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Fig. 1. Validation for cellular senescence in premature senescent EC. a, Proliferation was assessed in control (GFP) and premature senescent ECs (TERF2DN) by counting the Ki67-positive
cells (n = 6 each). b, DNA damage was assessed by immunocytochemistry (ICC) for yH2AX. The number of yH2AX-positive nuclei was counted (n = 6 each). ¢, Senescence-associated
heterochromatin foci (SAHF) was assessed by ICC for tri-methyl-histone H3 (Lys9) (H3K9me3) in control (GFP) and premature senescent ECs (TERF2DN). The number of SAHF-positive nuclei
was counted (n = 5-6). d, Immunoblotting for histone H3 dimethyl Lys9 (H3K9me2) in control (GFP) and premature senescent ECs (TERF2DN) (n = 6 each). e, CDK inhibitor expression was
analyzed in control (GFP) and premature senescent ECs (TERF2DN) (n = 3-4). f, SA-B-Gal and SPiDER-B-Gal staining in ECs without infection (control), or ECs infected with retroviruses carrying
GFP or TERF2DN. g, SASP factor expression was analyzed in control (GFP) and premature senescent ECs (TERF2DN) (n = 3 each). h, Apoptotic cells were counted in control (GFP) and
premature senescent ECs (TERF2DN) cultured in growth medium (n = 6 each). A two-tailed Student’s t-test was used for statistical analysis. Data are presented as mean = s.e. *P < 0.05, **P <

0.01, and ****p < 0.0001. Bars: 100 um.
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Fig. 2. Validation for cellular senescence in replicative senescent EC. a, DNA damage was assessed by ICC for yH2AX in proliferating young and replicative senescent ECs.
The number of yH2AX-positive nuclei was counted (n = 6 each). b, SAHF was assessed by ICC for H3K9me3 in proliferating young and replicative senescent ECs. The
number of SAHF-positive nuclei was counted (n = 6 for young EC; n = 5 for senescent EC). ¢, SASP factor expression was analyzed in proliferating young and replicative
senescent ECs (n = 4 for young EC; n = 3 for senescent EC). A two-tailed Student’s t-test was used for statistical analysis. Data are presented as mean = s.e. *P < 0.05, **P
<0.01, ***P < 0.001, and ****P < 0.0001. Bars: 100 um.
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Fig. 3. Senescent EC does not induce senescence-like state in preadipocytes and myotubes. a, CDK inhibitor expression in the WAT isolated from young (7-week-old)
and aged (70-week-old) mice (n = 8 each). b, SA-B-Gal staining in 3T3-L1 pre-adipocytes treated with the control medium, EC/GFP-CM or EC/TRF2DN-CM. Bars: 100 um. c,
CDK inhibitor expression in 3T3-L1 pre-adipocytes treated with the control medium, EC/GFP-CM or EC/TRF2DN-CM (n = 3 for control and EC/TERF2DN-CM; n = 4 for EC/
GFP-CM). d, CDK inhibitor expression in C2C12 myotubes treated with the control medium, EC/GFP-CM or EC/TRF2DN-CM (n = 4 for control; n = 3 for EC-CM). A two-
tailed Student’s t-test was used for statistical analysis. Data are presented as mean + s.e. *P < 0.05.
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Fig. 4. Senescent EC does not induce senescence-like state in EC. a, SPIDER-B-Gal staining in ECs treated with CM derived from control ECs (EC/GFP-CM) or premature
senescent ECs (EC/TERF2DN-CM). b, CDK inhibitor expression in ECs treated with the EC/GFP-CM or EC/TERF2DN-CM (n = 5 each). ¢, SASP factor expression in ECs treated
with the EC/GFP-CM or EC/TERF2DN-CM (n = 5 each). A two-tailed Student’s t-test was used for statistical analysis. Data are presented as mean + s.e.
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Fig. 5. Elimination of superoxide was impaired in adipocytes treated with senescent EC-CM. a, CDK inhibitor expression in 3T3-L1 adipocytes treated with the indicated
EC-CM in the presence or absence of inhibitors for reactive oxygen species production by xanthine oxidase (allopurinol) or NADPH oxidase (NOX inhibitor) (n = 4 each for
vehicle-treated cells; n = 3 each for inhibitor-treated cells). b, Superoxide dismutase (SOD) expression in 3T3-L1 adipocytes treated with the EC/GFP-CM or EC/TERF2DN-
CM (n = 4 each). A two-tailed Student’s t-test was used for statistical analysis. Data are presented as mean = s.e. *P < 0.05 and **P < 0.01.
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Fig. 6. Validation of EC-specific senescence in Tie2-TRF2DN-Tg mice. a, EC and non-EC were isolated from the lung and WAT of WT or Tie2-TRF2DN-Tg mice. EC marker
expression was analyzed to confirm the successful EC isolation (n = 6 each). b, SASP factor expression in EC and non-EC isolated from the lung of WT or Tie2-TRF2DN-Tg
mice (n =7 each). A two-tailed Student’s t-test was used for statistical analysis. Data are presented as mean + s.e. *P < 0.05, **P < 0.01, and ****P < 0.0001.
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Fig. 7. Metabolic analysis for EC-specific progeroid mice at the age of 20 weeks old. a, Serum insulin levels in WT or Tie2-TERF2DN-Tg mice fed NC (n = 6 each). b, Serum
corticosterone levels in WT or Tie2-TERF2DN-Tg mice fed NC (n = 7 for WT; n =5 for Tg). ¢, CDK inhibitor expression in the stromal vascular fraction (SVF) isolated from the
WAT of WT or Tie2-TERF2DN-Tg mice (n = 6 for WT; n = 5 for Tg). A two-tailed Student’s t-test was used for statistical analysis. Data are presented as mean = s.e. *P < 0.05.



Supplementary Fig. 8.

Blood glucose (mg/dL)

Relative mRNA expression

4501
400
3501
300
2501
200+
1504
1004

50

— WT

—— TERF2DN-Tg

IL-1B

15

Cwt

30

IL-6

60 90

[C] TERF2DN-Tg

* %

CCL2

120 (min)

d

blood vessel density (%)

b [Jwr  [] TERF2DN-Tg
700 =
80 . .
600 '
80 . 70 " ]
—_ - —
3 70 ¥ 60 . %'_ 500 1
> IS ] ]
£ 60 ~ 2
3 5 g o] Pootess g 407 %
5 5 - . w 1 [
2 g 40 - Z 300 -
2 40 = t £ —_
§ 10 £ a0 ¢ 5 |
' € & 2001 ",
E g 20 '] J iy
2 3 ' 100
é 10 10 _
0 0 ] , 0 T T
e
Isolectin Isolectin
wWT TERF2DN-Tg WT TERF2DN-Tg
3-5__ ;\? 30—-
3.0 - = > 25 e «®° o
25 LT g, 20 - ® o e e - = "=
T [ i e —
2.0 % 15— * _ ee®o", —t—
1.5 2 - - . = — :
1.0 g 10 -
. o L ]
7 o 54
057 S ]
0 T C’ 1 T
WT TERF2DN-Tg WT TERF2DN-Tg

Fig. 8. Characterization of EC-specific progeroid mice at the age of 20 weeks old. a, Glucose tolerance test in 20-week-old WT and Tie2-TRF2DN-Tg mice fed normal chow (NC)
(n =7 for WT; n=5 for Tg). b, Serum lipid profiles in WT or Tie2-TRF2DN-Tg mice fed NC at the age of 20-week old (n = 8 for WT; n = 6 for Tg). ¢, Inflammatory gene expression in
the WAT of WT or Tie2-TRF2DN-Tg mice (n = 6 each). d, Capillary staining using isolectin in the WAT of WT (n = 28 fields) or Tie2-TRF2DN-Tg (n = 19 fields) mice. Bars: 100 um. e,
Capillary staining using isolectin in the BAT of WT (n = 23 fields) or Tie2-TRF2DN-Tg (n = 19 fields) mice. Bars: 200 um. A two-tailed Student’s t-test was used for statistical

analysis. Data are presented as mean + s.e. *P < 0.05 and **P < 0.01.
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Fig. 9. Characterization of Tie2-TRF2DN-Tg (line #2) mice at the age of 20 weeks old. a, SA-B-Gal staining in ECs isolated from the lung of WT or Tie2-TRF2DN-Tg (line #2)
mice. SA-B-Gal-positive cells were counted (n = 4 each). Bars: 100 um. b, ITT in WT or Tie2-TRF2DN-Tg#2 mice fed NC at the age of 20 weeks old (n = 7 for WT; n = 5 for
Tg). ¢, CDK inhibitor expressions in the WAT of WT (n = 11) or Tie2-TRF2DN-Tg#2 (n = 5) mice at the age of 20 weeks old. A two-tailed Student’s t-test was used for
statistical analysis. Data are presented as mean = s.e. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Fig. 10. Effect of EC progeria was minimal in the liver, skeletal muscle, and BAT. a, CDK inhibitor expression in the liver of WT or Tie2-TRF2DN-Tg mice at the age of 20 weeks old (n = 10
each). b, CDK inhibitor expression in the skeletal muscle of WT or Tie2-TRF2DN-Tg mice at the age of 20 weeks old (n = 6 for WT; n = 5 for Tg). ¢, CDK inhibitor expression in the BAT of WT
or Tie2-TRF2DN-Tg mice at the age of 20 weeks old (n = 7 for WT; n = 5 for Tg). d, Phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6PC) expressions in the liver
of WT or Tie2-TRF2DN-Tg (n = 7 for WT; n =5 for Tg). e, PGC-1a expression in the skeletal muscle of WT or Tie2-TRF2DN-Tg mice (n = 7 for WT; n = 5 for Tg). f, UCPs and PPARs expressions

in the BAT of WT or Tie2-TRF2DN-Tg mice (n = 7 each). g, Core temperature in WT or Tie2-TRF2DN-Tg mice under ambient condition (n = 6 each). A two-tailed Student’s t-test was used
for statistical analysis. Data are presented as mean = s.e.
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Fig. 11. Generation of BM-chimeric mice. Successful BM-transplantation was confirmed by detecting the transgene in
BM cells isolated from each recipient mouse.
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Fig. 12. Shotgun proteomics analysis for CM derived from young control or premature senescent EC. a, Heat map for proteins that were highly expressed in CM derived
from premature senescent EC comparing with those in CM from young control EC (P < 0.1, n = 3 each). b, Heat map for proteins that were less expressed in CM from
premature senescent EC than in CM from young control EC (P < 0.1, n = 3 each). Mann-Whitney U test was used for statistical analysis.
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Fig. 13. Pathway analysis for potential
endothelial SASP factors. Most significant
pathways identified among proteins that
were increased in CM derived from
premature senescent EC comparing with
those in CM from young control EC were
shown.
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Supplementary methods

Methods

Materials

Human umbilical vein endothelial cells (HUVECs) were purchased from Lonza. 3T3-L1

pre-adipocytes were obtained from JCRB cell bank in National Institutes of Biomedical

Innovation, Health, and Nutrition. C2C12 cells were obtained from ATCC.

Antibodies for phospho-Akt (#9271), total-Akt (#9272), phospho-IRB (#3024), total-IRB

(#3025), tri-methyl-histone H3 (Lys9) (H3K9me3) (#13696), phospho-Histone H2A.X (Ser139)

(YH2AX) (#9718) and GAPDH (#2118) were purchased from Cell Signaling Technology.

Antibodies for IRS-1 (#sc-559) and IRS-2 (#sc-1555) were purchased from Santa Cruz

Biotechnology. Antibody for 8-OHdG (#MOG-020P) was purchased from JalCA. Antibody for

Ki-67 (#418071) was purchased from Nichirei. Antibody forH3K9me2 (#39240) was purchased

from Active Motif. Antibodies for FACS analysis including anti-IL-1a-PE (#130-104-481) and REA

Control (1)-PE (#130-104-613) were purchased from Miltenyi Biotec.

The ELISA kit for mouse serum insulin measurements was purchased from Shibayagi.

The ELISA kit for mouse corticosterone was purchased from Cayman Chemical. The ELISA kit

for human IL-1a was purchased from R&D systems. Biotynilated Isolectin was obtained from

Vector Labs and fluorescence-labeled isolectin GS-IB4 from Griffonia Simplicifolia was obtained

from Invitrogen.

N-Acetyl-L-cysteine (NAC) was purchased from Sigma. B-Nicotinamide mononucleotide

(B—-NMN) was obtained from Oriental Bio. NOX inhibitor Il was obtained from Calbiochem.



Allopurinol was obtained from SelleckChem. IL-1 receptor antagonist was obtained from WAKO.
Hoechst 33342 was obtained from Molecular Probes.
Small interfering RNA (siRNA) for human IL-1a was obtained from Dharmacon

(#M-007952-01-0005).

Immunoblotting

For immunoblotting, blots were incubated with antibodies for t-IR (1:1000), p-IRB(1:1000),
t-Akt (1:1000), p-Akt (1:1000), GAPDH (1:1000), IRS-1 (1:100), or IRS-2 (1:100) for overnight
at 4 °C. Uncropped and unprocessed scans of the blots are provided in the Source Data

file

Bone Marrow Transplantation

Bone marrow (BM) transplantation was performed as described previously1. Briefly, BM cells
were isolated from Tie2-TRF2DN-Tg or WT mice, and 5 x 10° cells per body of BM cells were
transfused into 10-week-old recipient mice that received 8 Gy lethal irradiation. Phenotypic
analysis was performed 10 weeks after BM transplantation. Successful BM transplantation was
confirmed by genotyping of BM cells and flow cytometry analysis of the reconstituted BM cells

in control recipient WT mice transplanted with BM from GFP mice performed in a parallel way.

Metabolic measurements
The insulin and glucose tolerance tests (ITT and ipGTT) were performed as follows. For the

ipGTT, mice fasted for 6 hours, and 1.5 g/kg D-glucose was intraperitoneally administered. For



the ITT, mice were given 1 IU/kg human insulin by subcutaneous injection without fasting. Blood
glucose was measured by the glucose oxidase method (Johnson & Johnson K.K.). The adiposity
of mice was examined and analyzed using computed tomography scanning (LaTheta LCT-100,

Aloka) and its accompanied analysis software.

Insulin signaling study in vivo
Mice were given 1 1U/kg human insulin by subcutaneous injection without fasting. The
visceral perigonadal WAT, soleus muscle, and liver were extracted 20 min after insulin-injection,

followed by protein extraction and SDS-PAGE.

Isolation of mouse mature adipocytes and stromal vascular fraction from adipose tissue
Adipocytes and non-adipocytes were prepared using the collagenase method from
epididymal white adipose tissue as previously reported4. Tissue homogenates were fractionated
by brief centrifugation (350 x g for 20 s) in Krebs-Henseleit 4-(2-hydroxyethyl)-2-piperazine
ethane sulfonic acid buffer, pH 7.4, supplemented with 20 mg/mL of bovine serum albumin
(fraction V) and 2 M glucose. Floating cells were collected as mature adipocytes, and pelleted
cells were used as the stromal vascular fraction. Subsequently, cells were homogenized with
QIAzol lysis reagent (QIAGEN) for mature adipocytes or RNAiso Plus (TAKARA) for stromal

vascular fraction.

Quantitative PCR



RNAs were purified using RNeasy Lipid Tissue Mini Kit (QIAGEN) for WAT, BAT and 3T3-L1
adipocytes, or using NucleoSpin RNA Clean-up kit (Macherey-Nagel) for the other types of cells
and tissues according to the manufacturer’s protocol. cDNA was synthesized from ~1 ug of total
RNA using PrimeScript RT reagent Kit with gDNA Eraser (TAKARA). PCR reactions were
prepared using FastStart SYBR Green Master (Roche Applied Science) followed by the real-time
PCR analysis using LightCycler96 (Roche Applied Science). Quantification of gene expression
was performed using the delta-delta CT method, which was normalized with 18S rRNA.

Nucleotide sequences of the primers used are shown in Extended DataTable-1 and -2.

Histological analysis

Visceral perigonadal WAT was extracted and fixed with 4% paraformaldehyde, followed by
paraffin embedding. Sections were prepared in 4 um thickness. IHC for anti-8OHdG antibody or
isolectin in the WAT sections was performed as previously reported5. After deparaffinization,
sections were boiled in antigen unmasking solution (Vector Labs) for 10 min. Following the
incubation in methanol containing 0.3% hydrogen peroxide for 15 min at room temperature,
sections were incubated with 10% normal donkey serum in PBS-T (0.2% Triton-X in PBS). After
blocking using avidin-biotin blocking kit (Vector Labs), sections were incubated with anti 8-OHdG
antibody (1:200) or isolectin biotinylated (1:200) at 4 °C for overnight. Subsequently, sections
were incubated with biotinylated secondary antibody (1:200) for 60 min at room temperature,
followed ABC reaction (Vector Labs). Finally, immune-positive cells were visualized by
incubating in DAB peroxidase substrate (Vector Labs). Isolectin-positive capillaries were

quantified at 2-5 randomly chosen independent fields/each section.



Immunocytochemistry

For immunocytochemistry, cells were fixed with 4% PFA, and incubated with anti-Ki67
antibody (1:1, ready to use antibody), anti-H3K9me3 antibody (1:800) or anti-yH2AX (1:200) at
4°C for overnight. Following incubation with secondary antibodies labeled with alexa Fluor 594
(1:400), cells were covered with mounting medium for fluorescence with DAPI (Vector Labs), and

observed under fluorescence microscope.

Superoxide detection
3T3-L1 adipocytes were treated with control medium or CM derived from young control or
senescent ECs for 4 days, and then superoxide was detected using ROS/Superoxide Detection

Kit (Enzo) as the manufacturer recommended. Nucleus was stained with Hoechst 33342.

Measurement of immunostain-positive areas
Immunostain-positive areas were measured using the NIH image software as previously
reported®’. Briefly, images of immunostained areas were extracted by the color-split function of

the software, followed by quantification using the NIH image software.

Ex vivo cell isolation and sorting of endothelial cells from various murine organs

Tissue dissociation and homogenization were performed using MACS dissociation kit

(Miltenyi Biotec) for lung (#130-095-927) and WAT (#130-105-808); gentleMACS C tube



(#130-093-237); and gentleMACS Dissociators (#130-093-235) according the manufacturer’s
protocol. Following passing the MACS SmartStrainer (100 or 70 um) and Pre-Separation Filter
(30 um), the dissociated cells were centrifuged at 300 x g for 10 min, and then resuspended in 90
uL of PEB buffer per 10 total cells. Cells were incubated with FcR Blocking reagent for mouse
(#130-092-575) for 10 min at 4°C, followed by incubation with CD146 (LSEC) MicroBeads
(#130-092-007) for 15 min at 4°C. After washing, cells were centrifuged at 300 g for 10 min, and
then resuspended in 500 pyL PEB buffer. Subsequently, cells were applied to LS column
(#130-042-401) in the magnetic field of MACS separator (#130-042-301). The flow-through
medium containing EC-depleted cells were collected, and these cells were used as non-ECs.

After washing with PEB buffer for 3 times, isolated ECs were collected using 5 ml PEB buffer.

Shotgun proteomics analysis

Shotgun proteomeics analysis for conditioned medium derived from young control and
premature senescent ECs were performed at Chemical Evaluations and Research Institute

(CERI), Japan. Pathway analysis was performed by using the Reactome® °.

Flow cytometry

For fluorescent-activated cell sorter analysis, endothelial cells isolated from the lungs of
7-week-old or 70-week-old WT mice were stained with PE-labeled rat anti-IL-1a antibody
(anti-IL-1a-PE, Miltenyi Biotec #130-104-481) or isotype control (REA Control (I)-PE, Miltenyi
Biotec #130-104-613) in PBS containing 2% fetal calf serum. Cells were analyzed on a

FACSCalibur (BD Bioscience) with FlowJo software (Tree Star). For elimination of cell debris,



cells were gated using forward and side scattered light, and were analyzed for cell-surface IL-1a
expression levels. For each sample, 200,000 cells were analyzed. We calculated the mean

fluorescence intensity and showed the fold change relative to the control group.



Supplementary Table

Table-1. Nucleotide sequence of mouse primers

MCP1 (CCL2) GGCTCAGCCAGATGCAGTTAA
CCTACTCATTGGGATCATCTTGCT
IL1a CACATCAGCTGCTTATCCAGAGCTG
GGTACATACAGACTGTCAGCACTTCC
IL6 ACAACCACGGCCTTCCCTACTT
CACGATTTCCCAGAGAACATGTG
IL1B CTGTGTCTTTCCCGTGGACC
CAGCTCATATGGGTCCGACA
IL8 (CXCL-15) CTGACCACTTAGCTTCTTCCTGACAG
GACACAGTGTTCTTGCCTTGGCTCCA
p16 (Cdkn2a) GACGGGCATAGCTTCAGCTCAAGCA
GCCACATGCTAGACACGCTAGCATCGC
p19 (Cdkn2d) GGAAGTCCAGCAGTTGCTTTGGAGCTC
GGGCATTGACATCAGCACCATGCTCCA
p21 (Cdkn1a) GCCACAGGCACCATGTCCAATCCTGG
GCATCGCAATCACGGCGCAACTGCTC
18S GTATAGGGCGCTCAAATGGA
CCATCCAATCGGTAGTAGCCG
PEPCK CGAAATTGAGAGGGAGCTCCGAGCC
GATCTACTCAGCATTGTGCCGCTATCTC
G6PC TGCTGGACCCTGCTGTGTCTGGTAGGC
ATGAGAGCTCTTGGATGGCTTGGGCT
UCP-1 GGGCCCTTGTAAACAACAAA
GTCGGTCCTTCCTTGGTGTA
UCP-3 CCACACTTCCTCCTGCTCTC
GTAACCCGTTGAACCCCATT
PPAR-a GAGGGTTGAGCTCAGTCAGG
GGTCACCTACGAGTGGCATT
PPAR-y TTTTCAAGGGTGCCAGTTTC




AATCCTTGGCCCTCTGAGAT

PPAR-3 TGGAGCTCGATGACAGTGAC
GTACTGGCTGTCAGGGTGGT
CD31 AACGAGAGCCACAGAGACGGTGTAC
ATACGTGCACAGGACTCTCGCAATC
Tie2 AAGCATGCCCATCTGGTTAC

GTAGGTAGTGGCCACCCAGA




Table-2. Nucleotide sequence of human primers

p16 (Cdkn2a) CACCAGAGGCAGTAACCATGCCCGC
GTAGGACCTTCGGTGACTGATGATC
p19 (Cdkn2d) GGCAGTTCAAGAGGGTCACACTGCT
ACCATGTGGCCCTGCAGGATGTCCA
P21 (Cdkn1a) GGAAGACCATGTGGACCTGTCACTG
AGATCAGCCGGCGTTTGGAGTGGTA
188 GTAACCCGTTGAACCCCATT
CCATCCAATCGGTAGTAGCG
MCP1 (CCL2) GAAGAATCACCAGCAGCAAGTGTCCC
GCTTGTCCAGGTGGTCCATGGAATCC
IL1a GGTCACCAAATTCTACTTCCAGGAGGAC
GTGACCAGGTTGTTGTGACGCCTTC
IL6 GAAGCTGCAGGCACAGAACCAGTGGC
CTGACCAGAAGAAGGAATGCCCATT
IL1B AGCTGTACCCAGAGAGTCCTGTGCTGA
AGGAGAGAGCTGACTGTCCTGGCTGATG
IL8 (CXCL-15) TCTGCAGCTCTGTGTGAAGGTGCAG

GTGTGGTCCACTCTCAATCACTCTC
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