Atomically resolved Au₅₂Cu₇₂(SR)₅₅ nanoalloy reveals Marks decahedron truncation and Penrose tiling surface

Song et al

Identification code	Cu ₇₂ Au ₅₂
Empirical formula	$C_{385}H_{385}Au_{52}ClCu_{72}S_{55}$
Formula weight	21627.80
Temperature/K	123
Crystal system	triclinic
Space group	Pī
a/Å	25.8880(19)
b/Å	26.7997(18)
c/Å	45.013(3)
α'°	79.828(2)
β/°	85.255(3)
$\gamma/^{\circ}$	69.166(2)
Volume/Å ³	28722(3)
Z	2
$\rho_{calc}g/cm^3$	2.501
μ/mm^{-1}	32.176
F(000)	19576.0
Crystal size/mm ³	$0.42 \times 0.22 \times 0.20$
Radiation	$GaK_{\alpha} (\lambda = 1.34139)$
2Θ range for data collection/°	1.736 to 110.384
Index ranges	$-31 \le h \le 31, -32 \le k \le 32, -40 \le l \le 54$
Reflections collected	356930
Independent reflections	108535 [$R_{int} = 0.0445$, $R_{sigma} = 0.0475$]
Data/restraints/parameters	108535/0/5042
Goodness-of-fit on F ²	1.090
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0388, wR_2 = 0.1090$
Final R indexes [all data]	$R_1 = 0.0525$, $wR_2 = 0.1146$
Largest diff. peak/hole / e Å ⁻³	3.92/-2.15

Supplementary 7	Fable 1	Crystal	data and	structure	refinement	for	$[Au_{52}Cu_{72}]$	$(p-MBT)_5$	$5^{+}C^{-}$
-----------------	---------	---------	----------	-----------	------------	-----	--------------------	-------------	--------------

Supplementary Table 2 The result of ICP-MS analysis on the [Cu₇₂Au₅₂(p-MBT)₅₅]⁺ nanoalloy.

	Cu (ppm)	Au (ppm)	Cu : Au (mol)
	91.38	204.34	72 : 51.89
Cu ₇₂ Au ₅₂	40.43	90.46	72 : 51.92
	105.69	237.21	72:52.08

Supplementary Fig 1 MALDI mass spectra of $[Au_{52}Cu_{72}(SR)_{55}]^+$ capped by *p*-MBT (red) or TBBT (black) in positive mode (TBBT = SPh-^tBu and *p*-MBT = SPh-*p*-CH₃).

Supplementary Fig 2 Intensity-dependent MALDI mass spectra of $[Au_{52}Cu_{72}(TBBT)_{55}]^+$ (left panel) and $[Au_{52}Cu_{72}(p-MBT)_{55}]^+$ (right panel) nanoalloys. The different parameters (A1/B1-A5/B5) in MALDI-MS are listed in Table S3.

Supplementary Fig 3 Intensity-dependent LDI mass spectra of $[Au_{52}Cu_{72}(TBBT)_{55}]^+$ (left) and $[Au_{52}Cu_{72}(p-MBT)_{55}]^+$ (right) nanoalloys. The different parameters (C1/D1-C5/D5) in LDI-MS are listed in Table S3.

	A1/B1	A2/B2	A3/B3	A4/B4	A5/B5	A6/B6	C1/D1	C2/D2	C3/D3	C4/D4	C5/D5
Offset	55%	60%	70%	80%	90%	70%	60%	70%	8 0 %	90%	70%
Range	20%	20%	20%	20%	10%	30%	20%	20%	20%	10%	30%
Linear	90X	90X	90X								
Percent	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Supplementary Table 3 Different parameters in MALDI/LDI-MS

Supplementary Fig 4 The ESI mass spectrum of the $[Au_{52}Cu_{72}(TBBT)_{55}]^+$ in positive mode by adding Cs^+ . (A) Full spectrum, (B) Zoom-in of the 2+ ion set, (C) Zoom-in of the 3+ ion set, and (D) Zoom-in of the 4+ ion set.

Peaks in set a			Peaks in set b	Peaks in set c		
value	Assigned formula	value	Assigned formula	value	Assigned formula	
12178	$[Au_{52}Cu_{77}(SR)_{55}Cs]^{2+}$	8163	$[Au_{52}Cu_{77}(SR)_{55}Cs_2]^{3+}$	6156	$[Au_{52}Cu_{77}(SR)_{55}Cs_3]^{4+}$	
12147	$[Au_{52}Cu_{76}(SR)_{55}Cs]^{2+}$	8142	$[Au_{52}Cu_{76}(SR)_{55}Cs_2]^{3+}$	6140	$[Au_{52}Cu_{76}(SR)_{55}Cs_3]^{4+}$	
12115	$[Au_{52}Cu_{75}(SR)_{55}Cs]^{2+}$	8121	$[Au_{52}Cu_{75}(SR)_{55}Cs_2]^{3+}$	6124	$[Au_{52}Cu_{75}(SR)_{55}Cs_3]^{4+}$	
12083	$[Au_{52}Cu_{74}(SR)_{55}Cs]^{2+}$	8099	$[Au_{52}Cu_{74}(SR)_{55}Cs_2]^{3+}$	6108	$[Au_{52}Cu_{74}(SR)_{55}Cs_3]^{4+}$	
12052	$[Au_{52}Cu_{73}(SR)_{55}Cs]^{2+}$	8078	$[Au_{52}Cu_{73}(SR)_{55}Cs_2]^{3+}$	6092	$\left[Au_{52}Cu_{73}(SR)_{55}Cs_{3}\right]^{4+}$	
12021	$[Au_{52}Cu_{72}(SR)_{55}Cs]^{2+}$	8058	$[Au_{52}Cu_{72}(SR)_{55}Cs_2]^{3+}$	6077	$[Au_{52}Cu_{72}(SR)_{55}Cs_3]^{4+}$	
11988	$[Au_{52}Cu_{71}(SR)_{55}Cs]^{2++}$	8036	$\left[Au_{52}Cu_{71}(SR)_{55}Cs_{2}\right]^{3+}$	6060	$\left[Au_{52}Cu_{71}(SR)_{55}Cs_{3}\right]^{4+}$	
11956	$[Au_{52}Cu_{70}(SR)_{55}Cs]^{2+}$	8015	$[Au_{52}Cu_{70}(SR)_{55}Cs_2]^{3+}$	6044	$\left[{\rm Au}_{52}{\rm Cu}_{70}({\rm SR})_{55}{\rm Cs}_3\right]^{4+}$	
11924	$[Au_{52}Cu_{69}(SR)_{55}Cs]^{2+}$	7994	$\left[{\rm Au}_{52}{\rm Cu}_{69}({\rm SR})_{55}{\rm Cs}_2\right]^{3+}$	6029	$\left[{\rm Au}_{52}{\rm Cu}_{69}({\rm SR})_{55}{\rm Cs}_3\right]^{4+}$	
11893	$[Au_{52}Cu_{68}(SR)_{55}Cs]^{2+}$	7973	$\left[{\rm Au}_{52}{\rm Cu}_{68}({\rm SR})_{55}{\rm Cs}_2\right]^{3+}$	6013	$\left[{\rm Au}_{52}{\rm Cu}_{68}({\rm SR})_{55}{\rm Cs}_3\right]^{4+}$	
11861	$[Au_{52}Cu_{67}(SR)_{55}Cs]^{2+}$	7951	$[Au_{52}Cu_{67}(SR)_{55}Cs_2]^{3+}$	5997	$\left[{\rm Au}_{52}{\rm Cu}_{67}({\rm SR})_{55}{\rm Cs}_3\right]^{4+}$	

Supplementary Table 4 The assignments of the peaks in each set in the ESI mass spectrum.

Supplementary Fig 5 A possible pathway for losing surface Cu atoms under ESI-MS conditions (Cu: green, S: red).

Supplementary Fig 6 Experimental proof for the existence of Cl⁻ in the $[Cu_{72}Au_{52}(p-MBT)_{55}]Cl$ nanoalloys. (A) High-mass range spectra of $[Au_{52}Cu_{72}(p-MBT)_{55}]Cl$ (red spectrum) and $[Au_{52}Cu_{72}(p-MBT)_{55}]SbF_6$ (black); (B) low-mass range spectra, in which the peaks for $[SbF_6]^-$ were found in addition to those from the matrix (i.e., DCTB (*trans*-2-[3-(4-*tert*-Butylphenyl)-2-methyl-2-propenylidene]malononitrile)).

Supplementary Fig 7 (A) The thermogravimetric analysis, and (B) The UV-vis absorption spectrum of $[Cu_{72}Au_{52}(p-MBT)_{55}]^+$ nanoalloys.

Supplementary Fig 8 UV-vis absorption spectra of two [Cu₇₂Au₅₂(SR)₅₅]⁺ nanoalloys protecting by different ligands.

Supplementary Fig 9 Time-dependent UV-vis absorption spectra of $[Cu_{72}Au_{52}(SR)_{55}]^+$ nanoalloys in CH_2Cl_2 in the air atmosphere (room temperature).

Supplementary Fig 10 (a) top view and (b) side view of the $Ag_7@Ag_{47}$ shells in Ag_{136} (ref. 30) and (c) the triangle formed by twinning edges and apex in the Ag_{47} shell.

Supplementary Fig 11 The overall size of $[Cu_{72}Au_{52}(SR)_{55}]^+$.

Supplementary Fig 12 Intra- and inter-cluster interactions between two $[Cu_{72}Au_{52}(SR)_{55}]^+$ nanoalloy in an edge-to-edge approach, showing six interacting *p*-MBT ligands in a triangular mosaic pattern. Color labels: pink, light orange = Au/Cu, yellow = S, grey, magenta, orange = C, and white = H.

Supplementary Fig 13 Inter-cluster interactions between two $[Cu_{72}Au_{52}(SR)_{55}]^+$ nanoalloys in a tip-to-tip approach. Color labels: light green, light orange = Au/Cu, yellow = S, grey, green, orange = C, and white = H.

Supplementary Fig 14 Intra- and inter-cluster interactions between two $[Cu_{72}Au_{52}(SR)_{55}]^+$ nanoalloy in a tip-to-edge approach. Color labels: light green, pink = Au/Cu, yellow = S, grey, green, magenta = C, and white = H.

Supplementary Fig 15 (a) front and (b) top view of the twin nanowire formed by interlocked $[Cu_{72}Au_{52}(SR)_{55}]^+$ nanoalloys along x axis.

Supplementary Fig 16 (a) front and (b) side view of the two sets of nanowires which are not interact along z axis. Each nanowire is composed of two lines (x and x') of interlocked $[Cu_{72}Au_{52}(SR)_{55}]^+$ nanoalloys.

Supplementary Fig 17 (a) front and (b) top view of the two sets of nanowires which are not interact along y axis. Each nanowire is composed of two lines (x and x') of interlocked $[Cu_{72}Au_{52}(SR)_{55}]^+$ nanoalloys.