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Supplementary Figure 1.  Status of the KRAS gene, KRAS protein activity and biological 

characteristics of the HCT116 (mtKRASHi) and HKE3 (mtKRASLo) cell lines.  

(A) Analysis of the KRAS gene locus in HKE3 cells. According to our whole genome 

sequencing and previous data 1 HCT116 cells have a duplicated mtKRAS allele. The disruption 

vector used to generate HKE3 cells replaces exon 2 of the endogenous KRAS gene 2. 

Transcripts encoded by the KRAS genes in HKE3 were reverse transcribed, PCR amplified 

with the indicated primers and Sanger sequenced. The results show that HKE3 express 3 types 

of KRAS mRNAs: a wildtype, a G13D mutated, and one containing the G12C mutation of the 

disruption vector. The primers for the latter PCR product map into the Tk gene in the disruption 

vector and the exon 4-5 boundary of KRAS. Hence, this 550bp PCR product only can be 

generated if the disruption vector is correctly inserted into a KRAS gene. These results suggest 

that HKE3 cells contain a wtKRAS, a mtKRASG13D and a disrupted KRAS gene.  

(B) Activity of KRAS proteins measured by RAS Binding Domain (RBD) pulldown assays. 

The results are the average of 4 independent experiments. Western blots were developed with 

KRAS specific antibodies and antibodies against a loading control (ERK) and quantitated using 

the Image J software. PD, KRAS pulldown; TL, total lysate. Error bars indicate standard 

deviation (SD).  

(C) ERK activation in mtKRASHi versus mtKRASLo cells. Serum starved cells were treated 

with 100pg/ml TGFα. Activated ERK was determined by Western blotting with phospho-ERK 

specific antibodies (pERK). Blots were quantitated, and pERK values normalized to total ERK 

expression. Numbers below lanes represent normalized pERK.  

(D) Growing cells were treated with 5μM EGFR inhibitors (BIBX1382, gefitinib) and 

evaluated as in C. Samples were separated on the same gel, but irrelevant lanes were removed 

as indicated by the dashed line. Numbers below lanes represent normalized pERK.  

(E) Proliferation. 50,000 cells were seeded and counted at 48, 72 and 96 hours. Cells were 

cultured in DMEM containing 10% fetal calf serum (FCS) for the first 24 hours. Then, FCS 

was reduced to 1% to assess the ability to proliferate under reduced growth factor supply.  

(F) Migration. Cells were seeded in 96-well plates with a 2mm diameter stopper in the middle. 

When cells reached confluency, the stopper was removed and the migration of the cells into 

the void was quantified.  

(G) Soft agar assay measuring anchorage independent growth.  

(H) Colony forming assay measuring the ability to survive and proliferate as single cells.  

(I) Differences in KRAS activity between HCT116 and HKE3 cells are stable over multiple 

passages. Cells were analyzed at passage 5 and 15. KRAS activity was determined by an RBD-

pulldown assay (27). MEK activity was detected using an antibody against the activating 

phosphorylation site (pMEK). Bands were quantified, and the normalized ratios (HKE3 P5 was 

set to 1) between active proteins and proteins expressed in the lysate are shown below the 

bands. The asterisk indicates a cell line that was loaded as control.  

 

All experiments in this figure were performed in at least triplicates. Error bars represent 

standard deviation, and P values were determined by two-tailed Student’s t-test; *, P < 0.05. 

Assays were evaluated and quantitated by Image J (B-D, F-I). Source data are provided as a 

Source Data file. 
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Supplementary Figure 2.  The global EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo 
protein-

protein interaction networks (PPINs).  

(A) Summary of the EGFRNet. The 95 baits were pie‐charted to show the proportions of 

interactions enhanced in mtKRASHi (red) and mtKRASLo (blue); unchanged interactions are 

in grey. The size of the nodes is proportional to the total number of rewired interactions.  

(B) Bait-prey interactions detected in mtKRASHi cells in comparison to empty vector controls. 

Bait proteins are shown as red nodes, prey proteins as blue nodes.  

(C) Bait-prey interactions were integrated to construct the EGFRNetmtKRAS-Hi PPIN.  
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(D) Bait-prey interactions detected in mtKRASLo cells in comparison to empty vector controls. 

Bait proteins are shown as blue nodes, prey proteins as blue nodes.  

(E) The EGFRNetmtKRAS-Lo 
PPIN,  

(F) Node degree,  

(G) node betweenness centrality,  

(H) node clustering coefficient, and  

(I) the distribution of the shortest path lengths were highly correlated between the two 

EGFRNets. 

 

Source data are provided as a Source Data file. The Cytoscape session file for Supplementary 

Figure 2A is provided in Supplementary Software 2.
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Supplementary Figure 3. Expected network size distributions for 93 bait proteins.  

(A) Expected size distribution of the EGFRNets. 93 bait proteins were identified to have at 

least one interaction in EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo. The pink distributions show 

the expected numbers of experimentally validated interactions for 93 randomly sampled 

proteins in the Integrated Interaction Database (IID) version 2018-113. Proteins and their 

interactions were randomly sampled from IID 1000 times to construct these distributions. The 

numbers of interactions detected in the EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo PPINs fall 

close to the middle of these distributions. Since bait proteins were not a random sample, but 

rather known members of the EGFR signaling pathway, network size distributions were also 

generated for sets of signaling proteins. The green distributions show the expected numbers of 

experimentally validated interactions for 93 randomly sampled proteins from KEGG (left 

panel) and Reactome (right panel) signaling pathways. KEGG and Reactome signaling 

pathway proteins and their interactions were randomly sampled from IID 1000 times to 

construct these distributions. Networks of signaling pathway proteins were considerably larger 

than those of randomly selected proteins; mean network sizes were 6,657 PPIs for KEGG 

signaling pathway proteins, 5,656 PPIs for Reactome signaling pathway proteins, and 3,459 

for randomly selected proteins. Signaling-related networks were larger because proteins 

annotated to signaling pathways have been studied more extensively; they have been tested in 

more PPI screens than random proteins and their PPI networks have accumulated more 

interactions. Consequently, the two EGFRNets were similar in size to random protein 

networks, and considerably smaller than signaling-related networks, which likely represent 

many more screens.  

(B) Validation of qMS results by co-immunoprecipitation (co-IP)/Western blotting (WB). 

HCT116 and HKE3 cells were transfected with the indicated FLAG-tagged baits. Cells were 

grown to confluency and serum deprived for 20 hours before being lysed and 

immunoprecipitated using anti-FLAG. Western blots were stained with the antibodies 

indicated. The PTK6-CDC37 co-IPs were on the same blots, but lanes were spliced together as 

indicated by broken lines. EV, empty vector transfection.  

(C) Endogenous co-IP/WB experiments were carried out using the indicated antibodies. WBs 

were scanned and quantitated using Image J. Signals corresponding to co-immunoprecipitated 

prey proteins were normalized to the amount of pulled-down bait and expression of the prey in 

total cell lysates. These ratios were compared to qMS data. In most cases the qMS and co-

IP/WB ratios corresponded well except in one case (NCK1-PRPS1) shown in red. 
 

Source data are provided as a Source Data file. The R-code and source data for 

Supplementary Figure 3A are provided in Supplementary Software 3. 

  



8 

 

  



9 

 

Supplementary Figure 4. The ERBB1-4 protein interaction network. (A) MYTH was used 

to identify binary protein interactors of the human ERBB2, ERBB3, and ERBB4 proteins. 

These data were combined with known MYTH-based interactions for ERBB1-4 from the IID 

database 4 to construct the network shown featuring 405 interactions (Supplementary Data 3). 

The network was visualized using NAViGaTOR 3 5. The ERBB2-4 interactome comprises 197 

interactions, of which 181 are new. Twenty-nine proteins interact with more than one ERBB 

receptor, and according to GO analysis 97 preys (~25%) are membrane proteins. GO molecular 

function terms were used to colour nodes, as per inset legend. Blue edges indicate interactions 

that were previously detected by MYTH in other studies. (B) The ERBB family interactomes 

(Supplementary Data 3) show a significant (P<001; Mann-Whitney Rank Sum Test) bias both 

in tissue, and disease distributions for MYTH interactions supported by other experimental 

data or predicted evidence from IID. Highly tissue specific are ITPKA-EGFR, LRRC7-

ERRB3, LRRC7-ERBB4, CDC25C-EGFR, and ISK-EGFR. Highest disease annotation is 

available for EGFR-EGFR, STAT3-EGFR, CRK-EGFR, and AKT1-EGFR. 

 

Source data are provided as a Source Data file. 
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Supplementary Figure 5. Potential drivers of EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo 

PPI network rewiring.  

(A) Copy number variation analysis.  

(B) RNAseq data showing that the distribution of gene expression values was similar 

mtKRASHi or mtKRASLo cell lines for unchanged and rewired preys, i.e. there was no bias 

towards higher or lower gene expression for the rewired preys.  

(C) There was a weak (r2 = 0.18) but significant correlation (P < 0.001) between fold-change 

in abundance of proteins in the IPs as determined by AP-MS and fold-change in protein 

expression between the two cell lines.  

(D) Rewired interactions involving differentially expressed preys. Proteins that were 

significantly differentially expressed between the mtKRASHi and mtKRASLo cell lines were 

mapped to bait-prey interactions detected in EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo. 

Interactions enhanced in EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo are shown in red and blue, 

respectively. Differentially expressed proteins are indicated by larger sized nodes.  

(E) Four selected AP-MS complexes highlighting differentially abundant prey proteins (larger 

nodes) are also shown.  

(F) Rewired interactions involving differentially phosphorylated preys. Differentially 

phosphorylated proteins were mapped to bait-prey interactions in EGFRNetmtKRAS-Hi and 

EGFRNetmtKRAS-Lo. Color scheme as in A, with differentially phosphorylated proteins shown 

as larger sized nodes.  

(G) Four selected AP-MS complexes highlighting differentially phosphorylated prey proteins 

(larger nodes) are shown. 

 

Source data are provided as a Source Data file. The Cytoscape session files for Supplementary 

Figures 5C,D is provided in Supplementary Software 4, and for Figures 5E,F in Supplementary 

Software 5. 
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Supplementary Figure 6. CORUM complexes identified in the (A) EGFRNetmtKRAS-Hi and 

(B) EGFRNetmtKRAS-Lo  
 
PPINs. CORUM complexes are shown, where at least 70% of the 

complex component proteins were nodes in the EGFRNets. Nodes annotated in the same 

CORUM complex are in the same colour. In some cases, multiple complexes map to an 

overlapping set of nodes in the network. Bait proteins are shown as red nodes. Prey proteins 

not annotated in the identified CORUM complexes are shown as blue nodes. CORUM complex 

ID numbers are in parenthesis. Source data are provided as a Source Data file. The Cytoscape 

session file for Supplementary Figure 6 is provided in Supplementary Software 6. 
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Supplementary Figure 7. Rewired interactions are non-randomly distributed among 

baits. To determine whether rewired interactions were non-randomly distributed among the 93 

bait proteins, edge labels were permuted 1,000 times and the number of baits with no rewired 

interactions assessed in each simulation. The number of baits with no rewired interactions 

observed in the EGFRNets (10 baits) was significantly (P<0.002) outside the random 

distribution as indicated by **. Statistical significance was assessed using the Kolmogorov–

Smirnov test.  

 

Source data are provided as a Source Data file. 
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Supplementary Figure 8. PTK6 regulates cell migration.  

(A) Differential PTK6 complex composition.  

(B) Western blot showing similar expression of endogenous PTK6 in mtKRASHi and 

mtKRASLo cells. Tubulin was used as loading control.  

(C) FLAG-PTK6 was transfected into mtKRASHi and mtKRASLo cells, and migration was 

measured using the OrisTM 2D Cell Migration Assay. FLAG-PTK6 expression was assessed 
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by Western blotting with anti-Flag, vinculin was used as loading control.  

(D) Expression of the PTK6 K219M kinase dead (KD) mutant significantly decreased cell 

migration in mtKRASHi cells.  

(E) PTK6 knockdown by siRNA (smartpool, Dharmacon) reduced cell migration specifically 

in mtKRASHi. A non-targeting siRNA was used as control, and knockdown was ascertained by 

Western blotting of endogenous PTK6.  Error bars represent standard deviation, and P values 

were determined by two-tailed Student’s t-test; *, P < 0.05; **, P < 0.01; differences without 

P values indicated were not significant. 

Source data are provided as a Source Data file. 

 

 

Supplementary Figure 9. Clinical correlates of PPIN rewiring.  

(A) CRC patient overall survival curves ranked by the baits that have the most enhanced 

interactions in the mtKRASHi PPIN. 

(B) To assess the accuracy of the top-20 bait proteins to classify patients into high and low risk 

groups, we trained a Lasso classifier using RNAseq expression, copy-number, and mutation 

data from TCGA patients. Five-fold cross-validation of the classifier by subsampling the 

patient data into training (80%) and testing (20%) datasets gave an accuracy of up to 0.79 

(mean 0.70) and an area under the ROC curve (AUC) of 0.763 (red curve). A similar 

classification using the bottom-20 rewired proteins (blue curve) gave a much lower mean 

accuracy of 0.4 and AUC of 0.522.  

(C) Kaplan-Meier survival curves for TCGA CRC patients with alterations in the top 20 

rewired bait proteins (red) compared to patients with alterations in the bottom 36 least rewired 

proteins (blue). The log-rank test was used to assess statistical significance; * P < 0.05.  

Source data are provided as a Source Data file. The R-script for Supplementary Figure 9B is 

provided in Supplementary Software 7. 
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Supplementary Methods  
 

1. Cell lines and cell culture. HCT116 (mtKRASHi) and HKE3 (mtKRASLo) cells 2 were 

provided by Doctors Shirasawa and Sasazuki. All cells were grown in DMEM supplemented 

with 10% fetal calf serum (FCS) and 1% L-glutamine (Gibco-BRL). Cells were routinely tested 

for mycoplasma contamination. Cell lines were authenticated by RNAseq as recently described 
6.  

In order to test whether the cells were clonal populations we used fluorescence-

activated cell sorting to isolate ~1,000 single cells from the HCT116 and HKE3 cell lines and 

seeded them into 96 well plates. Once colonies were visible, cells were treated with 1mM G418 

or 1mM Ganciclovir (GCV). The gene targeting vector used by Shirasawa and colleagues 

carries a neomycin gene conferring resistance to G418, and a thymidine kinase gene conferring 

sensitivity to GCV 2. Thus, cells carrying the targeting vector are G418 resistant and GCV 

sensitive, whereas cells lacking the targeting vector are G418 sensitive and GCV resistant. This 

was the pattern observed without exception. All HKE3 clones were resistant to G418, but died 

in GCV medium, whereas all HCT116 clones were killed by G418, but grew in the presence 

of GCV. This experimental setup would have detected a contamination of HKE3 by HCT116 

down to a level of ~0.1%. Thus, these results confirmed that the cells are not cross-

contaminated by clones from the other cell line.  

Whole genome sequencing (WGS) and RNA expression sequencing (RNAseq) of 

HCT116 and HKE3 was used to further investigate why mtKRASG13D is still expressed in 

HKE3 cells. The WGS data showed a 1:1.6 allele ratio of wt/mt KRAS in HCT116 cells 

indicating that HCT116 may contain a duplicated mutant KRAS allele (Supplementary Table 

1). This is consistent with a previous report showing duplication of the mtKRAS allele in 

HCT116 cells 1. The presence of the disruption vector in the HKE3 genome was confirmed by 

finding the KRAS G12C mutation, which is contained in the disruption vector used to knock-

out the mutant KRAS G13D allele. In the event of a successful disruption, the inserted Neo-Tk 

cassette produces a mRNA but cannot encode a protein, as protein translation will terminate 

after the Tk gene 2. The KRASG12C mutation also is detected at the mRNA level further 

confirming that the disruption cassette is integrated in the HKE3 genome.  

Supplementary Table 1. Comparison of WGS and RNAseq results between HCT116 and HKE3 

cells. dv, disruption vector. Ratios (within a row) are given in parentheses. 

 

In order to examine whether the disruption vector has integrated into the KRAS locus 

we analysed the KRAS mRNAs expressed in HKE3 cells by PCR (Supplementary Figure 1A). 

PCR was performed on cDNA from HKE3 using two primer combinations: (i) a forward primer 

(open arrow) that binds to the endogenous KRAS sequence just upstream of the StuI restriction 

site, where the Neo-Tk cassette in the disruption vector was inserted; plus a reverse primer 

(black arrow) that binds to the exon 4-5 junction well outside of the disruption vector; and (ii) 

a forward primer (red arrow) that binds to the Tk sequence; plus the same reverse primer (black 

arrow). Both primer combinations produced PCR products of the expected size (ca. 550bp). 

 
KRAS 

gene 

status 

G12G + G13G 

(GGT GGC) 

Wildtype (wt) 

G12G + G13D 

(GGT GAC) 

Mutant (mt) 

G12C + G13G 

(TGT GGC) 

dv & wt 

G12C + G13D 

(TGT GAC) 

dv & mt 

DNA 
HCT116 12 (1) 19 (1.6) 0 (0) 0 (0) 

HKE3 14 (1) 12 (0.9) 15 (1.1) 0 (0) 

RNA 
HCT116 45 (1) 37 (0.8) 0 (0) 0 (0) 

HKE3 50 (1)  51 (1) 37 (0.7) 0 (0)  
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The combination of the Tk primer and the KRAS exon 4/5 boundary primer only can generate 

this product, if the disruption vector is correctly integrated at the KRAS gene locus. Sanger 

sequencing of the PCR products showed that HKE3 cells contain three types of mRNA 

transcripts, i.e. wt KRAS mRNA, KRASG13D mRNA, and KRASG12C mRNA, which was 

only detected when the primer binding the Tk gene was used. The presence of these 3 types of 

KRAS transcripts indicates that HKE3 have a wt KRAS gene, a mt KRAS G13D gene, and a 

disrupted mt KRAS gene, where the endogenous G13D mutation was replaced by the G12C 

mutation carried by the disruption vectors. This result is consistent with the observation that 

HCT116 cells have two mt KRAS G13D alleles (see above), and that the disruption vector only 

has disrupted one mt KRAS allele while leaving the second intact. This finding also explains 

why HKE3 express a reduced amount of KRAS G13D mRNA and protein as compared to 

HCT116 cells.  

This interpretation is also consistent with the circa threefold difference in KRAS 

activity between HCT116 and HKE3, which has remained constant over at least 10 continuous 

passages (Supplementary Figure 1I). This difference in KRAS activity also was stable during 

a >3 year period of intermittent culturing these cell lines in our laboratories (compare 

Supplementary Figure 1B in the current manuscript with Fig. 5 in Fasterius et al. 6. If the HKE3 

population had contained a mtKRAS clone, it would have expanded in this period of time. 

Based on the difference in proliferation rates (Supplementary Figure 1E), a mtKRAS clone or 

a contaminating HCT116 cell would have completely taken over the HKE3 population within 

8 months when present at an initial 1 : 1 million  ratio.  This would have profoundly shifted the 

antibiotic resistance measured in single cells (see above), the KRAS allele ratio, the 

biochemically measured KRAS activity ratio, and the biological behaviour. As neither of these 

changes was observed, we conclude that the low expression of mtKRASG13D in the HKE3 cells 

is not due to contamination with HCT116 or a back-mutated clone in the HKE3 population, 

and that we are comparing a population of isogenic cells that express high (mtKRASHi) and 

low levels (mtKRASLo) of mtKRASG13D.  

 

2. PCR analysis. Cells were grown to 80% confluence and lysed directly in the dish using 

600μL RLT Plus buffer (Qiagen) after removal of the growth media. RNA was isolated with 

the RNeasy Plus Mini Kit (Qiagen), transcribed into cDNA using the SuperScript III First 

Strand Synthesis System (ThermoFisher Scientific) with oligo(dT) primers, and then amplified 

by PCR using Dynazyme II DNA Polymerase (ThermoFisher Scientific) according to the 

manufacturer’s protocol with an annealing temperature of 55°C. Two sets of primer pairs were 

used (i) KRAS-TK forward + KRAS reverse 3; (ii) KRAS-wt forward + KRAS reverse 3. The 

PCR product was purified using QIAquick PCR cleanup (Qiagen) and Sanger sequenced by 

Eurofin Genomics.  

 

Primers sequences:  

KRAS-TK forward: 5’-CTGGTACGAGGAGCGCTTT-3’ 

KRAS-wt forward: 5’-GACTGAATATAAACTTGTGGTAGTTGG-3’ 

KRAS reverse 3: 5’-ACACCCTGTCTTGTCTTTGCT-3’ 

 

3. Whole genome sequencing. DNA extractions were performed with the DNeasy Blood and 

Tissue Kit (Qiagen) as per the manufacturer’s instructions. Extracted nucleic acids were stored 

at -80°C before sequencing. Whole genome sequencing library preparation was performed with 

the TruSeq DNA PCR-free Kit (Illumina) and sequenced on a HiSeqX instrument. The quality 

assessment of the WGS data is shown in Supplementary Table 2. The genome sequencing data 
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have been submitted to the NCBI sequence read archive under accession number 

PRJNA374513 (https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA374513).  

  HCT116 HKE3 

Total Reads  628,300,083 644,210,762 

Number of aligned Reads  625,454,093 641,060,604 

Aligned Reads (percentage of total reads) 99.55% 99.51% 

Average Autosomal Coverage  30.66X 31.10X 

GC Content 40.39% 40.79 40.39 

Supplementary Table 2. Quality assessment of WGS of HCT116 and HKE3 cells.   

 

4. Single Nucleotide Variant (SNV) and small insertion-deletion (InDel) site analysis. WGS 

reads were aligned to the GRCh37 human reference genome using bwa mem 7. Variants were 

called using Genome Analysis Toolkit (GATK v4.1.30) pipelines. Briefly, the GATK 

HaplotypeCaller was used for calling single nucleotide polymorphisms (SNPs) and InDels, 

followed by the GenotypeGVCF (genomic variant call formats) for joint genotyping of the 

HCT116 and HKE3 cells 8. SNVs were filtered separately for SNPs and InDels using the 

GATK variant quality score recalibration (VQSR) pipeline and annotated using the Ensembl 

(release 97) Variant Effect Predictor 9. After filtering, a total of 170,135 SNVs and small InDels 

with 10 or more supporting reads were identified between HKE3 and HCT116. Of these 

discordant variants, 1,091 were found within sites defined as having a variant of “high” or 

“medium” impact (Supplementary Table 3) defined by 12 scenarios that alter protein coding 

sequences (https://asia.ensembl.org/info/genome/variation/prediction/predicted_data.html). In 

total, 872 genes were predicted to contain SNVs with high or medium impact. Of these genes, 

495 were expressed on average >1 log2(reads per million) in the two cell lines. Of these, 70 

were nodes in the EGFR PPI network and 36 were rewired. Considering that the EGFR PPI 

networks contain 4,420 nodes, of which 1360 have rewired interactions, SNVs affect 1.6% of 

nodes and 2.6% of rewired interactions. These data suggest that SNVs may be linked to the 

rewiring of a small number of EGFR network nodes, but cannot explain the extensive rewiring 

of 30.7% PPIs observed. 

 

Impact Impact level # sites 

missense_variant MED 757 

frameshift_variant HIGH 159 

splice_region_variant MED 115 

stop_gained HIGH 27 

splice_donor_variant HIGH 16 

splice_acceptor_variant HIGH 14 

inframe_deletion MED 14 

inframe_insertion MED 6 

start_lost HIGH 4 

protein_altering_variant MED 1 

Total  1113 

Supplementary Table 3. Annotated SNP/InDel discordant sites with HIGH and MEDIUM 

impact identified using Variant Effect Predictor (VEP). 

 

5. Copy Number (CNV) and structural variants analysis. Structural and copy number variants 

were called on the aligned WGS files with Manta version 1.6.0 10 using a joint diploid sample 

https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA374513
https://asia.ensembl.org/info/genome/variation/prediction/predicted_data.html
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workflow (i.e. without tumour-normal matching) and cnvkit version 0.9.5 11. After removing 

sites that did not pass quality filters and problem regions such as centromeric/telomeric and 

low-complexity regions previously identified in 12, discordant structural variant were then 

extracted using bcftools and annotated using ANNOVAR 13. 476 discordant structural variants 

were detected between HKE3 and HCT116, 14 of which contained one or more annotated 

genes. Of these, all were variable in HKE3 cell line and homozygous reference in the HCT116. 

The mean size of these variants was 733,262bp. In total, 27 genes were predicted to be impacted 

by structural variants. Of these genes, only 12 were expressed on average >1 count per million 

across both cell lines and no gene was a node in the EGFR PPI network. Only 3 genes [ALPP; 

EREG; ZNF91], predicted to differ in their copy number between the cell lines (CNV genes), 

were significantly differentially expressed (FC > 2; FDR < 0.05). Only 1 of these genes [EREG] 

were also identified as being significantly differentially abundant at the protein level 

(Significance A < 0.05). As with the structural variants, CNVs were called between HKE3 and 

HCT116 to identify any gain or loss of gene that may impact observed network rewiring. Using 

a log2 weighted mean threshold of 0.4, the level of gain or loss of coverage in each sample, 

HCT116 contained 1688 genes in CNVs compared to 3103 for HKE3 (Supplementary Figure 

5A). Removing common gene CNVs a total of 2310 genes were identified to be different 

between the two samples. Of these genes, 137 were expressed on average >1 count per million, 

5 were found to be in network nodes and one gene, PPP3CA, was rewired. These data suggest 

that structural variant nor CNV-driven changes in gene/protein expression have little impact 

on the observed network rewiring. Unexpectedly, this analysis did not detect a CNV that 

includes the KRAS locus, which was suggested by the results reported in Table 1 and 

Supplementary Figure 1A. While this discrepancy likely is related to technical limitations of 

the different experimental and analyses methods, we cannot fully explain the reasons behind 

these results. However, despite these ambiguities of the genetic analysis, the biochemical 

analysis of the KRAS protein activity showed that HCT116 cells have a 3fold elevated KRAS 

activity over HKE3 cells (Supplementary Fig. 1B). This result was obtained by MS and 

Western blot analysis (Supplementary Fig. 1B) and was very stable over time (Supplementary 

Figure 1I; also compare Supplementary Figure 1B to Fig. 5 in Fasterius et al.6). 

 

6. Antibodies and reagents. Antibodies were contributed by the Human Protein Atlas project, 

and the following antibodies were obtained from commercial sources: K-RAS (sc-30), Tub 

TU-02 (sc-8035), PTK6 C18 (sc-1188), PRPS1/2/L (sc-292588), CAV2 (sc-7942), CDC42 (sc-

87), RSK1/ RPS6KA1 (sc-231), RKIP/PEBP1 (sc-28837), PRKCA (sc-20), PRKCZ (sc-

17781), BAG2 (sc-366091), and CAV1 (sc-894) from Santa Cruz; GAPDH 1410C (2118S), 

Paxillin (2542S), Vinculin (4650), BAD (9292), phospho-BAD S112 (9296), phospho-AKT 

(9271S), AKT (9272S), NCK1 (2319), SRC (2123), MAPK7/ERK5 (3372) from Cell 

Signaling. ERK1/2 (M5670), phospho-ERK1/2 (M8159), anti-Flag M2 peroxidase (A8952), 

protein G-sepharose, anti-FLAG-M2 conjugated agarose beads (A2220), DUSP4 

(SAB1403748) and Calcein (C1359) were from Sigma-Aldrich. STK38/NDR1 (BD 610828) 

and IQGAP1 (BD 610611) were from BD Biosciences. RAC1 (05-389) was from EMD 

Millipore. CSNK1/2 (ab10474) and CDC37 (ab56598) were from Abcam. BCA protein assay 

kit (Pierce 23225) was from Thermo Fisher Scientific. Empore TM C18 Extraction Discs were 

from 3M. Gefitinib was from American Custom Chemicals Corporation, EGF receptor 

inhibitorII (BIBX 1382) from Calbiochem, and H-89 dihydrochloride hydrate (B1427) from 

Sigma-Aldrich. For Western blotting all antibodies were used at a 1:1,000 dilution with the 

exceptions of ERK and phospho-ERK that were diluted 1:10,000; and KRAS and RAC1 

antibodies which were diluted 1:500. 
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7. siRNAs. ON-TARGET plus si CONTROL NON-TARGETing siRNA (D-001810-01-20), 

ON-TARGETplus SMARTpool PTK6 siRNA L-003166-00-0010 and ON-TARGETplus 

SMARTpool BAD (L-003870-00-0005) were from Dharmacon. 

 

8. Baits and expression vectors. To achieve a high degree of coverage of the EGFR network 

we carried out AP-MS on 95 baits (Supplementary Data 1). These baits were selected from a 

previous manually-curated dataset of the EGFR network 14 and through additional literature 

review. The cDNAs for the bait proteins were ordered from Origene and cloned into the SF-

TAP vector 15 with the tag at the N-terminus using the Gateway cloning system (Thermo 

Fisher) according to the manufacturer’s instructions. FLAG-PTK6 KD was generated by site 

directed mutagenesis changing the catalytic lysine 219 to methionine.  

 

9. SILAC labelling and bait protein isolation. Expression efficiency of the different cDNAs 

was determined by introducing increasing amounts of the plasmids into the SILAC labelled 

cell lines using polyethylenimine (408727, Sigma Aldrich) transfection as described 16. 

Relative bait protein expression in the two cell lines was determined by Western blotting. 

Subsequently, for each bait, transfection conditions were selected to achieve equal expression 

levels in both HCT116 (mtKRASHi) and HKE3 (mtKRASLo) cells. For SILAC labelling we 

adopted protocols previously used for triple labeling 17-19. Briefly, cells were grown in SILAC 

DMEM supplemented with 3mM L-Glutamine, 10% dialyzed FCS, 0.55mM lysine and 0.4mM 

arginine. For “Light” labelling L-[12C6,
14N2]-lysine (Lys0) and L-[12C6,

14N4]-arginine (Arg0) 

were added to the SILAC DMEM, for “Medium” labelling, L-[2H4]-lysine (Lys4) and L-

[13C6]-arginine (Arg6), and for “Heavy” labelling, L-[13C6,
15N2]-lysine (Lys8) and L-

[13C6,
15N4]-arginine (Arg10) were used. 0.5mM proline was added to all SILAC media to 

prevent arginine to proline conversion. All amino acids were purchased from Silantes. As we 

observed changes in expression for some baits caused by growth in SILAC media and in order 

to improve the accuracy of quantitation, we performed the AP-MS experiments using label 

swapping to correct for such expression changes. In line with our own experience, SILAC label 

swapping has been shown to reduce a major source of quantification error and to vastly improve 

the accuracy of quantitation 20. In addition, label swapping requires twice as many replicates 

which improves data quality, and preys must be consistently identified in both labelling 

conditions providing an experimental design that reduces the number of false positive 

interactions. Cells were cultured in 150mm dishes in biological triplicate for each condition 

(Light, Medium, Heavy; n=3 forward and n=3 reverse samples per bait per cell line), according 

to the following scheme: 

FORWARD HCT116 Heavy, (Bait) HKE3, Medium (Empty Vector) HKE3 Light, (Bait) 

REVERSE HCT116 Light, (Bait) HCT116, Medium (Empty Vector) HKE3 Heavy, (Bait) 

 

Twenty-four hours post transfection, cells were serum deprived for a minimum of 12 hours 

before cells were washed with phosphate-buffered saline (PBS; Thermo Fisher) and lysed with 

lysis buffer (1% NP40, 20mM Tris-HCl pH 7.5, 150mM NaCl, 1mM MgCl2) supplemented 

with a protease inhibitor cocktail (Roche) and phosphatase inhibitors (2mM sodium 

orthovanadate, 10mM sodium fluoride and 10mM β-glycerophosphate; all from Sigma-

Aldrich) for 10 minutes at 4°C. Lysates were cleared by centrifugation at 4°C and 20,000xg 

for 10 minutes. Total protein concentration in supernatants was determined by the Pierce BCA 

assay following the manufacturer’s instruction. Equal concentrations of total protein lysates 

were incubated with 10μl of FLAG-M2 agarose beads (Sigma-Aldrich) for 2 hours at 4oC under 

constant agitation. The beads were washed twice with lysis buffer, and corresponding SILAC 

samples were combined. Then, beads were washed 3x with TBS (10mM Tris-HCl, 150mM 
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NaCl) to remove detergent.  

 

10. Preparation of immunoprecipitates for mass spectrometry analysis. Following the wash 

steps, the proteins were either digested on-beads 21 or eluted by addition of 200µl FLAG 

peptide (200µg/ml) in TBS followed by methanol-chloroform precipitation and in-solution 

digest as described earlier 22. Trypsin digestion was carried out in 2M Urea, 50mM Tris-HCl 

pH 7.5, 1mM DTT containing 5μg/ml modified sequencing-grade trypsin (Promega) overnight 

at 28°C. Peptides were alkylated using iodoacetamide (5mg/ml) and incubated in the dark for 

30 minutes at room temperature. Samples were desalted using C18 Stage Tips as described 23 

and analyzed by mass spectrometry.  

 

11. Mass spectrometry (MS) analysis of immunoprecipitates (affinity purification-MS, AP-

MS) was performed on Orbitrap instruments. In-solution digests were analyzed on an LTQ 

Orbitrap Velos mass spectrometer coupled to an Ultimate3000 RSLC system (Thermo 

Scientific). Tryptic peptides were automatically loaded onto a nanotrap column (75μm i.d. × 

2cm, packed with Acclaim PepMap100 C18, 3μm, 100Å; Dionex) at a flow rate of 6μl/minute 

in 98% buffer C (0.1% trifluoroacetic acid in HPLC-grade water) and 2% buffer B (80% 

acetonitrile and 0.08% formic acid in HPLC-grade water). After 3 minutes, peptides were 

eluted and separated on the analytical column (75μm i.d. × 25 cm, Acclaim PepMap RSLC 

C18, 2μm, 100Å; Dionex) by a linear gradient from 2% to 30% of buffer B in buffer A (2% 

acetonitrile and 0.1% formic acid in HPLC-grade water) at a flow rate of 300nl/min over 85 

minutes. Remaining peptides were eluted by a short gradient from 30% to 95% buffer B over 

10 minutes. The eluted peptides were injected online into the MS. From the MS1 scan 

(resolution: 30 000, two miroscans per spectrum) with a mass range of 300–1,500 the 10 most 

intense peptide ions were selected for fragment analysis in the linear ion trap if they exceeded 

an intensity of at least 200 counts and if they were at least doubly charged. The normalized 

collision energy for collision-induced dissociation was set to a value of 35, and the resulting 

fragments were detected with normal resolution in the linear ion trap. Every ion selected for 

fragmentation was excluded from re-selection for 20 seconds by dynamic exclusion. On-bead 

tryptic digests were analyzed on an Ultimate Ultra 3000 chromatography system coupled to a 

Q-Exactive mass spectrometer (Thermo Fisher Scientific). Tryptic peptides were automatically 

injected on a homemade column (100mm length, 75mm inside diameter) packed with 1.8μm 

Reprosil AQC18 (Dr Maisch), using an increasing linear acetonitrile gradient from 2 to 40% 

of buffer B in buffer A (2% acetonitrile and 0.1% formic acid in HPLC-grade water) at a flow 

rate of 250nl/minute over 40 minutes. Full scan resolution was set to 70,000 and mass range 

was set to 350-1,600 selecting the 12 most intense ions for MS/MS. The lock mass option was 

activated for calibration using a background mass of 445.12003 24.  

 

12. Analysis of AP-MS data. The resulting mass spectra were analyzed using the MaxQuant 

software suite 25 (v 1.3.0.5) containing the in-built Andromeda search engine to identify the 

proteins from the UniProt HUMAN database (release 2014_02) containing 20,242 entries. The 

following MaxQuant parameters were used: trypsin was selected as enzyme, with two missed 

cleavages per peptide allowed; fixed amino acids modification was carboamidomethylation of 

cysteines; variable amino acids modifications were oxidation in methionine and acetylation in 

protein N-terminus; first search 20ppm and main search 6ppm with fragment ion mass 

tolerance set to 0.5 Da; 0.01 False Discovery Rate for analyses at both peptide and protein 

levels. To perform protein quantification the following criteria needed to be met: a minimum 

of one unique peptide with a minimum length of six amino acids, and a minimum ratio count 

of two. Contaminants were automatically excluded by enabling the MaxQuant contaminant 
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database search. In summary, we performed 1,710 immuno-purifications and 1,140 MS 

analyses consisting of 3 biological and 2 technical replicates with forward and reverse SILAC 

labelling of 95 baits and empty vector controls in 2 cell lines. The discrepancy between sample 

numbers and the number of MS analyses originates from the fact that SILAC triplets (light, 

medium, heavy) were pooled before MS analyses, and because the MS analyses include 2 

technical replicates for each sample (i.e. the same sample was analyzed twice by MS).  

In order to address the issue of eliminating false positive interactions without 

compromising the retention of true positive interactions, we had to consider that (i) our data 

are not from a single cell system but a comparison across two different cell lines where binders 

may be differentially expressed; and (ii) that we started from a biased bait selection. Our baits 

were chosen to represent key nodes of the EGFR signaling network based on prior knowledge. 

Thus, we can expect many shared preys between baits (as there are). These conditions, i.e. 

potential differences in prey expression between cell lines and many shared preys due to biased 

bait selection, prohibited the use of popular AP-MS analysis packages, such as SAINT 26or 

CompPASS 27 that take co-precipitating proteins across many samples as unspecific 

background binders. In order to avoid these potentially confounding issues we used HiQuant, 

a software that we have previously developed 28. As the first analysis step, significant prey 

proteins were identified in comparison to empty vector controls. Each prey protein was 

quantified in each pull-down experiment using 12 replicates (n=3 biological replicates * 2 

technical replicates * forward and reverse labelling) in comparison to empty vector control 

replicates (also n=12). After removing contaminant proteins, normalizing the data and 

adjusting for missing data, a Student's t-test was computed to assess whether the prey protein 

abundance in the pull-down replicates was significantly greater than the empty vector control 

replicates. Next, prey proteins which were statistically significant in the t-test (P<0.05) were 

further assessed. For a given bait, the log2(bait/empty vector control background) of all 

significant prey proteins were assessed using the significance A statistical test, a Q-function 

tail probability test that is widely used in proteomics 25. Essentially, this test selects for prey 

proteins that are at the extreme tail of the distribution (95%ile) of all t-test significant prey 

proteins for a given bait protein. Only prey proteins which also have significance A < 0.05 (and 

pass all the other criteria) were selected as likely true positive interactors. This excludes the 

vast majority of interactors that were identified vs empty vector controls alone. Additionally, 

to assess an interaction as statistically rewired it had to be both significant in the comparison 

to empty vector controls (as outlined above) and must also have been statistically significantly 

different from the same bait-prey interaction in the other cell line (also assessed using the 

significance A test but comparing the data from the 2 different cell lines). Data with fewer than 

3 replicates were discarded. Compared to currently available methods, HiQuant resulted in an 

estimated 200-fold improvement in execution time for the post-quantification data analysis. 

 To benchmark the stringency of our analysis pipeline, we analysed 5 highly rewired 

baits with SAINTexpress, a commonly used AP-MS software that uses common binders as 

reference to eliminate false positive interactions. The results show that our analysis is much 

more stringent (Supplementary Table 4).  

 No of prey identified with our analysis No of prey identified with SAINT  

Bait HCT11 HKE3 HCT116 HKE3 

GRB2 74 52 169 156 

PDPK1 59 27 148 165 

PRKD1 55 74 362 366 

PTK6 24 39 102 97 

SH2D3C 81 74 526 521 
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Supplementary Table 4. Results of 5 highly rewired baits using SAINTexpress and a 

SAINTscore BFDR <0.05 (indicating highly valid interactions) as a cut-off.  

 

Furthermore, as the networks were constructed from independent pull-down 

experiments in 2 different cell lines we could assess a minimum threshold for true positive 

interactions. At this threshold, 70% of the interactions were in common between the two cell 

lines indicating that the majority of interactions are true interactions (i.e. 70% at least and that 

assumes there are no real differences between cell lines which is clearly not the case). 

Additionally, comparison to several other publicly available AP-MS datasets reveals a similar 

proportion of novel interactions detected by us as detected in other major AP-MS mapping 

studies (e.g. Bioplex2.0). 

AP-MS data were deposited in the PRIDE database under the following accession 

numbers: PXD016512, PXD016505, PXD016465, PXD016464, PXD016463, PXD016462, 

PXD016461. 

 

13. Sample preparation for protein expression profiling by MS. HCT116 (mtKRASHi) and 

HKE3 (mtKRASLo) cells were grown in either “light” or “heavy” SILAC DMEM medium as 

shown below with 3 biological replicates for each labelling condition:  

FORWARD HCT116 Heavy  HKE3 Light 

REVERSE HCT116 Light HKE3 Heavy 

   

When the cells reached 70-80% confluency, they were serum starved for 12 hours and lysed in 

1% NP40, 20mM Tris-HCl pH 7.5, 150mM NaCl, 1mM MgCl2 supplemented with protease 

inhibitor tablets (Roche) and phosphatase inhibitors (2mM sodium orthovanadate, 10mM 

sodium fluoride and 10mM β-glycerophosphate, all Sigma-Aldrich), for 10 minutes at 4°C. 

Lysates were cleared of debris by centrifugation at 20,000xg at 4°C for 10 minutes. Total 

protein concentration in supernatants was measured by the Pierce BCA assay as per 

manufacturer’s instruction. Equal amounts of protein from each cell line were mixed 1:1 and 

loaded on 10% precast Tris-Glycine SDS-polyacrylamide gels (Thermo Fisher Scientific). The 

gel was cut in 10 slices, and subjected to in-gel tryptic cleavage as previously described 29.   

  

14. MS analysis of protein expression profiles was performed on an Ultimate3000 RSLC 

system coupled to an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific). 

Tryptic peptides were loaded onto a nano-trap column (300μm i.d. × 5mm precolumn, packed 

with Acclaim PepMap100 C18, 5μm, 100Å; Thermo Scientific) at a flow rate of 30 µl/min in 

0.1% trifluoroacetic acid in HPLC grade water. After 3 minutes, peptides were eluted and 

separated on the analytical column (75μm i.d. × 25cm, Acclaim PepMap RSLC C18, 2μm, 

100Å; Thermo Fisher Scientific) by a linear gradient from 2% to 30% of buffer B (80% 

acetonitrile and 0.08% formic acid in HPLC-grade water) in buffer A (2% acetonitrile and 

0.1% formic acid in HPLC-grade water) at a flow rate of 300nl/minute over 150 minutes. 

Remaining peptides were eluted by a short gradient from 30% to 95% buffer B in 10 minutes. 

MS parameters were as follows: for full MS spectra, the scan range was 335–1,500 with a 

resolution of 120,000 at m/z=200. MS/MS acquisition was performed in top speed mode with 

3 seconds cycle time. The maximum injection time was 50ms. The AGC target was set to 

400,000, and the isolation window was 1 m/z. Positive Ions with charge states 2-7 were 

sequentially fragmented by higher energy collisional dissociation. The dynamic exclusion 

duration was set to 60 seconds and the lock mass option was activated and set to a background 

signal with a mass of 445.12002 24. 
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15. Analysis of protein expression profiling MS data was performed using the MaxQuant 

software (version 1.5.3.30). Trypsin was selected as the digesting enzyme with maximal 2 

missed cleavages. Cysteine carbamidomethylation was set for fixed modifications and 

oxidation of methionine and N-terminal acetylation were specified as variable modifications. 

The data were analyzed with the minimum ratio count of 2. The first search peptide tolerance 

was set to 20, the main search peptide tolerance to 5ppm and the “re-quantify” option was 

selected. For peptide and protein identification the Human subset of the SwissProt database 

(Release 2015_12) was used, and contaminants were detected using the MaxQuant 

contaminant search. A minimum peptide number of 1 and a minimum length of 6 amino acids 

was tolerated. Unique and razor peptides were used for quantification. The match between run 

option was enabled with a match time window of 0.7 min and an alignment time window of 20 

min. The statistical analysis including ratio, two sample t-test and significance A calculation 

was done using the Perseus 30 and the HiQuant softwares 28.  The protein expression profiling 

data were deposited in the PRIDE database under accession number PXD016549. 

 

16. Sample preparation for MS based phosphoproteomics. Serum starved HCT116 

(mtKRASHi) and HKE3 (mtKRASLo) were lysed in 8M urea and protein concentration was 

determined using a BCA protein assay (Bradford Biorad). 500 g of protein extracts were 

digested with 5μg/ml trypsin in 2M urea, 25mM ammonium bicarbonate, and 5mM 

dithiothreitol at room temperature overnight. Cysteines were alkylated using 10mM 

iodoacetamide for 1 hour. Tryptic peptides were purified on an SPE reverse phase Bond Elut 

LMS cartridge, 25mg (Agilent), dried under low pressure and stored at -20oC. Then, 

phosphopeptides were enriched using TiO2 beads. Briefly, 25µl of 0.5M lactic acid in 50% 

acetonitrile was added to the samples. After sonication, the sample was added to 8µl resin 

(100µg/µl of 10µm TiO2 beads in isopropanol) and incubated overnight. Then, the sample/TiO2 

mixture was transferred to a filter and spun for 5 minutes. The resin on the filter was washed 

twice with 25µl of 0.5M lactic acid in 50% acetonitrile, and once with 200µl 80% acetonitrile 

in 0.1% TFA. Phosphopeptides were eluted twice with 50µl of 50mM KH2PO4 followed by 

further elutions with 50µl of 2M ammonia and 50µl of 80% acetonitrile in 0.1% TFA. Eluates 

were dried in a speedvac and then reconstituted in 100µl Buffer A for desalting in C18 stage 

tips. Peptides were dried under low pressure, reconstituted in 7µl 0.5%v/v trifluoroacetic acid 

to a final concentration of 1µg/µl and filtered through a 0.45µm filter.  

 

17. MS analysis of phosphopeptides was performed using an Ultimate3000 RSLC system 

coupled to a Q-Exactive instrument (Thermo Fisher). The pre-column of 300µm x 5mm 

(Acclaim Pepmap, 5µm particle size) was connected to a column of 75µm x 50cm (Acclaim 

Pepmap, 3µm particle size). Peptides were separated using a 90 minutes gradient under the 

following conditions: 7 minutes with buffer A (2% acetonitrile, 0.1%formic acid), over 1 

minute increase to 4% buffer B (80% acetonitrile, 0.1% formic acid), over 57 minutes increase 

to 25% buffer B, over 4 minutes increase to 35% buffer B, over 1 minute increase to 98% buffer 

B for 9 minutes, then switching to 2% buffer B over 1 minute. MS analysis used data 

acquisition with a survey scan at 70,000 resolution followed by selecting the top 10 peptides 

for fragmentation and MS/MS analysis. Data were acquired using Xcalibur version 3.1.66.10. 

 

18. Phosphoproteomics data analysis. MS/MS spectra were searched using MASCOT Version 

2.4 (Matrix Science Ltd) against the human subset of the UniProt database with the maximum 

missed-cut value set to 2. The following features were used in all searches: (i) variable 

methionine oxidation, (ii) fixed cysteine carbamidomethylation, (iii) precursor mass tolerance 

of 10ppm, (iv) MS/MS tolerance of 0.05amu, (v) significance threshold (p) below 0.05 
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(MudPIT scoring), and (vi) final peptide score of 20. Progenesis version 4 (Nonlinear 

Dynamics) was used for label-free quantitation. Only MS/MS ions with a charge of 2+, 3+ or 

4+ were taken into account for the total number of ‘Features’ (signal at one particular retention 

time and m/z), and only the five most intense spectra per ‘Feature’ were included. 

Normalization was first performed based on the median of the ion intensities of these sets of 

multi-charged ions. Where the same peptide was detected multiple times, the one with the 

highest Mascot score was retained. The associated unique peptide ion intensity was 

transformed using an ArcSinH function (a log transform is not ideal considering the significant 

amount of near zero measurements generated by the current method of detection). For the 

quantitative analysis we used the intensities of the representative peptides having the highest 

Mascot scores. Based on the abundance values, within group means were calculated and from 

there the fold changes (in comparison to control) were generated. One-way ANOVA testing 

was used to calculate the p-values based on the transformed values. Differentially 

phosphorylated proteins were only considered significant if the following conditions were 

fulfilled: (i) pairwise p-values < 0.05, (ii) number of peptides detected and used in 

quantification per protein equal to or more than 1 peptide, and (iii) absolute fold change at least 

1.5 (i.e. ≥1.5 fold for up-regulated proteins or ≤ 0.667 fold for down-regulated proteins). The 

phosphoproteomics data were deposited in the PRIDE database under accession number 

PXD016431. 

 

19. Construction of protein-protein interaction networks (PPIN) and protein abundance and 

phosphorylation enrichment analysis. The EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo   networks 

were separately constructed by combining bait-prey interactions from each of the 95 chosen 

baits. Bait-prey interactions were included in the networks, if the abundance of the prey protein 

in the pull-down was significantly higher (P ≤ 0.05) than in empty vector controls and the 

significance A value for the prey protein was also ≤ 0.05. To identify interactions that were 

significantly “rewired” in the HCT116 (EGFRNetmtKRAS-Hi) network compared to the HKE3 

(EGFRNetmtKRAS-Lo) network, we used HiQuant to directly compare the SILAC data from the 

two cell lines. We defined interactions as being “rewired” in EGFRNetmtKRAS-Hi, if the 

abundance of the prey protein in the pull-down was significantly different (P ≤ 0.05) compared 

to EGFRNetmtKRAS-Lo and the significance A value for the prey protein was also ≤ 0.05. 

Interactions that were identified in only one EGFRNet, but where prey abundance was 

subsequently not found to be statistically significantly different in the respective bait-prey 

complexes in the two cell lines were not considered as rewired interactions. The top rewired 

nodes in EGFRNetmtKRAS-Hi were identified as those with most rewired interactions. The 

topological properties of the networks including node degree, betweenness centrality, 

clustering coefficient and network scale-freeness were analyzed using the NetworkAnalyzer 

application 31 in Cytoscape 3 32. Cytoscape session files for the EGFRNetmtKRAS-Hi, 

EGFRNetmtKRAS-Lo   networks can be provided upon request.  

To investigate whether nodes in the EGFRNetmtKRAS-Hi network were enriched for 

differentially abundant proteins, a hypergeometric test was performed with the following 

parameters: 

𝑝(𝑋 ≥ 𝑘) = ∑
(𝐾

𝑥)(𝑁−𝐾
𝑛−𝑥 )

(𝑁
𝑛)

𝑛
𝑥=𝑘  , 

N = total number of proteins assayed in the protein expression analysis.  

n = total number of differentially abundant proteins identified. 

K = number of proteins in the EGFRNetmtKRAS-Hi network that were assayed in the protein 

expression analysis. 

k = number of differentially abundant proteins observed in the EGFRNetmtKRAS-Hi network. 
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A similar analysis was conducted to determine whether rewired nodes were enriched for 

differentially abundant or phosphorylated proteins.  

 

20. Known protein complexes in the EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo   networks. To 

identify high-confidence protein complexes in the EGFRNet PPINs, we integrated our network 

data with data from CORUM, a curated database of experimentally determined mammalian 

protein complexes 33. The May 2017 release features 2,390 human complexes. CORUM 

complexes, where at least 70% of the component proteins in the complex were identified as 

nodes in an EGFRNet, were defined as being “present” in that network. Complexes were 

independently identified in the two EGFRNets.  

 

21. Comparisons of the EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo networks to other publicly 

available datasets. To evaluate the EGFRNets in comparison to publicly available interaction 

data we compared them to four different datasets: (i) the biophysical interactions of ORFeome-

based complexes (BioPlex 2.0) dataset constructed using high-throughput AP-MS, which 

identified the interacting partners of 5,115 bait proteins in HEK293T cells featuring 56,553 

interactions 34. 34 of the bait proteins in BioPlex 2.0 were also bait proteins in our experiments; 

(ii) a yeast two-hybrid (Y2H) dataset consisting of 13,017 binary interactions among 4,144 

proteins 35. 32 proteins in this dataset were baits in our experiments; (iii) a dataset of 

interactions annotated in the Integrated Interaction Database (IID version 2018-11), which 

integrates data from major publicly available interaction databases and contains 334,315 

experimentally detected interactions among 17,776 proteins 3,4 and (iv) a dataset of 28,500 

interactions identified from HeLa cells using a quantitative proteomics workflow to identify 

28,500 interactions among 5,400 proteins 36. 

554 interactions in EGFRNetmtKRAS-Hi (~18%) and 538 in EGFRNetmtKRAS-Lo (~19%) 

were annotated as experimentally validated human interactions in IID suggesting that >80% of 

the interactions detected in our current study are novel interactions. This fraction of newly 

discovered interatcions is comparable to other large-scale affinity purification mass 

spectrometry (AP-MS) studies such as BioPlex 2.0 34, which reported that 87% of the 

interactions detected in HEK293 cells were novel. 34 of the bait proteins in our study were also 

baits in the BioPlex 2.0 dataset, and 30% of the interactions detected for these baits in BioPlex 

2.0 were also identified in our study. Additionally, 18 baits in our study were also baits in 

another large-scale AP-MS study in HeLa cells 36, and ~13% of these bait-prey interactions 

were also detected in our study (which is comparable to the overlap between Hein et al. and 

BioPlex 2.0). Comparing interactions in EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo   to a large-

scale yeast two-hybrid (Y2H) dataset 35 we found little overlap (15 interactions), highlighting 

the well-known complementary nature of AP-MS and Y2H experiments.  
 Our study identified an average of ~30 interactions per bait. Comparing this number to 

interactions identified in other large-scale PPI studies suggests that our results are within a very 

plausible range. The global PPI Bioplex study identified an average of 10 interactors per bait 
34. Another global PPI screen found an average of 25.5 interacting proteins per bait 36. While 

these global studies report a relatively small number of interactions per bait protein, studies 

focusing on a smaller number of baits in order to map pathways, report more PPIs even under 

stringent exclusion conditions. For instance, a PPI study of the centrosome-cilium generated 

>7,000 interactions using 58 bait proteins, i.e. >120 interactions per bait 37. Similarly, an 

analysis of human host cellular proteins binding to Zika virus proteins revealed an average of 

122 binding partners per bait 38. The latter three studies used SAINT 26 for the analysis of AP-

MS data. Such PPI numbers do not seem to be exaggerations observed in cultured cell lines, as 

studies in primary cells identified 53 high confidence interactors of the Grb2 protein 39. These 
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comparisons strongly indicate that our analysis does not over-report PPIs.   

 

22. Equilibrium binding of RAS binding partners to RAS-GTP. RAS effectors bind to a single 

site on RAS, and hence multiple binding partners compete for binding to the active RAS 

conformation. In order to determine how the concentrations of KRAS-effector complexes 

change with the concentration of active RAS in mtKRASHi and mtKRASLo cells, we developed 

a dynamic mathematical model. The competition is described by the following equilibria 

 

𝑅𝑋𝑖 =
𝑅 ∗ 𝑋𝑖

𝐾𝑖  
, 𝑖 =  1, … , 𝑁 

(1). 

 

Here 𝑋𝑖 and 𝑅 are the concentrations of free partner and free RAS-GTP, 𝑅𝑋𝑖 is the complex 

concentration, 𝐾𝑖  is the dissociation constant (𝐾𝑑) of the 𝑋𝑖 binding (Supplementary Table 5).  

Binding partner Kd value Reference 

RAF1 0.08 μM 40 

RALGDS 1.3 μM 41 

RASSF5 0.4 μM 42 

AFDN 3.0 μM 43 

RIN1 0.022 μM 44 

TIAM 1 μM No data, estimated 

PLCε 0.82 μM 45 

PI3K 204.7 μM 40 

Supplementary Table S5. Kd values of RAS bunding partners. 

 

We denote by 𝑎𝑅𝑇𝑜𝑡 the total active RAS concentration (i.e., RAS-GTP) and by 𝑋𝑖
𝑇𝑜𝑡 the total 

partner 𝑋𝑖 abundance. The following equations describe the balance of all forms (moiety 

conservation):  

𝑅 + ∑
𝑅 ∗ 𝑋𝑖

𝐾𝑖  

𝑁

𝑖=1

=  𝑎𝑅𝑇𝑜𝑡  (2). 

𝑋𝑖 +
𝑅 ∗ 𝑋𝑖

𝐾𝑖  
=  𝑋𝑖

𝑇𝑜𝑡 (3). 

 

From Eq. 3, we can express 𝑋𝑖 in terms of 𝑅, 𝑋𝑖
𝑇𝑜𝑡 and 𝐾𝑖, as follows, 

𝑋𝑖 =
𝑋𝑖

𝑇𝑜𝑡

1 + 𝑅/𝐾𝑖  
 (4). 

Substituting Eq. 4 into Eq. 2, we readily obtain the free active RTK concentration, 𝑅, from the 

following equation, 

𝑅 (1 + ∑
𝑋𝑖

𝑇𝑜𝑡

𝐾𝑖 + R 

𝑁

𝑖=1

) =  𝑎𝑅𝑇𝑜𝑡  (5). 

Each free concentration 𝑋𝑖 is obtained by substituting the solution 𝑅 of Eq. 5 into Eq. 4 and 

each complex concentration 𝑅𝑋𝑖 is obtained from Eq. 1.  
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23. A simplified solution of the equilibrium binding model. We partitioned RAS-GTP binding 

partners according to their 𝐾𝑑’s (denoted by 𝐾𝑖, Eq. 1) into two groups. The low affinity group 

included partners with 𝐾𝑖 that are larger than 𝑅𝑇𝑜𝑡 (𝐾𝑖 ≫ 𝑎𝑅𝑇𝑜𝑡) and high affinity group 

comprised partners with 𝐾𝑖 that are smaller than 𝑅𝑇𝑜𝑡 (𝐾𝑖 ≤ 𝑎𝑅𝑇𝑜𝑡).  If 𝐾𝑖 ≫ 𝑎𝑅𝑡𝑜𝑡, Eq. 1 can 

be approximated as a linear function of the free RAS-GTP concentration,  

 

𝑋𝑖
𝐵𝑜𝑢𝑛𝑑 ≈

𝑅 ∗ 𝑋𝑖
𝑇𝑜𝑡

𝐾𝑖

 (6). 

Eq. 6 means that the RAS-bound fractions of partners with large 𝐾𝑖 ≫ 𝑎𝑅𝑡𝑜𝑡 are proportional 

to their total abundances divided by 𝐾𝑖. Accordingly, the concentrations of free partners was 

approximated as,  

 
𝑋𝑖 ≈ 𝑋𝑖

𝑇𝑜𝑡(1 − 𝑅 𝐾⁄
𝑖) (7). 

 

Eq. 7 is the linear term of the Taylor expansion of Eq. 4. Using this approximation, the balance 

Eq. 5 can be written as follows, where large 𝐾𝑖 correspond to 𝐾𝑖 ≫ 𝑎𝑅𝑡𝑜𝑡 and small 𝐾𝑖 

correspond to 𝐾𝑖 ≤ 𝑎𝑅𝑇𝑜𝑡 

 

𝑅 (1 + ∑
𝑋𝑖

𝑇𝑜𝑡

𝐾𝑖  
𝑖,   𝐿𝑎𝑟𝑔𝑒 𝐾𝑖

 +  ∑
𝑋𝑖

𝑇𝑜𝑡

𝐾𝑖 + R 
𝑖,   𝑠𝑚𝑎𝑙𝑙 𝐾𝑖 

) ≈ 𝑎𝑅𝑇𝑜𝑡 (8). 

 

If 𝐾𝑖 ≪ 𝑎𝑅𝑇𝑜𝑡, we can conclude from the above equations that the RAS-bound concentrations 

for such partners will be determined by the total abundances, 𝑋𝑖
𝑇𝑜𝑡, in a sharp contrast to 

partners with the large 𝐾𝑑’s (𝐾𝑖 ≫ 𝑎𝑅𝑡𝑜𝑡). The bound fractions of proteins that bind with 𝐾𝑖 

less than 𝑎𝑅𝑡𝑜𝑡 but greater than very small 𝐾𝑖 can be found by solving Eq. 8. Numerical 

calculations showed that the bound levels of these proteins mainly depend on the total 

abundances 𝑋𝑖
𝑇𝑜𝑡 (although they also slightly depend on 𝐾𝑖 and 𝑎𝑅𝑡𝑜𝑡).  

 

24. Changes in the abundances of KRAS-effector complexes with KRAS-GTP concentrations. 

Signaling by KRAS-effector complexes (about 10 putative KRAS effectors) initiates 

downstream KRAS effector pathways dependent on the formation of specific KRAS effector 

complexes. When the active KRAS concentration is small (≤ 100 nM), high-affinity partners 

(𝐾𝑖  ≤ 10 – 100 nM) dominate KRAS-effector complexes. As active KRAS increases, low-

affinity partners bind to RAS, while tightly-bound fractions of very high affinity binders hardly 

change (see Eqs. 1-8). Because the abundance of some low-affinity partner (e.g., RALGDS) is 

much greater than the high-affinity partner abundance (such as RAF1), at certain KRAS-GTP 

levels, the bound concentration of a low-affinity partner starts to exceed the bound 

concentration of a high-affinity partner (compare concentrations of RAF1-KRAS and 

RALGDS-KRAS complexes in Fig. 5A of the main text). Likewise, the relative fractions of 

KRAS-high and low affinity effector complexes dramatically depend on the mutant KRAS 

dosage, because a group to which a particular partner belongs changes with the KRAS-GTP 

abundance. The model allows us to rank KRAS binding partners according to the fold-changes 

in KRAS-bound fractions with the change in mtKRAS. The fold-changes equal 𝑅𝑋𝑖
ℎ𝑖/𝑅𝑋𝑖

𝑙𝑜 

ratios (Eq. 1), where 𝑅𝑋𝑖
ℎ𝑖 and 𝑅𝑋𝑖

𝑙𝑜 are the concentrations of ith partner complex with KRAS 

for high and low doses of mtKRAS, respectively. In the model KRAS-GTP was changed from 

70 nM (low mtKRAS) to 300 nM (high mtKRAS). Importantly, the ranking of KRAS binding 
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partners by their fold-changes in KRAS-bound fractions did not change with simultaneous 

changing of low and high KRAS-GTP levels by 100%.   

 

25. EGFR network rewiring caused by the change in RAS dose for HCT116 and HKE3 cells. 

Our interaction proteomics data show fold-changes of protein-protein complexes that were 

measured for high and low mtKRAS doses in HCT116 and HKE3 cells. We selected baits that 

belong to known RAS effector pathways. The baits were components of the RAF/MAPK, 

RAL, PI3K, TIAM, AFDN, PLCε, and RIN pathways. For each bait (i) belonging to RAS 

effector pathway (k) we considered statistically significant fold-changes (𝐹𝑖𝑗
𝑘) of its protein-

protein complex with prey (j), measured for high and low mtKRAS, 

 

𝐹𝑖𝑗
𝑘 =

𝐼𝑖𝑗
𝑘 ℎ𝑖

𝐼𝑖𝑗
𝑘 𝑙𝑜 , 𝑗 = 1 … 𝑁𝑖

𝑘, 𝑖 = 1 … 𝑀𝑘 (9). 

Here 𝑁𝑖
𝑘 is number of preys detected for bait 𝑖, 𝐼𝑗

𝑘 ℎ𝑖 and 𝐼𝑗
𝑘 𝑙𝑜 are the measured concentration 

of the bait 𝑖 - prey 𝑗 complex in arbitrary units in cells with high and low levels of mtKRAS, 

respectively. Next, for each bait (𝑖) - a node of a particular KRAS effector pathway (𝑘), we 

averaged the logarithms of fold-changes in the complexes, which contained this bait and were 

statistically significant 

 

𝐴𝑖
𝑘 =

1

𝑁𝑖
𝑘 ⋅ ∑ log 𝐹𝑖𝑗

𝑘

𝑁𝑖
𝑘

𝑗=1

 (10). 

These values (𝐴𝑖
𝑘) characterize the sensitivity of the nodes to the alteration in mtKRAS dose. 

Then, we calculated the sum of the absolute values of the sensitivities of nodes that belong to 

each KRAS effector pathway (normalized by the number of pathway nodes whose sensitivities 

were measured),  

 

𝑆𝑘 =
1

𝑀𝑘

⋅ ∑|𝐴𝑖
𝑘|

𝑀𝑘

𝑖=1

 (11). 

The normalized sum 𝑆𝑘 can serve as the experimentally measured metric of the overall change 

in the KRAS effector pathway signaling in response to two different doses of KRAS-GTP. It 

is also a metric of the pathway rewiring due to change in the mutant KRAS dose. We then 

ranked these KRAS effector pathways accordingly to this metric and compared the model-

predicted ranks of KRAS-effector complexes (that initiated KRAS-effector pathways) with the 

ranks of the KRAS effector pathways based on the interaction proteomics data (Supplementary 

Data 13).   

 

26. Information Flow Analysis of EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo networks. We 

considered a number of options for analyzing how the EGFR PPI network transduces 

information. These included more abstracted models, such as Boolean networks, Bayesian 

models, and data driven models to detailed mechanistic models, such as ODE models 46-49. All 

these methods have their advantages and limitations. Major limitations include the large size 

of our networks (>3000 PPIs in each network) and the type and amount of data required, which 

rule out the use of mechanistic ODE models. Given these constraints and the aim to explore 

the functional effects of topological network changes on information flux, we employed a 

computational modelling approach called information flow (IF) analysis 50,51. This approach 

has a number of advantages. It can be applied to large, undirected networks such as the one in 
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this study. It is computationally efficient and allows competing hypotheses to be investigated 

(e.g. comparing flow in 2 different networks).  

To perform IF analysis from the EGFR at the cell membrane to nuclear transcription 

factors (TFs), the two EGFRNets were first supplemented with publicly available prey-prey 

interactions. Additionally, the networks were also supplemented with 122 additional nodes that 

are known to be involved in EGFR signaling 14 but were not chosen as bait proteins in our AP-

MS experiments (Supplementary Data 14). Prey proteins and the additional nodes were 

uploaded to InnateDB.com 52 to retrieve all the publicly available interactions for these nodes. 

These networks are referred to as the HCT116IFANET and HKE3HKE3IFANET and are available 

in JSON format upon request. The HCT116IFANET consisted of 1,443 nodes and 5,633 edges 

and the HKE3HKE3IFANET consisted of 1,345 nodes and 5,440 edges. Information flow analysis 

was implemented using the CytoITMprobe software (damping factor = 0.85; channel model 

selected) 53. Information flow analysis was performed separately on the HCT116IFANET and 

HKe-3IFANET networks, selecting EGFR as the source node of signaling and 19 downstream 

TFs (Supplementary Data 14) as the sinks for the information flow. The more signals that are 

simulated to flow through a node, the higher the information flow score of that node will be. 

Information flow scores for each node in both the HCT116IFANET and HKE3HKE3IFANET
 

networks were determined.  

 

27. Gene Ontology, pathway and transcription factor binding site analyses. Gene Ontology 

(GO) and pathway analyses were performed using InnateDB.com 52. GO terms or pathways 

that had an FDR < 0.05 were identified as significantly enriched. Transcription factor binding 

site analysis was undertaken using the findMotifs.pl program in HOMER v4.8 54, with the 

human hg38 promoter set in order to identify enriched motifs. 

 

28. Development of the PRIMESDB platform. PRIMESDB is an online web resource designed 

to facilitate exploration of the AP-MS PPI data generated in this study (which we call the 

PRIMES project) by the wider research community. It is accessible at primesdb.eu. 

PRIMESDB is an observer member of The International Molecular Exchange (IMEx) 

consortium, the international standards body for the curation and exchange of published 

protein-protein interaction data 55. All PPI data generated in this study also been deposited with 

IMEx (IMEx accession number IM-26434). To explore each of the bait-prey protein complexes 

identified in either EGFRNetmtKRAS-Hi or EGFRNetmtKRAS-Lo users can click on the “PRIMES 

PPI DATA” tab on the PRIMESDB homepage. Select a bait protein of interest from the 

dropdown menu and click “Visualise with Cytoscape”. This will open a new page displaying 

the bait-prey interactions for the selected bait in the HCT116 (mtKRASHi) and HKE3 

(mtKRASLo) cells or in a network displaying the union of all interactions detected in either cell 

line. In addition to the PRIMES PPI data, PRIMESDB also collates publicly available PPI data 

on the entire human and mouse interactomes from public repositories including the major IMEx 

repositories 55. This information is stored in a purpose-built SQL database designed to allow 

efficient searching of PRIMESDB data from the web interface. The database also integrates 

PPI data with an extensive range of supplementary orthogonal data including KEGG 56 and 

Reactome 57 pathway annotations, Gene Ontology annotations 58, colorectal cancer mutation 

data from the Catalogue Of Somatic Mutations In Cancer (COSMIC) database 59, protein 

structure data from the RSCB protein data bank 60, drug target data from DrugBank 61, parent 

gene information from Ensembl 62, and protein expression data from the NCI60 panel 63 and 

from another dataset of 11 common cell lines for which the complete proteomic analysis has 

been performed 64. Through PRIMESDB users can explore these data using several different 

search options. For example, users can upload a list of proteins and return the interactions that 

http://primesdb.eu/
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those proteins are annotated to participate in. To facilitate visualization of this network data we 

have developed a web-embeddable network visualization tool called CerebralWeb, which lays 

out molecular interaction networks based on the subcellular locations of the nodes 65. Dynamic 

interaction data, such as that generated in this study, present a special challenge in network 

biology. To overcome these challenges and as part of this study, we have also developed 

DyNet, a Cytoscape application that provides a range of functionalities for the visualization, 

real-time synchronization, and analysis of large multi-state dynamic molecular interaction 

networks enabling users to quickly identify and analyze the most ‘rewired’ nodes across many 

network states 66. PRIMESDB also has a pathway analysis tool to enable users to identify 

statistically enriched pathways in an uploaded list of proteins of interest.  

 

29. Analysis of CRC patient data. We obtained the survival data of 629 CRC patients from the 

TCGA dataset 67 (https://www.cbioportal.org/study/summary?id=coadread_tcga), and 

correlated alterations in genes encoding either the top 20 most rewired or the bottom 20 least 

rewired bait proteins (as defined by the number of rewired interactions) with survival. The 

alterations included were mutations, copy number changes, mRNA expression changes, and 

protein expression changes. As an additional control we also selected a set of 36 baits that 

accounted for the same number of interactions as the top 20 baits in the network. The results 

were displayed using Kaplan-Meier curves 68. The Kaplan-Meier curves were plotted using 

PRISM 7.0.3. To further assess the accuracy of the top-20 bait proteins to classify patients into 

high and low risk groups, we trained a Lasso classifier 69 using RNAseq expression, copy-

number, and mutation data for the patients from TCGA. Lasso works by selecting the most 

important coefficients that are predictive of the two risk groups. Five-fold cross-validation of 

the classifier by subsampling the patient data into training (80%) and testing (20%) datasets 

gave an accuracy of up to 0.79 (mean 0.70) and an area under the ROC curve (AUC) of 0.763 

(Supplementary Figure 9). A similar classification using the bottom-20 rewired proteins gave 

a much lower mean accuracy of 0.4 and AUC of 0.522.  The two ROC curves were compared 

using the roc.test function in the pROC package with method option “DeLong’s test” 70. The 

statistical performance was calculated with pROC and found to be highly significant (p value: 

1.248e-15).  

 

30. Membrane yeast two-hybrid assay (MYTH). Increasing evidence suggests that in addition 

to EGFR (ERBB1) the other family members ERBB2/3/4 play a role in CRC and may provide 

mechanisms of drug resistance 71. Integral membrane protein interactions are difficult to 

capture in AP-MS experiments 72. Therefore, we applied MYTH, a membrane yeast two-hybrid 

assay, which detects interactions in situ by reconstitution of a split ubiquitin probe 73, to identify 

binary protein interactors of the human ERBB2, ERBB3, and ERBB4 proteins. The cDNAs 

encoding these human ERBB proteins (devoid of their endogenous cleavable signal sequence) 

were fused to the signal sequence of the yeast α-mating pheromone precursor (MFα) at their 

N-termini, and to the C-terminal part of ubiquitin (Cub) followed by an artificial transcription 

factor (TF) at their C-termini. The resulting MFα-ERBB-Cub-TF chimeric proteins correctly 

localized to the plasma membrane and lacked self-activation. We have also tested the 

phosphorylation status of all 4 ERBB receptors by probing total yeast protein extracts using 

antibodies specific for their phosphorylated tyrosine residues finding that ERBB2 and ERBB4 

are phosphorylated in yeast whereas ERBB3 is not. This phosphorylation of ERBB2 and 

ERBB4 receptors in yeast is due to their homodimerization, since the mutant versions of both 

receptors in which their tyrosine kinase domains were inactivated by introducing previously 

described mutations were not phosphorylated 74. After these tests, we screened a human fetal 

brain cDNA library fused to the mutated N-terminus of Ubiquitin (NubG) 73 for proteins that 

can associate with ERBB2, ERBB3, and ERBB4 proteins. The MYTH protein interaction 

https://www.cbioportal.org/study/summary?id=coadread_tcga
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network (Supplementary Data 3) was constructed using the MYTH data generated in this study, 

previous MYTH-derived data for the EGFR from 75, known and predicted interactions from 

Integrated Interactions Database, IID ver. 2018-11 3,4, and visualized in NAViGaTOR 3 5. Gene 

Ontology 58 Molecular Function was used to color nodes, where the decision to assign the 

category was based on the highest overlap between GO entries for the object and all the sublists 

of GO entries for the category. MYTH interactions were annotated using IID ver 2018-11 3. 

We included IID evidence type (column G in Supplementary Data 3), tissue annotation 

(columns J-AH), disease annotation (columns AJ-BI). To assess possible tissue-specific and 

disease-prevalent interactions, we used the Mann-Whitney Rank Sum Test, considering 

summary counts from columns H and I, respectively. Clearly, more tissues are annotated for 

MYTH interaction, and more MYTH-IID interactions are annotated with disease 

(Supplementary Figure 4B). 

This ERBB2-4 interactome contained 197 interactions, of which 181 were new. 

Interestingly, ERBB2 and ERBB3 cover most of these interactions, which may be related to 

the enhanced signaling capacity and biological aggressiveness of cancers expressing ERBB2/3 

dimers 71. 29 proteins interacted with more than one ERBB receptor. MYTH has also 

previously been applied to identify EGFR interactors 75, and we integrated these data and data 

from the Integrated Interactions Database 3 with the ERBB2-4 interactome to construct a 

complete interactome map of all four ERBB receptors, comprising 405 interactions 

(Supplementary Figure 4 and Supplementary Data 3). Proteins interacting with ERBB1-4 

participate in a wide range of functions, and were highly enriched in the KEGG ERBB 

signaling pathway (-log10(P) > 20), suggesting that the majority of these interactions are true 

interactors. Thus, this interactome provides a resource for further investigations of proximal 

ERBB signaling, especially as according to Gene Ontology analysis, 97 preys (~25%) are 

membrane proteins. 

 

31. Immunoprecipitation and Western blotting.  Cells were lysed in in 1% NP40 lysis buffer 

described above. Lysates were cleared by centrifugation at 20,000xg for 10 minutes, and 

adjusted to equal protein concentrations using the Pierce BCA assay kit. Equal concentrations 

of lysates were added to 10μl Flag agarose M2 beads (Sigma) or 10μl of Protein G Sepharose 

4 Fast Flow beads (Sigma) coupled to the respective antibodies. After incubation at 4°C on a 

vertical rotator for 1 hour, immunoprecipitates (IPs) were washed 1x with 1% NP40 lysis buffer 

and 3x with TBS. Then, IPs were separated by sodium-dodecylsulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and transferred to Polyvinylidene difluoride (PVDF) 

membranes. Blots were incubated with the respective antibodies and developed using 

Enhanced Chemiluminescence (ECL; Thermo Fisher) according to the manufacturer’s 

instructions. Blots were quantified using the Image J software. For activity assays phospho- or 

activation specific antibody signals were normalized to the total abundance of the respective 

proteins. 

 

32. RAS pulldown assays. Dh5α E. coli transformed with a GST-RAF-Ras Binding Domain 

(RBD) construct were grown overnight at 37°C in 20ml of LB medium containing ampicillin. 

This culture was added to 500ml of LB medium and grown until the OD600 reached 0.6-0.8, 

and GST-RBD expression was induced by adding Isopropyl β-D-1-thiogalactopyranoside at a 

final concentration of 1mM for 2 hours at 37°C. The bacteria were collected by centrifugation, 

resuspended in 10ml of PBS (Thermo Fisher) containing 1% NP-40 (Calbiochem) and 

Leupeptin (10ug/ml; Sigma Aldrich), and sonicated using a Syclon Ultrasonic Homogenizer at 

8-10% power using repeated 6 seconds on – 1 second off cycles for a total of 5 minutes. 

Following centrifugation at 4,000 rpm for 30 minutes at 4°C, the supernatant was incubated 

with 500μl of Glutathione Sepharose 4b beads (GE Healthcare) on a rotor wheel at 4°C by for 
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3 hours. Subsequently, samples were centrifuged at 4,000 rpm for 1 minute and beads were 

resuspended in 1ml of PBS containing 1% NP40 and subjected to 5 wash cycles: 2x PBS 

containing 1% NP40, 2x PBS and a final wash in magnesium lysis buffer (MLB: 25mM Hepes 

pH 7.5, 150mM NaCl, 1% NP40, 10% Glycerol, 25mM NaF, 10mM MgCl2, 1mM EDTA, 

1mM Na vanadate, 10μg/ml Leupeptin). Then, beads were resuspended in MLB buffer and 

stored at 4°C with protease inhibitors. The concentration of the GST-RBD on the beads was 

determined by comparing 10μl of GST-RBD beads against a bovine serum albumin (BSA) 

dilution series on a SDS polyacrylamide gel followed by Coomassie staining to visualize the 

proteins. To determine the amount of active KRAS in the mtKRASHi mtKRASLo cell lines, 

cells were washed in PBS and lysed in PBS containing 1% NP40. Lysates adjusted to equal 

protein concentrations were incubated with the GST-RBD beads for 1 hour at 4°C. Beads were 

collected by centrifugation and washed 3x with MLB buffer. Active KRAS captured by the 

GST-RBD beads was detected by Western blotting with KRAS antibody (sc-30, F234; Santa 

Cruz).  

 

33. Cell proliferation assays. 50,000 cells/well were seeded in 6 well plates and grown in 

DMEM with 10% FCS for 72 hours. Cells were washed twice with PBS and stained with 1ml 

0.2% crystal violet (Sigma) in 20% methanol for 10 minutes. Excess staining solution was 

removed by 3 washes with H2O, and plates were dried completely. The crystal violet retained 

by the cells was solubilized with 0.5 ml 10% acetic acid solution by gentle shaking for 20 

minutes. Solubilized crystal violet was diluted 1:5 in H2O and absorbance was measured at 

590nm against 2% acetic acid solution as blank. Experiments were performed in triplicate. 

 

34. Colony forming assays. 5,000 cells were seeded in 100mm dishes in DMEM supplemented 

with 10% FCS. Medium was replenished every 3 days. After 2 weeks or when colonies became 

microscopically visible, cells were washed twice with PBS and stained with 0.2% crystal violet 

(Sigma) in 20% methanol for 10 minutes. Cells were washed 3 times with H2O to remove 

excess stain and dried completely before being imaged. ImageJ plugin ColonyArea 76 was used 

to quantify colonies. All experiments were carried out in triplicate.  

 

35. Anchorage Independent Growth Assays were carried out as previously described 77. Briefly, 

6-well plates were coated with a layer of 0.6% agar (Sigma) in DMEM supplemented with 20% 

FBS. 10,000 cells were resuspended in 0.3% low melting point agar with DMEM containing 

20% FBS at 42oC and immediately seeded onto the coated plates. After the agar had solidified, 

it was overlaid with 1 ml DMEM plus 20% FBS, which was changed twice a week. On day 20 

media was discarded, and soft agar colonies were stained with 1ml Crystal Violet (0.01% in 

10% EtOH) for 30 minutes at room temperature. Plates were then washed 3x with H2O for 30 

minutes each. The fourth wash was left for 5 hours to remove any background staining. Plates 

were imaged on an Epson Perfection V750 Pro Scanner, and colonies were quantified using 

the ColonyArea plugin for ImageJ 76. Experiments were performed in triplicate. 

 

36. Cell migration was measured in a 96-well plate using the OrisTM 2D Cell Migration Assay 

(Platypus technologies) as per the manufacturer’s protocol. Briefly, silicone stoppers were 

added to the wells forming a central circle area of 2mm. 3x104 cells were seeded per well and 

let adhere overnight. The next day stoppers were removed, and wells were visually inspected 

to ensure the central area was cell free. “No migration” control stoppers were left until the end 

of the experiment. After 48 hours, the migration into the central void was analyzed by 

fluorescence microscopy after staining cells with 4nM Calcein in PBS (Sigma-Aldrich, 

excitation wavelength 495nm and emission wavelength 515nm) at 37°C for 20 minutes. Cell 
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migration was quantified from digital images of the wells using the ImageJ software. The 

threshold of the image was adjusted and converted to a binary image. Using ImageJ a 2mm 

circle area was created and positioned in the empty central circle created by the stopper. The 

total area covered by the cells was quantified to determine the number of cells migrating. 

Experiments were done at least in triplicate. 

 

37. Cell death was measured by quantifying DNA fragmentation using propidium iodide 

(Sigma-Aldrich) staining and FACS analysis as described before 78. Briefly, both floating cells 

and attached cells were collected and fixed in 70% ethanol for one hour at -200C. The cells 

were centrifuged, washed with PBS, and incubated with propidium iodide (1μg/ml) and RNase 

(100μg/ml) for 30 minutes at room temperature. 

 

38. Luciferase assays. The transcription factor response element activity was assessed in 

HCT116 (mtKRASHi) and HKE3 (mtKRASLo) cells co-transfected with luciferase constructs 

bearing response elements for STAT1 (4xGAS response element; Stratagene, #219091-51), 

STAT1/STAT2 (IRSE/interferon alpha response element; 79) and STAT3 (4xm67 response 

element; 80). All transfections were performed using polyethylenimine (Sigma, #48727). A 

CMV-β-gal plasmid was co-transfected as a control of transfection efficiency. 48 hours post 

transfection cells were stimulated with 10nm human EGF (Roche; #11376454001) for five 

hours before luciferase and β-gal activity were measured. Luciferase assays (Promega, #E4030) 

and β-galactosidase assays (Promega, #E2000) were performed according to the 

manufacturer’s instructions using a SpectraMax M3 plate reader (Molecular Devices). 

Luciferase activity in arbitrary units was normalized againstβ-gal activity to correct for the 

transfection efficiency. 

 

39. Transcriptional profiling of HCT116 (mtKRASHi) and HKE3 (mtKRASLo) cells with and 

without transforming growth factor alpha (TGFα) stimulation. For the stimulation studies, cells 

were seeded into 6 well plates until confluent. Cells were then starved for 18 hours and 

subsequently stimulated with TGF-α (0.01µg/ml, Abcam). RNA was isolated at 0, 15, 30, 60, 

90 and 120 minutes post-stimulation using the TRIzol reagent (Thermo Fisher Scientific) 

according to the manufacturer’s instructions. RNA was extracted from 3 biological replicates 

at each timepoint. RNA concentration was determined using the NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific) and by Qubit assay (Thermo Fisher Scientific). 

RNA integrity was assessed using a Bioanalyzer 2100 (Agilent). Total RNA was converted to 

strand-specific Illumina compatible sequencing libraries using the NEXTflex Rapid 

Directional mRNA-Seq library Kit from BIOO Scientific (Austin, Texas) as per the 

manufacturer’s instructions (v14.10). The cDNA libraries were PCR amplified for 15 cycles 

prior to assessment using a TapeStation 2200 (Agilent) for quality and Qubit fluorescence assay 

for quantification. In total, 36 cDNA libraries (2 cell lines x 6 time-points x 3 replicates per 

timepoint) were generated and sequenced on the Illumina HiSeq 2500 machine using a v2 High 

Output 100 cycle Kit (1x 100 bp SR). The quality and number of reads for each sample were 

assessed with FastQC v0.11.3. Adaptors were trimmed from reads, and low-quality bases with 

Phred scores < 28 were trimmed from ends of reads, using Trimgalore v0.4.0. Trimmed reads 

of less than 20 nucleotides were discarded. Reads passing all quality control steps were aligned 

to the hg38 assembly of the human genome using TopHat v2.1.0 81, allowing for up to two 

mismatches. Reads not uniquely aligned to the genome were discarded. HTSeq-count v0.6.0 82 

was used in the union model to assign uniquely aligned reads to Ensembl Hg38.86-annotated 

genes. Data were normalized across libraries by the trimmed mean of M-values (TMM) 

normalization method, implemented in the R v3.2.1., Bioconductor package, EdgeR v3.10.2 
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83. Only genes that had at least 5 reads per million in at least one cell-line were further analyzed 

for evidence of differential gene expression. Differentially expressed genes were identified 

using the glm model implemented in EdgeR (FDR < 0.05). The RNAseq data were deposited 

in the Gene Expression Omnibus (GEO) under accession number GSE105094. 

 

 

Supplementary References 
 
1 Soh, J. et al. Oncogene mutations, copy number gains and mutant allele specific 

imbalance (MASI) frequently occur together in tumor cells. PloS one 4, e7464 (2009). 
2 Shirasawa, S., Furuse, M., Yokoyama, N. & Sasazuki, T. Altered growth of human colon 

cancer cell lines disrupted at activated Ki-ras. Science (New York, N.Y.) 260, 85-88 

(1993). 
3 Kotlyar, M., Pastrello, C., Malik, Z. & Jurisica, I. IID 2018 update: context-specific 

physical protein-protein interactions in human, model organisms and domesticated 

species. Nucleic Acids Res 47, D581-d589 (2019). 
4 Kotlyar, M., Pastrello, C., Sheahan, N. & Jurisica, I. Integrated interactions database: 

tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 

44, D536-541 (2016). 
5 Brown, K. R. et al. NAViGaTOR: Network Analysis, Visualization and Graphing 

Toronto. Bioinformatics 25, 3327-3329 (2009). 
6 Fasterius, E. et al. A novel RNA sequencing data analysis method for cell line 

authentication. PLoS One 12, e0171435 (2017). 
7 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics 25, 1754-1760 (2009). 
8 Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the 

Genome Analysis Toolkit best practices pipeline. Current protocols in bioinformatics 43, 

11.10.11-33 (2013). 
9 McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol 17, 122 (2016). 
10 Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and 

cancer sequencing applications. Bioinformatics 32, 1220-1222 (2016). 
11 Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: Genome-Wide Copy 

Number Detection and Visualization from Targeted DNA Sequencing. PLoS 

computational biology 12, e1004873 (2016). 
12 Li, H. Toward better understanding of artifacts in variant calling from high-coverage 

samples. Bioinformatics 30, 2843-2851 (2014). 
13 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic 

variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010). 
14 Kiel, C., Verschueren, E., Yang, J. S. & Serrano, L. Integration of protein abundance and 

structure data reveals competition in the ErbB signaling network. Sci Signal 6, ra109 

(2013). 
15 Gloeckner, C. J., Boldt, K., Schumacher, A., Roepman, R. & Ueffing, M. A novel tandem 

affinity purification strategy for the efficient isolation and characterisation of native 

protein complexes. Proteomics 7, 4228-4234 (2007). 
16 Longo, P. A., Kavran, J. M., Kim, M. S. & Leahy, D. J. Transient mammalian cell 

transfection with polyethylenimine (PEI). Methods in enzymology 529, 227-240 (2013). 
17 Hilger, M. & Mann, M. Triple SILAC to determine stimulus specific interactions in the 

Wnt pathway. Journal of proteome research 11, 982-994 (2012). 
18 Chen, X., Wei, S., Ji, Y., Guo, X. & Yang, F. Quantitative proteomics using SILAC: 

Principles, applications, and developments. Proteomics 15, 3175-3192 (2015). 



36 

 

19 Chen, X. et al. Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals 

Role of Cox-2 in Palmitate-induced Insulin Resistance. Scientific reports 6, 21454 (2016). 
20 Park, S. S. et al. Effective correction of experimental errors in quantitative proteomics 

using stable isotope labeling by amino acids in cell culture (SILAC). Journal of 

proteomics 75, 3720-3732 (2012). 
21 Turriziani, B. et al. On-beads digestion in conjunction with data-dependent mass 

spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology 3, 

320-332 (2014). 
22 Boldt, K. et al. An organelle-specific protein landscape identifies novel diseases and 

molecular mechanisms. Nature communications 7, 11491 (2016). 
23 Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted 

laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in 

proteomics. Anal Chem 75, 663-670 (2003). 
24 Olsen, J. V. et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via 

lock mass injection into a C-trap. Mol Cell Proteomics 4, 2010-2021 (2005). 
25 Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized 

p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature 

biotechnology 26, 1367-1372 (2008). 
26 Teo, G. et al. SAINTexpress: improvements and additional features in Significance 

Analysis of INTeractome software. Journal of proteomics 100, 37-43 (2014). 
27 Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human 

deubiquitinating enzyme interaction landscape. Cell 138, 389-403 (2009). 
28 Bryan, K. et al. HiQuant: Rapid Postquantification Analysis of Large-Scale MS-

Generated Proteomics Data. Journal of proteome research 15, 2072-2079 (2016). 
29 Gloeckner, C. J., Boldt, K. & Ueffing, M. Strep/FLAG tandem affinity purification (SF-

TAP) to study protein interactions. Curr Protoc Protein Sci Chapter 19, Unit19.20 

(2009). 
30 Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of 

(prote)omics data. Nat Methods 13, 731-740 (2016). 
31 Doncheva, N. T., Assenov, Y., Domingues, F. S. & Albrecht, M. Topological analysis and 

interactive visualization of biological networks and protein structures. Nature protocols 7, 

670-685 (2012). 
32 Shannon, P. et al. Cytoscape: a software environment for integrated models of 

biomolecular interaction networks. Genome research 13, 2498-2504 (2003). 
33 Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes-

-2009. Nucleic Acids Res 38, D497-501 (2010). 
34 Huttlin, E. L. et al. Architecture of the human interactome defines protein communities 

and disease networks. Nature 545, 505-509 (2017). 
35 Rolland, T. et al. A proteome-scale map of the human interactome network. Cell 159, 

1212-1226 (2014). 
36 Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by 

stoichiometries and abundances. Cell 163, 712-723 (2015). 
37 Gupta, G. D. et al. A Dynamic Protein Interaction Landscape of the Human Centrosome-

Cilium Interface. Cell 163, 1484-1499 (2015). 
38 Coyaud, E. et al. Global Interactomics Uncovers Extensive Organellar Targeting by Zika 

Virus. Mol Cell Proteomics 17, 2242-2255 (2018). 
39 Caron, E. et al. Precise Temporal Profiling of Signaling Complexes in Primary Cells 

Using SWATH Mass Spectrometry. Cell reports 18, 3219-3226 (2017). 
40 Nakhaeizadeh, H., Amin, E., Nakhaei-Rad, S., Dvorsky, R. & Ahmadian, M. R. The 

RAS-Effector Interface: Isoform-Specific Differences in the Effector Binding Regions. 



37 

 

PloS one 11, e0167145 (2016). 
41 Linnemann, T., Zheng, Y.-H., Mandic, R. & Matija Peterlin, B. Interaction between Nef 

and Phosphatidylinositol-3-Kinase Leads to Activation of p21-Activated Kinase and 

Increased Production of HIV. Virology 294, 246-255 (2002). 
42 Harjes, E. et al. GTP-Ras Disrupts the Intramolecular Complex of C1 and RA Domains of 

Nore1. Structure 14, 881-888 (2006). 
43 Rudolph, M. G. et al. Thermodynamics of Ras/Effector and Cdc42/Effector Interactions 

Probed by Isothermal Titration Calorimetry. Journal of Biological Chemistry 276, 23914-

23921 (2001). 
44 Wang, J., Peng, X., Li, M. & Pan, Y. Construction and application of dynamic protein 

interaction network based on time course gene expression data. Proteomics 13, 301-312 

(2013). 
45 Wohlgemuth, S. et al. Recognizing and Defining True Ras Binding Domains I: 

Biochemical Analysis. Journal of Molecular Biology 348, 741-758 (2005). 
46 Azeloglu, E. U. & Iyengar, R. Good practices for building dynamical models in systems 

biology. Sci Signal 8, fs8 (2015). 
47 Kholodenko, B., Yaffe, M. B. & Kolch, W. Computational approaches for analyzing 

information flow in biological networks. Sci Signal 5, re1 (2012). 
48 Sobie, E. A., Lee, Y. S., Jenkins, S. L. & Iyengar, R. Systems biology--biomedical 

modeling. Sci Signal 4, tr2 (2011). 
49 Morris, M. K., Saez-Rodriguez, J., Sorger, P. K. & Lauffenburger, D. A. Logic-based 

models for the analysis of cell signaling networks. Biochemistry 49, 3216-3224 (2010). 
50 Stojmirovic, A. & Yu, Y. K. Information flow in interaction networks. J Comput Biol 14, 

1115-1143 (2007). 
51 Stojmirovic, A. & Yu, Y. K. Information flow in interaction networks II: channels, path 

lengths, and potentials. J Comput Biol 19, 379-403 (2012). 
52 Breuer, K. et al. InnateDB: systems biology of innate immunity and beyond--recent 

updates and continuing curation. Nucleic Acids Res 41, D1228-1233 (2013). 
53 Stojmirovic, A., Bliskovsky, A. & Yu, Y. K. CytoITMprobe: a network information flow 

plugin for Cytoscape. BMC Res Notes 5, 237 (2012). 
54 Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime 

cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576-

589 (2010). 
55 Orchard, S. et al. Protein interaction data curation: the International Molecular Exchange 

(IMEx) consortium. Nat Methods 9, 345-350 (2012). 
56 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 

Acids Res 28, 27-30 (2000). 
57 Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res 42, D472-477 

(2014). 
58 Gene Ontology, C. Gene Ontology Consortium: going forward. Nucleic Acids Res 43, 

D1049-1056 (2015). 
59 Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids 

Res 45, D777-D783 (2017). 
60 Rose, P. W. et al. The RCSB protein data bank: integrative view of protein, gene and 3D 

structural information. Nucleic Acids Res 45, D271-D281 (2017). 
61 Law, V. et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 

42, D1091-1097 (2014). 
62 Yates, A. et al. Ensembl 2016. Nucleic Acids Res 44, D710-716 (2016). 
63 Gholami, A. M. et al. Global proteome analysis of the NCI-60 cell line panel. Cell reports 

4, 609-620 (2013). 



38 

 

64 Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis 

of eleven common cell lines reveals ubiquitous but varying expression of most proteins. 

Mol Cell Proteomics 11, M111 014050 (2012). 
65 Frias, S., Bryan, K., Brinkman, F. S. & Lynn, D. J. CerebralWeb: a Cytoscape.js plug-in 

to visualize networks stratified by subcellular localization. Database (Oxford) 2015, 

bav041 (2015). 
66 Goenawan, I. H., Bryan, K. & Lynn, D. J. DyNet: visualization and analysis of dynamic 

molecular interaction networks. Bioinformatics 32, 2713-2715 (2016). 
67 Zhang, B. et al. Comprehensive molecular characterization of human colon and rectal 

cancer. Nature 487, 330-337 (2012). 
68 Singh, R. & Mukhopadhyay, K. Survival analysis in clinical trials: Basics and must know 

areas. Perspectives in clinical research 2, 145-148 (2011). 
69 Tibshirani, R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal 

Statistical Society. Series B (Methodological) 58, 267-288 (1996). 
70 Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare 

ROC curves. BMC bioinformatics 12, 77 (2011). 
71 Roskoski, R., Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. 

Pharmacological research 79, 34-74 (2014). 
72 Lu, B., McClatchy, D. B., Kim, J. Y. & Yates, J. R., 3rd. Strategies for shotgun 

identification of integral membrane proteins by tandem mass spectrometry. Proteomics 8, 

3947-3955 (2008). 
73 Sokolina, K. et al. Systematic protein-protein interaction mapping for clinically relevant 

human GPCRs. Molecular systems biology 13, 918 (2017). 
74 Yao, Z. et al. A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase 

Interactome. Mol Cell 65, 347-360 (2017). 
75 Deribe, Y. L. et al. Regulation of epidermal growth factor receptor trafficking by lysine 

deacetylase HDAC6. Sci Signal 2, ra84 (2009). 
76 Guzman, C., Bagga, M., Kaur, A., Westermarck, J. & Abankwa, D. ColonyArea: an 

ImageJ plugin to automatically quantify colony formation in clonogenic assays. PloS one 

9, e92444 (2014). 
77 Dhillon, A. S. et al. A Raf-1 mutant that dissociates MEK/extracellular signal-regulated 

kinase activation from malignant transformation and differentiation but not proliferation. 

Mol Cell Biol 23, 1983-1993 (2003). 
78 O'Neill, E., Rushworth, L., Baccarini, M. & Kolch, W. Role of the kinase MST2 in 

suppression of apoptosis by the proto-oncogene product Raf-1. Science 306, 2267-2270 

(2004). 
79 John, S., Vinkemeier, U., Soldaini, E., Darnell, J. E., Jr. & Leonard, W. J. The 

significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol 19, 1910-

1918 (1999). 
80 Horvath, C. M., Wen, Z. & Darnell, J. E., Jr. A STAT protein domain that determines 

DNA sequence recognition suggests a novel DNA-binding domain. Genes & development 

9, 984-994 (1995). 
81 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of 

insertions, deletions and gene fusions. Genome Biol 14, R36 (2013). 
82 Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-

throughput sequencing data. Bioinformatics 31, 166-169 (2015). 
83 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 139-

140 (2010). 

 


