-) m/z calcd. for C₁₄H₁₅O₄ [M-H]⁻: 247.0976, found: 247.0977.

Diketone **37**: Following the general procedure (1.0 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (50% EtOAc in hexanes) as a brown oil (97 mg, 44% yield): ¹H NMR (500 MHz, CDCl₃) δ 6.18 (d, *J* = 3.0 Hz, 1H), 5.93 (d, *J* = 3.0 Hz, 1H), 3.50 (s, 2H), 3.28 (d, *J* = 16.0 Hz, 1H), 3.14 (q, *J* = 6.8 Hz, 1H), 2.90 (d, *J* = 16.0 Hz, 1H), 2.70 (bs, 1H), 2.28 (s, 3H), 1.04 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.1, 201.9, 153.5, 152.5, 107.2, 106.6,

73.3, 57.1, 53.4, 52.3, 13.7, 8.7; IR (thin film) vmax 3357, 2985, 2925, 1707, 1603, 1451 cm⁻¹; HRMS (ESI): m/z calcd. for $[C_{12}H_{13}O_4]^-$ (M-H)⁻: 221.0819, found 221.0830.

Diketone **38:** Following the general procedure (3.6 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (20% \rightarrow 50% EtOAc in hexanes) as a light brown solid (697 mg, 65% yield): m.p. = 180-183 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.78 (m, 2H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.40 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.20 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.15 (d, *J* = 2.5 Hz, 1H), 3.94 (s, 3H), 3.61 (d, *J* =

3.3 Hz, 2H), 3.35 (d, J = 15.8 Hz, 1H), 3.28 (q, J = 6.8 Hz, 1H), 2.93 (d, J = 15.8 Hz, 1H), 2.16 (bs, 1H), 0.96 (d, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 203.0, 201.6, 158.4, 138.4, 133.9, 129.8, 128.8, 127.9, 123.4, 122.8, 119.8, 105.8, 76.4, 57.4, 55.8, 55.6, 53.3, 8.6; IR (thin film) vmax 3357, 3003, 2907, 1704, 1626, 1611 cm⁻¹; HRMS (ESI): m/z calcd for [C₁₈H₁₇O₄]⁻ (M-H)⁻: 297.1132, found 297.1133.

Diketone **39:** Following the general procedure (1.0 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (20% \rightarrow 60% EtOAc in hexanes) as an orange solid (184 mg, 62% yield): m.p. = 155-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.7 Hz, 2H), 7.28 (d, *J* = 8.7 Hz, 2H), 3.58 (d, *J* = 20.0 Hz, 1H), 3.53 (dd, *J* = 20.0, 1.9 Hz, 1H), 3.22 (d, *J* = 15.7 Hz, 1H), 3.13 (q, *J* = 6.8 Hz, 1H), 2.85 (dd, *J* = 15.8, 1.9 Hz, 1H), 2.38 (bs,

1H), 0.93 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 201.4, 142.5, 132.2, 126.4, 122.0, 76.0, 57.3, 55.5, 53.3, 8.4; IR (thin film) vmax 3569, 3368, 2985, 2903, 1700, 1588 cm⁻¹; HRMS (ESI): *m/z* calcd. for [C₁₃H₁₂BrO₃]⁻ (M-H)⁻: 294.9975, found 294.9991.

Diketone **40**: Following the general procedure (0.4 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (50% EtOAc in hexanes) as a light yellow solid (45 mg, 45% yield): ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 3.82 – 3.48 (m, 2H), 3.22 (d, *J* = 15.7 Hz, 1H), 3.14 (q, *J* = 6.8 Hz, 1H), 2.86 (dd, *J* = 15.7, 1.8 Hz, 1H),

0.94 (d, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 202.5, 201.3, 141.9, 133.9, 129.3, 126.1, 76.0, 57.3, 55.6, 53.3, 8.4; IR (thin film) vmax 3394, 2941, 2349, 1733, 1703, 1606, 1491, 1455 cm⁻¹; HRMS (ESI-): m/z calcd. for C₁₃H₁₂O₃³⁵Cl]⁻ (M-H)-: 251.0480, found: 251.0482.

Diketone **41:** Following the general procedure (1.0 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography ($20\% \rightarrow 50\%$ EtOAc in hexanes) as a white crystalline solid (160 mg, 68% yield): m.p. = 154-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (td, J = 8.1, 1.8 Hz, 1H), 7.41 – 7.32 (m, 1H), 7.23 (td, J = 7.7, 1.3 Hz, 1H), 7.10 (ddd, J = 12.2, 8.2, 1.2 Hz, 1H), 3.67 – 3.44 (m, 4H),

41 2.81 (dd, J = 15.8, 2.3 Hz, 1H), 2.42 (bs, 1H), 0.92 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 201.8, 158.7 (d, J = 244.4 Hz), 130.3 (d, J = 8.6 Hz), 130.0 (d, J = 12.4 Hz), 127.0 (d, J = 3.7 Hz), 125.0 (d, J = 3.6 Hz), 116.5 (d, J = 23.4 Hz), 74.9 (d, J = 4.4 Hz), 57.4, 53.3 (d, J = 3.6 Hz), 51.5 (d, J = 4.1 Hz), 8.5; IR (thin film) vmax 3391, 2925, 2854, 1730, 1700, 1488 cm⁻¹; HRMS (ESI): m/z

calcd. for [C₁₃H₁₂FO₃]⁻ (M-H)⁻: 235.0776, found 235.0792.

Diketone 42: Following the general procedure (0.2 mmol scale) using Et₂O as solvent, the title compound was isolated by silica gel column chromatography (50% EtOAc in hexanes) as a light yellow solid (18 mg, 32% yield, 91% BRSM): ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.63 – 7.58 (m, 2H), 7.46 (dt, J = 8.0, 3.5 Hz, 4H), 7.41 - 7.33 (m, 1H), 3.59 (d, J = 1.5 Hz, 2H), 3.29 (d, J)= 15.7 Hz, 1H), 3.21 (q, J = 6.8 Hz, 1H), 2.93 (dd, J = 15.7, 1.6 Hz, 1H), 2.21 (s, 1H), 1.00 (d, J = 6.8 Hz, 1H), 2.91 (s, 1H), 2.91 (s, 1H), 1.00 (d, J = 6.8 Hz, 1H), 2.91 (s, 1H), 2.91 (s, 1H), 2.91 (s, 1H), 1.00 (d, J = 6.8 Hz, 1H), 2.91 (s, 1 3H); ¹³C NMR (151 MHz, CDCl₃) δ 203.0, 201.6, 142.3, 140.8, 140.3, 129.0, 127.8, 127.8, 127.2, 125.0, 76.2, 57.4, 55.8, 53.4, 8.6; IR (thin film) vmax 3742 3734 3614 3398 1742 1707 1627 1607 1491 cm⁻¹; HRMS (ESI⁻) m/z calcd. for C₁₉H₁₇O₃ [M-H]⁻: 293.1183, found: 293.1185.

Diketone 44: Following the general procedure (1.0 mmol scale) using Et_2O as solvent, the title compound (major isomer) was isolated by silica gel column chromatography ($30\% \rightarrow 40\%$ EtOAc in hexanes) as a brown solid (61 mg, 31%yield). The remaining column fractions were concentrated and re-purified by silica gel column chromatography (0% \rightarrow 7.5% MeOH in CH₂Cl₂) to give the minor diastereomer as a yellow solid (42 mg, 21% yield). Major diastereomer: m.p. = 116-

118 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.41 (dd, J = 18.3, 1.9 Hz, 1H), 3.31 (d, J = 18.2 Hz, 1H), 2.89 (d, J = 16.2 Hz, 1H), 2.71 - 2.58 (m, 2H), 2.37 - 2.24 (m, 1H), 2.10 (bs, 1H), 2.08 - 1.96 (m, 2H), 1.88 - 1.96 (m, 2H), 1.96 - 1.96 (m, 2H), 1.96 - 1.96 (m, 2H), 1.96 -1.76 (m, 2H), 1.72 (dd, J = 14.3, 10.1 Hz, 1H), 1.53 – 1.41 (m, 2H), 1.41 – 1.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) & 204.3, 203.3, 74.4, 60.4, 56.0, 55.3, 42.6, 29.5, 28.1, 22.1, 20.6; IR (thin film) ymax 3391, 2925, 2862, 1726, 1700, 1451 cm⁻¹; HRMS (ESI): m/z calcd. for $[C_{11}H_{15}O_3]^-$ (M-H)⁻: 195,1027, found 195.1055.

Supplementary Note 4. General Procedure for the annulation of lithium enolates with diketene using enolates generated by desilylation of trimethylsilyl enol ethers with methyl lithium.

A flame-dried reaction tube was charged with the trimethylsilyl enol ether (0.89 mmol, 1.1 equiv). The reaction vessel was evacuated and backfilled with nitrogen (3 times in total) and Et₂O (4 mL) was added. After cooling the reaction to 0 °C, methyllithium (1.6 M in Et₂O, 0.80 mmol, 1.0 equiv) was added and the reaction mixture stirred for 1 hour. The reaction mixture was warmed to room temperature and monitored by TLC for consumption of the starting silyl enol ether. The reaction vessel was then cooled to -40 °C and freshly distilled diketene (0.89 mmol, 1.0 equiv) was rapidly added resulting in the formation of white precipitate. The suspension was stirred for 1 hour and then quenched with 1 M HCl (5 mL) and slowly warmed to room temperature. The reaction mixture was diluted in EtOAc (15 mL) and the layers separated. The aqueous layer was extracted with EtOAc (2 x 20 mL) and the combined organic layers were washed with brine, dried over MgSO₄, and concentrated *in vacuo* to afford a yellow oil. The crude residue was purified by silica gel column chromatography to afford the annulated product.

Diketone **43:** Following the general procedure (0.80 mmol scale), the major *trans* diastereomer was isolated by silica gel column chromatography ($50\% \rightarrow 100\%$ EtOAc in hexanes) as a white solid (40 mg, 27% yield). The remaining column fractions were concentrated and re-purified by silica gel column chromatography ($5\% \rightarrow 7.5\%$ MeOH in CH₂Cl₂) to afford the *cis* diastereomer as a yellow solid (27 mg, 19% yield).

43 (major diastereomer): m.p. = 145-147 °C; ¹H NMR (600 MHz, CDCl₃) δ 3.43 (dd, *J* = 18.0, 1.6 Hz, 1H), 3.40 (d, *J* = 18.0 Hz, 1H), 2.77 (d, *J* = 15.5 Hz, 1H), 2.72 (dd, *J* = 15.5, 1.5 Hz, 1H), 2.51 (dd, *J* = 12.1, 4.2 Hz, 1H), 2.03 – 1.96 (m, 1H), 1.93 – 1.87 (m, 1H), 1.80 (ddt, *J* = 13.4, 4.0, 1.7 Hz, 1H), 1.72 (bs, 1H), 1.71 – 1.66 (m, 1H), 1.63 – 1.56 (m, 2H), 1.56 – 1.49 (m, 1H), 1.28 (qt, *J* = 13.3, 3.7 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 203.4, 202.4, 70.8, 57.5, 55.2, 55.1, 38.9, 24.6, 21.3, 21.0; IR (thin film) vmax 3383, 2981, 2936, 2854, 1726, 1700 cm⁻¹; HRMS (ESI): calcd. for [C₁₀H₁₃O₃]⁻ (M-H)⁻: *m/z* 181.0870, found 181.0872.

Diketone **45**. Following the general procedure (0.82 mmol scale), the title compound was isolated by silica gel column chromatography (50% \rightarrow 100% EtOAc in hexanes) as a white solid (67 mg, 35% yield): ¹H NMR (400 MHz, CDCl₃) δ 5.50 (s, 1H), 4.84 (s, 1H), 4.79 (s, 1H), 3.49 (d, *J* = 16.5Hz, 1H), 3.31 (d, *J* = 16.4, 1H), 2.99 – 2.86 (m, 2H), 2.85 – 2.77 (m, 1H), 2.29 (ddt, *J* = 15.6, 10.4, 2.6 Hz, 1H), 2.22 – 2.08 (m, 1H), 1.77 (s,

6H); ¹³C NMR (100 MHz, CDCl₃) δ 204.2, 201.0, 145.2, 136.5, 123.7, 114.2, 73.3, 60.8, 56.5, 48.5, 45.6, 30.3, 17.5, 16.8; IR (thin film) vmax 3072, 2956, 1919, 1771, 1605, 1439, 1405, 1377, 1321, 1288 cm⁻¹; HRMS (ESI) *m/z* calcd. for C₁₄H₁₉O₃ [M+H]⁺: 235.1329, found: 235.1330.

Diketone **46**: Following the general procedure (1.0 mmol scale), the title compound was isolated by silica gel column chromatography (100% EtOAc) as a white solid (121 mg, 40% yield): m.p. = 164-166 °C; ¹H NMR (600 MHz, CDCl₃) δ 5.35 (s, 1H), 4.73 (s, 1H), 4.69 (s, 1H), 3.43 (d, *J* = 16.2 Hz, 1H), 3.36 (d, *J* = 16.2 Hz, 1H), 2.91 (d, *J* = 15.4 Hz, 1H), 2.72 (d, *J* = 15.4 Hz, 1H),

2.61 (d, J = 12.2 Hz, 1H), 2.39 – 2.32 (m, 1H), 2.28 (t, J = 12.4 Hz, 1H), 2.17 – 2.11 (m, 1H), 2.05 – 1.99 (m, 1H), 1.97 (d, J = 12.7 Hz, 1H), 1.88 (d, J = 12.8 Hz, 1H), 1.72 (s, 3H), 1.30 – 1.18 (m, 1H), 1.08 (s, 3H), 1.02 (t, J = 12.7 Hz, 1H), 0.91 (d, J = 6.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.5, 200.7, 149.4, 145.7, 125.1, 109.3, 71.5, 59.8, 56.9, 50.3, 44.8, 41.8, 40.7, 40.1, 32.8, 32.3, 21.0, 18.3, 12.6; IR (thin film) vmax 3346, 2974, 2933, 2854, 1596, 1529 cm⁻¹; HRMS (ESI): calcd. for [C₁₉H₂₅O₃]⁻ (M-H)⁻: *m/z* 301.1809, found 301.1822.

Supplementary Figure 2. Synthetic pathway to garsubellin A (8).

Supplementary Note 5. General Procedures for the total synthesis of garsubellin A.

Enone SI-1: A 1 L flame-dried round bottom flask was charged with 2methylcyclopent-2-en-1-one (6.0 mL, 61.2 mmol, 1.0 equiv.). The reaction vessel was evacuated and backfilled with nitrogen and dry THF (500 mL) was added. The flask was cooled to -78 °C and freshly prepared LDA (0.5 M in THF, 135 mL, 67.5 mmol, 1.1 equiv.) was added dropwise. The resulting solution was stirred at -78 °C for 15 minutes and then prenyl bromide (9 mL, 77.5 mmol, 1.3 equiv.) was added. The reaction mixture was slowly warmed to room temperature and stirred overnight and then quenched by the addition of saturated aqueous NH₄Cl solution (500 mL). The mixture was extracted with EtOAc (500 mL), washed with brine, (500 mL), dried over MgSO4 and concentrated in vacuo. The crude product was purified by column chromatography (3% EtOAc in hexanes) to afford enone SI-1 (5.3 g, 53% yield) as a yellow oil: ¹H NMR (700 MHz, CDCl₃) δ 7.27 (m, 1H), 5.05 (m, 1H), 2.66 (dddd, J = 18.8, 8.8, 4.6, 2.2 Hz, 1H), 2.48 (m, 1H), 2.38 (dddd, J = 8.9, 6.6, 4.5, 2.2 Hz, 1H), 2.20 (dg, J = 18.8, 2.4 Hz, 1H), 2.09 $(dt, J = 14.4, 8.3 \text{ Hz}, 1\text{H}), 1.77 (td, J = 2.2, 1.4 \text{ Hz}, 3\text{H}), 1.68 (s, 3\text{H}), 1.61 (s, 3\text{H}); {}^{13}\text{C} \text{ NMR} (176)$ MHz, CDCl₃) δ 212.0, 157.2, 141.5, 133.8, 121.1, 45.3, 32.9, 29.9, 26.0, 18.0, 10.5; IR (thin film) vmax 3420, 3380, 2974, 2922, 1699, 1637, 1441, 1376, 1336, 1230, 1155, 1071 cm⁻¹; HRMS (ESI⁺) m/z calcd. for C₁₁H₁₇O [M+H]⁺: 165.1274, found: 165.1274.

Alcohol **47**: A 250 mL flame-dried round bottom flask was charged with enone **SI-1** (2.3 g, 14 mmol, 1.0 equiv.). The reaction flask was evacuated and backfilled with nitrogen followed by the addition of dry THF (120 mL).

Freshly prepared prenylmagnesium chloride (0.67 M, 50 mL, 33.5 mmol, 2.4 equiv.) was then added and the resulting mixture stirred at room temperature for 2 hours. After this period, the reaction was quenched by the addition of saturated aqueous NaHCO₃ solution (100 mL), extracted with EtOAc (3 x 200 mL), and concentrated *in vacuo*. The crude product was purified column chromatography on neutral alumina (10% EtOAc in hexanes) to afford allylic alcohol **47** (3.2 g, 98% yield) as a colorless oil: ¹H NMR (700 MHz, CDCl₃) δ 6.12 (dd, *J* = 18.0, 10.5 Hz, 1H), 5.51 (dt, *J* = 3.1, 1.6 Hz, 1H), 5.13 (tdt, *J* = 6.3, 2.9, 1.4 Hz, 1H), 5.04 (dd, *J* = 10.5, 1.5 Hz, 1H), 5.04

(dd, J = 18.0, 1.5 Hz, 1H), 2.38 – 2.25 (m, 2H), 2.21 – 2.15 (m, 1H), 1.95 – 1.81 (m, 2H), 1.74 (dt, J = 3.6, 1.8 Hz, 3H), 1.68 (s, 3H), 1.62 (s, 3H), 1.06 (s, 3H), 1.04 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 146.1, 141.9, 132.7, 129.1, 123.8, 112.5, 89.6, 45.5, 43.3, 36.7, 30.7, 26.1, 23.0, 22.4, 18.2, 15.5; IR (thin film) vmax 3533, 3508, 3080, 3033, 2966, 2920, 2854, 1634, 1445, 1431, 1376, 1362, 1343, 1289, 1174 cm⁻¹; HRMS (EI) *m/z* calcd. for C₁₆H₂₆O [M]⁺: 234.1984, found: 234.1982.

Diketone **49**: *i*. A 20 mL flame-dried reaction tube was charged with KH (205 mg, 5.13 mmol, 3.0 equiv.) and 18-crown-6 (1.35 g, 5.13 mmol, 3.0 equiv.). The tube was evacuated and backfilled with nitrogen (three times in total) and THF (5 mL) added. Allylic alcohol **47** (400 mg, 1.7

mmol, 1.0 equiv.) in 1 mL of THF was then added and the resulting solution was stirred at room temperature for 2 hours. After this period, the resulting mixture was transferred to a 100 mL flamedried round bottom flask that contained a homogenous solution of MgBr₂ (1.57 g, 8.54 mmol, 5.0 equiv.) in THF (20 mL) preheated to 50 °C. The resulting brown solution was stirred for 10 mins and then MeI (0.53 mL, 8.54 mmol, 5.0 equiv.) was added. After two hours of stirring at 50 °C, the reaction mixture was slowly cooled to room temperature overnight. The reaction was quenched by the addition of saturated aqueous NH₄Cl solution (25 mL) and extracted with EtOAc (3 x 30 mL). The crude mixture was purified by column chromatography (3% EtOAc in hexanes) to afford an inseparable mixture of the desired methylated ketone (48) and small amounts of the C-5 methylated isomer and doubly alkylated product as a colorless oil (362 mg, 75% purity as determined by ¹H NMR, 65% yield) which were used directly in the next step. *ii*. A 20 mL flamedried reaction tube was charged with 48 (250 mg, 75% purity, 0.76 mmol, 1 equiv) and the reaction vessel evacuated and backfilled with nitrogen (three times in total). Degassed THF (12.5 mL) and Et₂O (12.5 mL) were added and the reaction vessel cooled to -78 °C. Freshly prepared lithium 2,2,6,6-tetramethylpiperidide (0.45 M in THF, 2 mL, 0.9 mmol, 1.2 equiv.) was added dropwise resulting in a light-yellow colored solution. The reaction mixture was stirred for 30 minutes at -78 °C and then warmed to 0 °C and stirred 60 minutes. After this period, the reaction mixture was cooled to -40 °C and freshly distilled diketene (71 µL, 0.92 mmol, 1.2 equiv.) was added rapidly in one portion resulting in a bright yellow colored solution. The reaction vessel was maintained at this temperature for 90 minutes and then quenched by the addition of aqueous 1 M HCl (20 mL)

at this temperature. The reaction mixture was extracted with EtOAc (3 x 35 mL) and the combined organic layers were washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The crude residue was purified by column chromatography (20% EtOAc in hexanes) to afford the annulated product **49** (114 mg, 44% yield) as a red/orange solid: m.p = 109 °C; ¹H NMR (700 MHz, CDCl₃) δ 5.12 (m, 1H), 4.92 (m, 1H), 3.64 (d, *J* = 18.2 Hz, 1H), 3.12 (d, *J* = 18.2 Hz, 1H), 2.76 (dd, *J* = 13.7, 7.2 Hz, 1H), 2.64 (d, *J* = 15.2 Hz, 1H), 2.53 (dd, *J* = 15.1, 7.3 Hz, 1H), 2.41 (dd, *J* = 15.1, 7.1 Hz, 1H), 2.37 (d, *J* = 15.2 Hz, 1H), 2.22 – 2.05 (m, 1H), 1.85 (s, 1H), 1.80 (ddd, *J* = 14.4, 9.6, 7.3 Hz, 1H), 1.69 (s, 6H), 1.59 (dd, *J* = 4.0, 1.3 Hz, 6H), 1.37 (dddd, *J* = 11.4, 10.1, 7.2, 4.0 Hz, 1H), 1.23 (dd, *J* = 13.7, 12.2 Hz, 1H), 0.96 (s, 3H), 0.87 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 206.3, 203.9, 135.2, 132.4, 122.9, 118.3, 83.7, 61.1, 51.9, 50.8, 48.2, 45.2, 35.2, 35.0, 29.0, 26.1, 26.0, 23.7, 18.2, 18.0, 17.9; IR (thin film) vmax 2971, 2915, 2880, 1732, 1703, 1602, 1452, 1415, 1377, 1325, 1223, 1145 cm⁻¹; HRMS (ESI-) *m/z* calcd. for C₂₁H₃₁O₃ [M-H]⁻: 331.2279, found: 331.2274.

Vinylogous ester **52**: A 100 mL round bottom flask was charged with diketone **49** (100 mg, 0.3 mmol, 1.0 equiv.), $Pd(OAc)_2$ (10 mg, 0.045 mmol, 15 mol%) and Cu(OAc)_2 (60 mg, 0.33 mmol, 1.1 equiv.). 14 mL of DMSO and 6 mL of TMSOH were injected and the resulting green solution was

allowed to stir at room temperature for 7 hours. The reaction was washed with water (3 x 40 mL) and then combined aqueous solutions extracted with diethyl ether (3 x 40 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (25% EtOAc in hexanes) to give vinylogous ester **52** as a foam (95 mg, 95% yield): m.p. = 140 °C; ¹H NMR (600 MHz, CDCl₃) δ 5.47 (s, 1H), 5.11 (s, 1H), 5.06 (m, 1H), 4.99 (s, 1H), 4.91 (dd, *J* = 11.2, 4.8 Hz, 1H), 2.67 (d, *J* = 17.4 Hz, 1H), 2.40 (d, *J* = 17.4 Hz, 1H), 2.35 (t, *J* = 11.6 Hz, 1H), 2.19 (m, 2H), 2.02 (m, 2H), 1.93 (m, 2H), 1.75 (s, 3H), 1.69 (s, 3H), 1.64 (m, 4H), 0.98 (d, *J* = 1.7 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 196.7, 183.9, 142.0, 132.9, 122.8, 114.0, 99.8, 85.7, 84.4, 54.5, 46.7, 46.5, 46.0, 41.7, 40.7, 30.9, 25.9, 23.6, 18.8, 18.1, 17.4; IR (thin film) vmax 2970, 2935, 1627, 1447, 1363, 1230, 1182, 1155 cm⁻¹; HRMS (ESI+) *m/z* calcd. for C₂₁H₃₁O₃ [M+H]⁺: 331.2268, found: 331.2268.

Polycycle **55**: To a 20 mL reaction tube containing vinylogous ester **52** (100 mg, 0.30 mmol, 1.0 equiv.) under nitrogen was added a solution of KOH (5 M in methanol, 6 mL) resulting reddish orange colored solution. The mixture was cooled to -10 °C and PIDA (270 mg, 0.838 mmol, 2.7 equiv.)

added as a solid. The reaction mixture was maintained at a temperature of -10-0 °C for 1 hour, quenched with saturated aqueous NaHCO₃ (10 mL), and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The crude material was purified by column chromatography (10% EtOAc in hexanes) to give **55** as a pale yellow solid (75 mg, 75% yield): m.p. = 137 °C; ¹H NMR (600 MHz, CDCl₃) δ 5.77 (s, 1H), 5.12 (m, 2H), 5.01 (m, 2H), 2.82 (s, 1H), 2.51 (dd, *J* = 13.1, 11.3 Hz, 1H), 2.21 – 2.15 (m, 1H), 2.13 (dd, *J* = 13.7, 4.6 Hz, 1H), 1.90 (dd, *J* = 13.2, 5.5 Hz, 1H), 1.80 (m, 1H), 1.75 (m, 1H), 1.72 (s, 3H), 1.70 (s, 3H), 1.57 (s, 3H), 1.52 (m, 1H), 1.16 (s, 3H), 0.90 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.4, 194.4, 178.8, 141.2, 133.7, 122.3, 114.5, 104.4, 87.6, 73.4, 60.0, 42.8, 40.5, 37.6, 33.6, 27.5, 26.8, 26.0, 20.7, 18.0, 17.2; IR (thin film) vmax 2969, 2933, 1735, 1651, 1624, 1364, 1250, 1199, 1177, 1055 cm⁻¹; HRMS (ESI-) *m/z* calcd. for C₂₁H₃₁O₃ [M-H]⁻ : 331.2279, found: 331.2274.

Polycycle **56**: A flame-dried reaction tube was charged with olefin **55** (18.6 mg, 0.06 mmol, 1.0 equiv.), (S,S)-(+)-N,N'-Bis(3,5-di-*tert*-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) (3.7 mg, 0.006 mmol, 10 mol%), and dry DMF (0.6 mL). Phenylsilane (8.3 μ L, 0.067

mmol, 1.2 equiv.) was then added as a stock solution in DMF (0.2 mL) and the resulting red colored solution was saturated with O_2 by bubbling from a balloon for 10 minutes. The reaction mixture was then stirred at room temperature for 15 hours under an oxygen atmosphere (not bubbling). After that period, TMSCl (72 μ L, 0.57 mmol, 10 equiv.), imidazole (39 mg, 0.57 mmol, 10 equiv.), and DMAP (1.4 mg, 0.011 mmol, 20 mol%) were added. The reaction mixture was stirred for 2 days at room temperature, quenched by the addition of saturated aqueous NaHCO₃ solution (5 mL), and extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography (5% EtOAc in hexanes) to give polycycle **56** as a white solid (16.8 mg, 72%)

yield): m.p. = 82 °C; ¹H NMR (600 MHz, CDCl₃) δ 5.73 (s, 1H), 5.00 (m, 1H), 4.48 (dd, *J* = 10.4, 5.8 Hz, 1H), 2.80 (s, 1H), 2.65 (dd, *J* = 13.1, 10.4 Hz, 1H), 2.18 (m, 1H), 2.06 (dd, *J* = 13.7, 4.6 Hz, 1H), 1.79 (m, 1H), 1.72 (m, 1H), 1.70 (s, 3H), 1.67 (m, 1H), 1.57 (s, 3H), 1.49 (dd, *J* = 13.7, 12.2 Hz, 1H), 1.30 (s, 3H), 1.22 (s, 3H), 1.15 (s, 3H), 0.90 (s, 3H), 0.08 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 204.4, 194.6, 179.5, 133.6, 122.4, 104.2, 91.6, 73.8, 73.4, 60.0, 42.6, 40.6, 38.4, 29.3, 27.5, 26.9, 26.7, 26.0, 25.9, 20.7, 18.0, 2.5; IR (thin film) vmax 2969, 2933, 1735, 1651, 1624, 1451, 1395, 1375, 1360, 1345, 1274, 1240, 1197, 1175, 1146 cm⁻¹; HRMS (ESI+) *m/z* calc'd for C₂₄H₃₉O₄Si [M+H]⁺: 419.2612, found: 419.2612.

Chloride **57**. A 50 mL flame-dried flask was charged with compound **56** (125 mg, 0.30 mmol, 1.0 equiv.). The reaction vessel was evacuated and backfilled with nitrogen and this process repeated twice. THF (15 mL) was then added and the solution cooled to -78 °C.

A solution of freshly prepared lithium 2,2,6,6-tetramethylpiperidide (0.50 M in THF, 1.23 mL, 0.62 mmol, 2.1 equiv.) was added dropwise resulting in a light-yellow colored solution. The reaction mixture was stirred for 60 minutes at -78 °C and then p-toluenesulfonyl chloride (120 mg, 0.63 mmol, 2.1 equiv.) was added as a solution in THF. The reaction mixture was stirred for 15 minutes at -78 °C, warmed to 0 °C and stirred 15 minutes, and then guenched by the addition of saturated aqueous NaHCO₃ solution (10 mL). The reaction mixture was extracted with EtOAc (3 x 20 mL) and the combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The crude product was purified by column chromatography (50% DCM in PhMe then 20% EtOAc in hexanes) affording 57 (134 mg, 98% yield) as a white solid: m.p. = 115 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.48 (m, 1H), 4.61 (dd, J = 10.1, 6.0 Hz, 1H), 3.01 (s, 1H), 2.80 (dd, J = 13.1, 10.1 Hz, 1H), 2.20 (m, 1H), 2.13 (dd, J = 13.6, 3.9 Hz, 1H), 1.76 (dd, J = 13.2, 6.0 Hz, 1H), 1.70 (s, 3H), 1.69 (m, 2H), 1.56 (s, 3H), 1.51(m, 1H), 1.36 (s, 3H), 1.24 (s, 3H), 1.16 (s, 3H), 0.90 (s, 3H), 0.08 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 187.2, 173.2, 133.9, 122.0, 106.8, 92.9, 73.8, 73.4, 61.5, 43.0, 40.6, 38.6, 29.9, 27.5, 26.7, 26.0, 25.9, 20.6, 18.0, 2.4; IR (thin film) vmax 2967, 2934, 1739, 1669, 1615, 1452, 1385, 1366, 1344, 1249, 1216, 1177, 1051 cm⁻¹; HRMS (ESI+) *m/z* calc'd for C₂₄H₃₈O₄ClSi [M+H]⁺: 453.2222, found: 453.2226.

Triketone **58**. Three 20 mL flame-dried reaction tubes were charged with compound **57** (3 x 40 mg, 0.27 mmol, 1.0 equiv.). The reaction vessels were evacuated and backfilled with nitrogen (three times in total) followed by the addition of THF (1 mL each). The reaction mixtures were cooled to -78 °C and a freshly prepared solution of lithium 2,2,6,6-

tetramethylpiperidide (0.45 M in THF, 0.64 mL, 0.28 mmol, 3.2 equiv.) was added dropwise to each vessel resulting in a light brown colored solution. The reaction mixtures were stirred for 10 minutes at -78°C, warmed to 0 °C and stirred for 5 minutes, and then re-cooled to -78 °C. Isobutyryl chloride (47 µL, 0.44 mmol, 5 equiv.) was then added dropwise to each vessels at -78 °C. The reaction mixtures were slowly warmed to -5 °C over the course of 60 minutes at which point they were quenched with saturated aqueous NaHCO₃ solution (5 mL). The contents of the tubes were combined and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The crude product was purified by column chromatography ($2\% \rightarrow 10\%$ Et₂O in hexanes) to afford **58** (90 mg, 65% yield) as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 4.93 (m, 1H), 4.64 (dd, J = 9.9, 6.2 Hz, 1H), 2.93 (dd, J = 13.2, 9.9 Hz, 1H), 2.18 (m, 1H), 2.10 (dd, J = 11.7, 20.6 Hz, 1H), 2.01 (hept, J = 6.5 Hz, 1H), 1.80 (dd, J = 13.2, 6.2 Hz, 1H), 1.72 (q, J = 8.6 Hz, 1H), 1.68 (s, 3H), 1.58 (m, 1H), 1.55 (s, 3H), 1.43 (s, 3H), 1.31 (m, 1H), 1.27 (s, 3H), 1.24 (s, 3H), 1.08 (d, *J* = 6.6 Hz, 3H), 1.07 (s, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.08 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 207.8, 202.7, 187.1, 172.8, 133.9, 122.1, 106.8, 93.1, 82.9, 73.8, 61.8, 47.0, 42.6, 42.5, 39.5, 30.2, 26.8, 26.7, 26.4, 26.0, 22.7, 21.6, 20.5, 18.1, 16.3, 2.3; IR (thin film) vmax 2973, 2929, 1736, 1667, 1619, 1445, 1370, 1345, 1251, 1222, 1178, 1051 cm⁻¹; HRMS (ESI+) *m/z* calc'd for C₂₈H₄₄O₅ClSi [M+H]⁺: 523.2641, found: 523.2642.

Garsubellin A (8) and TMS-garsubellin A (59). A 10 mL flame-dried reaction tube under nitrogen was charged with compound 58 (10 mg, 0.02 mmol, 1.0 equiv.) and prenylBpin (20 mg, 0.1 mmol, 5.3 equiv.). CPhos (2-Dicyclohexylphosphino-2',6'-bis(*N*,*N*-

dimethylamino)biphenyl (2.2 mg, 0.005 mmol, 25 mol%), and

[Pd(allyl)Cl]₂ (0.7 mg, 0.002 mmol, 10 mol%) in 0.4 mL of dioxane was injected along with 0.4 mL of an aqueous K₃PO₄ solution (65 mg, 0.30 mmol, 16 equiv. of K₃PO₄). The sealed reaction vessel was heated to 110 °C for 4 hours, cooled to room temperature, quenched with saturated

aqueous NaHCO₃ (5 mL), and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography (20 mol% EtOAc in hexanes) to give **8** as a colorless oil (5.5 mg, 57 % yield). Less polar fractions were combined and re-chromatographed (25% DCM in PhMe) to give **59** as a colorless oil (1.8 mg, 17% yield): Data for **8**: ¹H NMR (700 MHz, C₆D₆) δ 5.40 (dd, *J* = 7.4, 5.9 Hz, 1H), 4.96 (dddd, *J* = 7.3, 5.9, 2.9, 1.4 Hz, 1H), 3.91 (dd, *J* = 10.7, 5.8 Hz, 1H), 3.39 (dd, *J* = 14.2, 7.2 Hz, 1H), 3.21 (dd, *J* = 14.2, 7.6 Hz, 1H), 2.73 (dd, *J* = 13.0, 10.7 Hz, 1H), 2.26 (hept, *J* = 6.5 Hz, 1H), 2.09 (m, 1H), 1.93 (dd, *J* = 13.6, 4.5 Hz, 1H), 1.75 (dddd, *J* = 12.5, 10.5, 4.6, 2.8 Hz, 1H), 1.70 (d, *J* = 1.3 Hz, 3H), 1.61 (s, 6H), 1.58 (s, 3H), 1.55 (m, 1H), 1.45 (s, 3H), 1.37 (d, *J* = 6.5 Hz, 3H), 1.31 (d, *J* = 6.5 Hz, 3H), 1.28 (m, 1H), 1.26 (m, 1H), 1.25 (s, 3H), 1.04 (s, 1H), 0.93 (s, 3H), 0.77 (s, 3H); ¹³C NMR (176 MHz, C₆D₆) δ 208.5, 204.7, 192.9, 173.2, 133.2, 132.5, 123.3, 122.1, 116.7, 90.2, 82.7, 70.3, 59.9, 46.7, 43.1, 42.8, 39.1, 30.3, 27.1, 26.4, 26.0, 25.8, 24.5, 23.2, 22.7, 22.0, 20.9, 17.9, 17.9, 16.5; IR (thin film) vmax 3444, 2967, 2925, 2854, 1732, 1664, 1622, 1561, 1501, 1451, 1365, 1250, 1213, 1176, 1099, 1054 cm⁻¹; HRMS (ESI-) *m/z* calc'd for C₃₀H₄₃O₅ [M-H]⁻: 483.3116, found: 483.3127.

Data for **59**:¹H NMR (700 MHz, CDCl₃) δ 5.07 (m, 1H), 4.94 (m, 1H), 4.48 (dd, J = 10.0, 6.2 Hz, 1H), 3.14 (dd, J = 14.2, 7.8 Hz, 1H), 3.01 (dd, J = 14.3, 6.8 Hz, 1H), 2.76 (dd, J = 13.1, 10.0 Hz, 1H), 2.15 (d, J = 14.3 Hz, 1H), 2.02 (dd, J = 12.7, 3.7 Hz, 1H), 1.97 (hept, J = 6.6 Hz, 1H), 1.72 (m, 4H), 1.68 (s, 3H), 1.66 (m, 1H), 1.61 (s, 3H), 1.55 (s, 3H), 1.543 (m, 1H), 1.48 (m, 1H), 1.35 (s, 3H), 1.27 (s, 3H), 1.25 (s, 3H), 1.07 (d, J = 6.5 Hz, 3H), 1.04 (s, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.09 (s, 9H); ¹³C NMR (176 MHz, CDCl₃) δ 209.3, 204.9, 193.0, 173.8, 133.5, 132.4, 122.6, 121.3, 116.1, 91.0, 82.2, 74.1, 59.8, 46.3, 42.6, 42.1, 39.5, 30.1, 29.9, 26.7, 26.6, 26.2, 26.0, 25.8, 22.9, 22.4, 21.5, 20.6, 18.0, 18.0, 16.3, 2.4; IR (thin film) vmax 2926, 2856, 1733, 1661, 1622, 1455, 1372, 1249, 1231, 1215, 1177, 1121, 1099, 1052 cm⁻¹; HRMS (ESI-) *m/z* calc'd for C₃₃H₅₂O₅ClSi [M+Cl]⁻ : 591.3278, found: 591.3276.

Supplementary Figure 3. ¹H NMR of 17

Supplementary Figure 4. ¹³C NMR of 17

Supplementary Figure 5. ¹H NMR of **18**

21

Supplementary Figure 6. ¹³C NMR of **18**

Supplementary Figure 7. ¹H NMR of **19**

Supplementary Figure 8. ¹³C NMR of 19

Supplementary Figure 12. ¹³C NMR of **27**

Supplementary Figure 13. ¹H NMR of **28**

Supplementary Figure 15. ¹H NMR of **29**

Supplementary Figure 17. ¹H NMR of **30**

Supplementary Figure 19. ¹H NMR of 31

Supplementary Figure 20. ¹³C NMR of 31

36

Supplementary Figure 21. ¹H NMR of **32**

Supplementary Figure 22. ¹³C NMR of 32

Supplementary Figure 23. ¹H NMR of **33**

Supplementary Figure 24. ¹³C NMR of 33

Supplementary Figure 25. ¹H NMR of 34

Supplementary Figure 31. ¹H NMR of 37

Supplementary Figure 33. ¹H NMR of 38

Supplementary Figure 34. ¹³C NMR of 38

Supplementary Figure 35. ¹H NMR of **39**

Supplementary Figure 36. ¹³C NMR of **39**

Supplementary Figure 38. ¹³C NMR of 40

Supplementary Figure 40. ¹³C NMR of 41

Supplementary Figure 41. ¹H NMR of **42**

Supplementary Figure 43. ¹H NMR of 43

Supplementary Figure 44. ¹³C NMR of 43

Supplementary Figure 45. ¹H NMR of 44

Supplementary Figure 46. ¹³C NMR of 44

Supplementary Figure 47. ¹H NMR of 45

Supplementary Figure 49. ¹H NMR of 46

Supplementary Figure 50. ¹³C NMR of 46

Supplementary Figure 55. ¹H NMR of 49

Supplementary Figure 58. ¹³C NMR of 52

Supplementary Figure 59. ¹H NMR of 55

Supplementary Figure 61. ¹H NMR of 56

Supplementary Figure 63. ¹H NMR of 57

Supplementary Figure 65. ¹H NMR of 58

Supplementary Figure 67. ¹H NMR of **8**

Position	This Work	Danishefsky <i>et al.</i> ¹	Nakada <i>et al.</i> ²	Natural ³
1	193.0	193.3	193.0	192.9
2	116.7	117.1	116.7	116.7
3	173.2	173.6	173.3	173.2
4	59.9	60.2	59.9	59.8
5	204.7	205.0	204.7	204.7
6	82.7	83.0	82.7	82.6
7	39.1	39.4	39.1	39.0
8	43.1	43.3	43.1	43.0
9	46.7	47.0	46.7	46.6
10	16.5	16.9	16.5	16.5
11	23.2	23.5	23.2	23.1
12	27.1	27.4	27.1	27.0
13	123.3	123.6	123.3	123.2
14	133.2	133.5	133.2	133.2
15	17.93	18.2	17.94	17.8
16	26.0	26.3	26.0	25.9
17	30.3	30.6	30.3	30.3
18	90.2	90.5	90.2	90.1
19	70.3	70.6	70.3	70.2
20	26.4	26.7	26.4	26.3
21	24.5	24.8	24.5	24.4
22	22.7	23.0	22.7	22.6
23	122.1	122.4	122.1	122.0
24	132.5	132.8	132.4	132.4
25	17.90	18.3	17.90	17.9
26	25.8	26.1	25.8	25.7
27	208.5	208.9	208.6	208.5
28	42.8	43.1	42.7	42.7
29	22.0	22.3	21.9	21.9
30	20.9	21.3	20.9	20.9

Supplementary Table 2. ¹H NMR comparison of garsubellin A

position	This work	Danishefsky group ¹	Shibasaki Group ⁴	Nakada group ²	natural garsubellin a ³
7	1.26 (m, 1H)	1.32- 1.30 (m, 2H)			1.30 (dd, <i>J</i> = 11.3, 13.6 Hz, 1H)
	1.29 – 1.27 (m, 1H)	1.32- 1.30 (m, 2H)			1.32 (dd, <i>J</i> = 5.9, 12.9 Hz, 1H)
8	1.75 (dddd, J = 12.5, 10.5, 4.6, 2.8 Hz, 1H)	1.74 (m, 1H)	1.74 (m, 1H)	1.74 (m, 1H)	1.74 (dddd, <i>J</i> = 3.6, 4.5, 7.1, 11.3 Hz, 1H)
10	1.25 (s, 3H)	1.24 (s, 3H)	1.24 (s, 3H)	1.23 (s, 3H)	1.24 (s, 3H)
11	1.61 (s, 6H)	1.61 (s, 6H)	1.60 (s, 3H)	1.60 (s, 3H)	1.60 (s, 3H)
12	1.57 – 1.53 (m, 1H)	1.58 (m, 1H)	1.58 (m, 1H)	1.58 (m, 1H)	1.58 (m, 1H)
	2.15 – 2.02 (m, 1H)	2.09 (m, 1H)	2.08 (m, 1H)	2.09 (m, 1H)	2.09 (ddd, <i>J</i> = 3.6, 7.1, 13.4 Hz, 1H)
13	5.07 – 4.89 (m, 1H)	4.97 (dd, <i>J</i> = 6.9, 7.0 Hz, 1H)	4.97 (dd, <i>J</i> = 7.1, 7.1 Hz, 1H)	4.96 (brd, 1H)	4.96 (dd, <i>J</i> = 7.1, 7.1 Hz, 1H)
15	1.45 (s, 3H)	1.45 (s, 3H)	1.44 (s, 3H)	1.44 (s, 3H)	1.45 (s, 3H)
16	1.58 (s, 3H)	1.58 (s, 3H)	1.57 (s, 3H)	1.57 (s, 3H)	1.58 (s, 3H)
17	1.93 (dd, J = 13.6, 4.5 Hz, 1H)	1.93 (dd, <i>J</i> = 4.5, 13.6 Hz, 1H)	1.92 (dd, <i>J</i> = 4.6, 13.7 Hz, 1H)	1.93 (dd, <i>J</i> = 4.5, 14.0 Hz, 1H)	1.93 (dd, <i>J</i> = 4.5, 13.6 Hz, 1H)
	2.73 (dd, J = 13.0, 10.7 Hz, 1H)	2.73 (dd, <i>J</i> = 10.8, 13.1 Hz, 1H)	2.72 (dd, <i>J</i> = 10.8, 13.1 Hz, 1H)	2.73 (dd, J = 10.5, 13.0 Hz, 1H)	2.73 (dd, <i>J</i> = 10.7, 12.9 Hz, 1H)
18	3.91 (dd, J = 10.7, 5.8 Hz, 1H)	3.92 (dd, <i>J</i> = 5.8, 10.6 Hz, 1H)	3.91 (dd, <i>J</i> = 6.3, 10.8 Hz, 1H)	3.93 (dd, <i>J</i> = 5.5, 11.0 Hz, 1H)	3.92 (dd, <i>J</i> = 5.9, 10.7 Hz, 1H)
20	0.93 (s, 3H)	0.94 (s, 3H)	0.93 (s, 3H)	0.95 (s, 3H)	0.94 (s, 3H)
21	0.77 (s, 3H)	0.77 (s, 3H)	0.76 (s, 3H)	0.79 (s, 3H)	0.77 (s, 3H)
22	3.21 (dd, J = 14.2, 7.6 Hz, 1H)	3.21 (dd, <i>J</i> = 7.6, 14.3 Hz, 1H)	3.20 (dd, <i>J</i> = 7.4, 14.3 Hz, 1H)	3.19 (dd, <i>J</i> = 8.0, 14.0 Hz, 1H)	3.21 (dd, <i>J</i> = 7.3, 14.2 Hz, 1H)
	3.39 (dd, J = 14.2, 7.2 Hz, 1H)	3.39 (dd, <i>J</i> = 7.1, 14.1 Hz, 1H)	3.38 (dd, <i>J</i> = 7.4, 14.3 Hz, 1H)	3.36 (dd, <i>J</i> = 7.5, 14.0 Hz, 1H)	3.39 (dd, <i>J</i> = 7.1, 14.2 Hz, 1H)
23	5.40 (ddt, J = 7.4, 5.9, 1.4 Hz, 1H)	5.40 (dd, <i>J</i> = 7.3, 7.3 Hz, 1H)	5.39 (dd, <i>J</i> = 7.4, 7.4 Hz, 1H)	5.38 (m, 1H)	5.40 (dd, <i>J</i> = 7.1, 7.3 Hz, 1H)
25	1.70 (d, J = 1.3 Hz, 3H)	1.70 (s, 3H)	1.69 (s, 3H)	1.69 (s, 3H)	1.70 (s, 3H)
26	1.61 (s, 6H)	1.61 (s, 6H)	1.60 (s, 3H)	1.58 (s, 3H)	1.61 (s, 3H)
28	2.26 (hept, J = 6.5 Hz, 1H)	2.26 (qq, <i>J</i> = 6.6, 6.6 Hz, 1H)	2.25 (qq, <i>J</i> = 6.8, 6.8 Hz, 1H)	2.24 (qq, J = 6.5, 6.5 Hz, 1H)	2.26 (dq, $J = 6.6$ Hz, 1H)
29	1.31 (d, J = 6.5 Hz, 3H)	1.30 (d, $J = 6.5$ Hz, 3H)	1.30 (d, $J = 6.8$ Hz, 3H)	1.28 (d, $J = 6.5$ Hz, 3H)	1.30 (d, J = 6.6 Hz, 3H)
30	1.37 (d, J = 6.5 Hz, 3H)	1.37 (d, <i>J</i> = 6.5 Hz, 3H)	1.36 (d, $J = 6.8$ Hz, 3H)	1.34 (d, $J = 6.8$ Hz, 3H)	1.37 (d, $J = 6.6$ Hz, 3H)

Supplementary Figure 71. Garsubellin A ¹H NMR comparison. **a** Natural³ garsubellin A **b** Danishefsky's¹ synthetic garsubellin A **c** Synthetic garsubellin A prepared in this work.

Supplementary References

- 1. Siegel, D. R. & Danishefsky, S. J. Total Synthesis of Garsubellin A. J. Am. Chem. Soc. **128**, 1048–1049 (2016).
- 2. Uwamori, M. & Nakada, M. Stereoselective total synthesis of garsubellin A. J. Antibiot. 66, 141–145 (2013).
- 3. Fukuyama, Y., Kuwayama, A. & Minami, H. Garsubellin A, A Novel Polyprenylated Phloroglucin Derivative, Increasing Choline Acetyltransferase (ChAT) Activity In Postnatal Rat Septal Neuron Cultures. *Chem. Pharm. Bull.* **45**, 947–949 (1997).
- 4. Kuramochi, A., Usuda, H., Yamatsuga, K., Kanai, M. & Shibasaki, M. Total Synthesis of (±)-Garsubellin A. J. Am. Chem. Soc. 127, 14200–14201 (2005).