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Appendix 1. In-house rosé wine compounds database 

Molecule 
Molecular 
formula 

(MH)+ (or M+ for 
anthocyanins) 

Organic acids 

Malic acid C4H6O5 135.0924 

Acetic acid C2H4O2 61.029 

Lactic acid C3H6O3 91.0395 

Tartric acid C4H6O6 151.0243 

Gluconic acid C12H12O7 197.0661 

Citric acid C6H8O7 193.0348 

   

Benzoic acids and derivatives 

Gallic acid C7H6O5 171.0294 

Protocatechuic acid C7H6O4 155.0344 

Syringic acid C9H10O5 199.0607 

Vanillic acid C8H8O4 169.0501 

Ethyl gallate C9H10O5 199.0606 

Ethyl protocatechuate C9H10O4 183.0657 

Gentisic acid C7H6O4 155.0344 

Hydroxybenzoic acid C7H6O3 139.0395 

Hydroxycinnamic acids and derivatives 

Caffeic acid C9H8O4 181.0501 

p-coumaric acid C9H8O3 165.0552 

Ferulic acid C10H10O4 195.0657 

Caftaric acid (cis/trans) C13H12O9 313.056 

Coutaric acid (cis/trans) C13H12O8 297.0611 

Fertaric acid C14H14O9 327.0716 

Ethyl caffeate C11H12O4 209.0814 

Ethyl coumarate C11H12O3 193.0865 

3 Caffeoylquinic acid C16H16O9 355.1029 

Sinapic acid C11H12O5 225.0763 

Ferulic acid ethyl ester C12H14O4 223.0964 

GRP C23H27N3O15S 618.1242 



Stilbenes 

Resvertrol (cis trans) C14H12O3 229.0865 

Viniferin C28H22O6 455.1495 

Piceid (cis trans) C20H22O8 391.1393 

Flavonols 

Quercetin Glc C21H20O12 465.1033 

Myricetin Glc C21H20O13 481.0982 

Myricetin glucuronide C21H18O14 495.0775 

Quercetin glucuronide C21H18O13 479.0826 

Quercetin C15H10O7 303.0505 

Kaempferol C15H10O6 287.0556 

Kaempferol Glc C21H20O11 449.1084 

Syringetin Glc C23H24O13 509.1295 

Isorhamnetin C16H12O7 317.0661 

Syringetin C17H14O8 347.0766 

Flavan-3-ols 

Phloroglucinol C6H6O3 127.0395 

Catechin C15H14O6 291.0869 

Epigallocatechin C15H14O7 307.0818 

Catechin gallate C22H18O10 443.0978 

Galloylated dimer C37H30O16 731.1612 

Trimer-1 (1 isomer) 
C45H38O18 867.2137 

Trimers-2 (several isomers) 

(epi)cat-ethyl-(epi)cat-1 (1 isomer) 
C32H30O12 607.1816 

(epi)cat-ethyl-(epi)cat-2 (2 co-eluted isomers) 

Epicatechin C15H14O6 291.0869 

Dimer B2 

C30H26O12 
579.1503 

 

Dimer B1 

Dimer B3 

Dimer B4 

Dimer 1 epigallocatechin B C30H26O13 595.1452 

Dimer 1 catechin gallate B C37H30O16 731.1612 

Quadrimère cat epi C60H50O24 1155.277 



Dihydroflavonols 

Astilbin C21H22O11 451.124 

Taxifolin C15H12O7 305.0661 

Anthocyanins  

Pelargonin C15H11O5 271.0607 

Delphinidin C15H11O7 303.0505 

Cyanidin C15H11O6 287.0556 

Petunidin C16H13O7 317.0661 

Peonidin C16H13O6 301.0712 

Malvidin C17H15O7 331.0818 

Malvidin 3,5-diGlc C29H35O17 655.1874 

Delphinidin 3,5-diGlc C27H31O17 627.1561 

Cyanidin 3,5-diGlc C27H31O16 611.1612 

Petunidin 3,5-diGlc C28H33O17 641.1718 

Peonidin 3,5-diGlc C28H33O16 625.1769 

Pelargonin O Glc C21H21O10 433.1135 

Malvidin 3-O-Glc C23H25O12 493.1346 

Delphinidin 3-O-Glc C21H21O12 465.1033 

Cyanidin 3-O-Glc C21H21O11 449.1084 

Petunidin 3-O-Glc C22H23O12 479.1190 

Peonidin 3-O-Glc C22H23O11 463.1240 

Delphinidin 3-O-acetyl-Glc C23H23O13 507.1139 

Cyanidin 3-O-acetyl-Glc C23H23O12 491.1190 

Petunidin 3-O-acetyl-Glc C24H25O13 521.1295 

Peonidin 3-O-acetyl-Glc C24H25O12 505.1346 

Malvidin 3-O-acetyl-Glc C25H27O13 535.1452 

Delphinidin 3-O-coumaroyl-Glc (cis- and trans- isomers) C30H27O14 611.1401 

Cyanidin 3-O-coumaroyl-Glc (cis- and trans- isomers) C30H27O13 595.1452 

Petunidin 3-O-coumaroyl-Glc (cis- and trans- isomers) C31H29O14 625.1557 

Peonidin 3-O-coumaroyl-Glc (cis- and trans- isomers) C31H29O13 609.1608 

Malvidin 3-O-coumaroyl-Glc (cis- and trans- isomers) C32H31O14 639.1714 

Delphinidin 3-O-caffeoyl-Glc C30H27O15 627.1350 

Cyanidin 3-O-caffeoyl-Glc C30H27O14 611.1401 



Petunidin 3-O-caffeoyl-Glc C31H29O15 641.1507 

Peonidin 3-O-caffeoyl-Glc C31H29O14 625.1557 

Malvidin 3-O-caffeoyl-Glc C32H31O15 655.1663 

(epi)cat-ethyl-peonidin 3-O-Glc (4 isomers) C39H39O17 779.2187 

(epi)cat-ethyl-malvidin 3-O-Glc (4 isomers) C40H41O18 809.2293 

(epi)cat-ethyl-malvidin 3-O-coumaroyl-Glc  (2 co-eluted isomers) C49H47O20 955.2661 

Delphinidin 3-O-Glc-(epi)cat C36H33O18 753.1670 

Cyanidin 3-O-Glc-(epi)cat C36H33O17 737.1718 

Petunidin 3-O-Glc-(epi)cat C37H35O18 767.1823 

Peonidin 3-O-Glc-(epi)cat C37H35O17 751.1874 

Malvidin 3-O-Glc-(epi)cat (2 isomers) C38H37O18 781.1980 

Malvidin 3-O-coumaroyl-Glc-(epi)cat (2 isomers) C47H43O20 927.2348 

(epi)cat-delphinidin 3-O-Glc A-F bicyclic C36H35O18 755.1823 

(epi)cat-cyanidin 3-O-Glc A-F bicyclic C36H35O17 739.1874 

(epi)cat-petunidin 3-O-Glc A-F bicyclic C37H37O18 769.1980 

(epi)cat-peonidin 3-O-Glc A-F bicyclic C37H37O17 753.2031 

(epi)cat-malvidin 3-O-Glc A-F bicyclic C38H39O18 783.2137 

Caftaric-peonidin 3-O-Glc (2 co-eluted isomers) C35H33O20 773.1565 

Caftaric-malvidin 3-O-Glc (2 co-eluted isomers) C36H35O21 803.1671 

Coutaric-malvidin 3-O-Glc (2 co-eluted isomers) C36H35O20 789.1722 

Pyranodelphinidin 3-O-Glc C23H21O12 489.1033 

Pyranocyanidin 3-O-Glc C23H21O11 473.1084 

Pyranopetunidin 3-O-Glc C24H23O12 503.119 

Pyranopeonidin 3-O-Glc C24H23O11 487.124 

Pyranomalvidin 3-O-Glc (vitisin B) C25H25O12 517.1346 

Carboxypyranodelphinidin 3-O-Glc C24H21O14 533.0931 

Carboxypyranocyanidin 3-O-Glc C24H21O13 517.0982 

Carboxypyranopetunidin 3-O-Glc C25H23O14 547.1088 

Carboxypyranopeonidin 3-O-Glc C25H23O13 531.1139 

Carboxypyranomalvidin 3-O-Glc (vitisin A) C26H25O14 561.1244 

Pyranodelphinidin 3-O-acetyl-Glc C25H23O13 531.1139 

Pyranocyanidin 3-O-acetyl-Glc C25H23O12 515.119 

Pyranopetunidin 3-O-acetyl-Glc C26H25O13 545.1295 



Pyranopeonidin 3-O-acetyl-Glc C26H25O12 529.1346 

Pyranomalvidin 3-O-acetyl-Glc C27H27O13 559.1452 

Carboxypyranodelphinidin 3-O-acetyl-Glc C26H23O15 575.1037 

Carboxypyranocyanidin 3-O-acetyl-Glc C26H23O14 559.1088 

Carboxypyranopetunidin 3-O-acetyl-Glc C27H25O15 589.1194 

Carboxypyranopeonidin 3-O-acetyl-Glc C27H25O14 573.1244 

Carboxypyranomalvidin 3-O-acetyl-Glc C28H27O15 603.135 

Pyranopeonidin 3-O-coumaroyl-Glc C33H29O13 633.1608 

Pyranomalvidin 3-O-coumaroyl-Glc C34H31O14 663.1714 

Carboxypyranopetunidin 3-O-coumaroyl-Glc C34H29O16 693.1456 

Carboxypyranopeonidin 3-O-coumaroyl-Glc C34H29O15 677.1507 

Carboxypyranomalvidin 3-O-coumaroyl-Glc C35H31O16 707.1612 

p-hydroxyphenylpyranopeonidin 3-O-Glc C30H27O12 579.1503 

p-hydroxyphenylpyranomalvidin 3-O-Glc C31H29O13 609.1608 

p-hydroxyphenylpyranopeonidin 3-O-acetyl-Glc C32H29O13 621.1608 

p-hydroxyphenylpyranomalvidin 3-O-acetyl-Glc C33H31O14 651.1714 

p-hydroxyphenylpyranopeonidin 3-O-coumaroyl-Glc C39H33O14 725.187 

p-hydroxyphenylpyranomalvidin 3-O-coumaroyl-Glc C40H35O15 755.1976 

Catechylpyranopeonidin 3-O-Glc C30H27O13 595.1452 

Catechylpyranomalvidin 3-O-Glc (pinotin A) C31H29O14 625.1557 

Catechylpyranopetunidin 3-O-acetyl-Glc C32H29O15 653.1507 

Catechylpyranopeonidin 3-O-acetyl-Glc C32H29O14 637.1557 

Catechylpyranomalvidin 3-O-acetyl-Glc C33H31O15 667.1663 

Catechylpyranopetunidin 3-O-coumaroyl-Glc C39H33O16 757.1769 

Catechylpyranopeonidin 3-O-coumaroyl-Glc C39H33O15 741.182 

Catechylpyranomalvidin 3-O-coumaroyl-Glc C40H35O16 771.1925 

Guaiacylpyranomalvidin 3-O-Glc C32H31O14 639.1714 

Guaiacylpyranomalvidin 3-O-acetyl-Glc C34H33O15 681.182 

Guaiacylpyranomalvidin 3-O-coumaroyl-Glc C41H37O16 785.2082 

Syringylpyranomalvidin 3-O-Glc C33H33O15 669.182 

Petunidin 3-O-acetyl-Glc-(epi)cat C39H37O19 809.1929 

Peonidin 3-O-acetyl-Glc-(epi)cat C39H37O18 793.198 

Malvidin 3-O-acetyl-Glc-(epi)cat C40H39O19 823.2086 



Pyranopeonidin 3-O-Glc-(epi)cat C39H35O17 775.1874 

Pyranomalvidin 3-O-Glc-(epi)cat C40H37O18 805.198 

Pyranomalvidin 3-O-coumaroyl-Glc-(epi)cat C49H43O20 951.2348 

Others (aminoacids and alcohols) 

Tyrosine C9H11NO3 182.0817 

Tyrosol C8H10O2 121.0653 

Hydroxytyrosol C8H10O3 155.0708 

   

Tryptophol C10H11NO 162.0919 

Tryptophan C11H12N2O2 203.0821 

Oxidation product 

GSH C10H17N3O6S 308.0916 

GSSG C20H32N6O12S2 613.1598 

2-S-glutathionylcaftaric acid ethyl ester C25H32N3O15S 646.1554 

2-S-glutathionylcaffeic acid C19H23O10N3S 486.1182 

 

 

 

 

 

 

 

 

 

 



Appendix 2. Genetic algorithms 

Genetic Algorithms (GAs) are inspired by nature and especially by natural selection (Goldberg, 1989), 

they are very useful in complex optimization issues. Here, the GA are used to find up optimal subsets 

of peak ratios. Thus, it can be considered as a feature selection issue, a field where GAs are widely used 

(Chandrashekar & Sahin, 2014), especially in metabolomics (Cavill et al., 2009). The algorithm begins 

with a population constituted of several individuals which correspond to potential solutions in the 

optimization problem. Thus, in our context, the individuals will be subsets of peak ratios. Then, this 

population evolves according to three operators described in the next paragraphs: crossover, mutation 

and selection. Selection is a crucial step allowing to keep the best individuals with regard to the fitness 

function. Mutation and crossover are run independently from the optimization issue, they allow the 

exploration of solution space. Then, any GA can be described as follows: 

 

Main steps of a GA: 

1. Construction of the first generation 

2. Selection 

While stopping criteria not met do 

3. Crossover 

4. Mutation 

5. Selection 

End 

 

Peak weighting 

As the total number of potential solutions is huge (see main manuscript) we decided to associate a weight 

to each peak in order to favor peaks with two main properties: high values (that is to say high quantities) 

in at least one group and low within-group variability.  



To favor peaks with high values in at least one group, we computed the mean intensities within each 

group: 

𝑥̅௝
௞ =

1

𝑛௞
෍ 𝑥௜௝

௜∈௞

 

Where xij is the intensity value of the i-th sample for the j-th (𝑖 ∈ {1,2, … ,72}) peak and k (𝑘 ∈ {1,2,3})is 

the class (here the region). Then we extracted the maximum mean across classes: 

𝑥̅௝
௠௔௫ = max

௞∈{ଵ,ଶ,ଷ}
𝑥̅௝

௞ 

 Concerning variability, the coefficient of variation of each peak was computed within each group and 

the average value between groups was kept. In order to introduce a balance between those two criteria, 

each one was linearly normalized between 0 and 1 across the data. The average value of both normalized 

criteria was used as the final weight.  

Fitness 

Genetic algorithms are optimization methods. Hence, a criterion, called fitness, has to be defined in 

order to quantify the solution quality and to be optimized. As described in the main manuscript, a two-

fold cross-validated (2-FCV) accuracy obtained with Linear Discriminant Analysis (LDA) is used to 

quantify the ability of a subset of peak ratios to discriminate between wine origins (denoted classes in 

the following). However, in order to avoid overfitting, we favor solutions including few peak ratios. 

Hence, a penalty term was added to the 2-FCV good classification rate: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦஼௏(𝑆) − 0.05 ×
𝑐𝑎𝑟𝑑(𝑆) − 𝐶௠௔௫

1 − 𝐶௠௔௫
 

Where S denotes a subset of ratios of size card(S) and Cmax is the maximum number of ratios the user 

wants to put in a solution. The use of Cmax only aims at hastening convergence and can be easily 

changed if the optimal solution reaches the boundary (in our applications Cmax =10). 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦஼௏(𝑆) is 

the average accuracy obtained by applying LDA to the subset S for 30 runs of 2-fold cross-validation 

 



Initialization  

The first population is randomly drawn in order to explore the set of potential solutions while favoring 

peaks with good inner properties (high intensities and low variability as described earlier). Then, a 

number of peak ratios is randomly drawn between 1 and Cmax , and the corresponding number of peaks 

is chosen following the weights defined earlier. This process is repeated Tpop times (in our applications 

Tpop =200).  

 

Selection 

This step, based on the fitness values, is defined as in Reeves and Rowe (2003). The individuals are 

ranked according to their fitness value, the best one having the highest rank. Then, the probability to 

keep one solution in the next generation is proportional to its rank, so that the sum of probabilities over 

individuals sums to 1 and that the best individual is twice as likely to be selected as the individual with 

median rank. Hence, the selection probability of the k-th ranked solution is defined by: 

𝑝௦௘௟൫𝑆(௞)൯ = 2 ×
(  𝑇௣௢௣ − 2𝑀) × 𝑘 + 1

𝑇௣௢௣(3𝑇௣௢௣ − 4𝑀 + 1)
 

Where M is median of all ranks.  

 

Using those probabilities, Tpop -1 solutions are selected. In addition, elitism is applied, that is, the best 

solution of each generation is automatically introduced in the next one. We obtain a new population of 

size Tpop. 

 

Crossover 

The objective of this step is to produce new combinations of the previously retained ratios. It is 

performed through a usual single-point crossover (Reeves and Rowe, 2003) on ratios and applied to 

50% of the individuals of a generation.  

 

 



Mutation 

This step brings the necessary hazard to efficiently explore the solution space. It assures that any point 

of this space can be reached within a finite number of generations. It is applied to 90% of the individuals 

of a generation. For each individual to be mutated, three kinds of mutations are possible: 

 one of the peak in randomly replaced by another one (still using the weights previously defined) 

with a probability of 50% ;  

 one of the ratios inside the solution is randomly chosen and removed with a probability of 25% 

;  

 one new ratios is added to the solution as performed in the initialization step with a probability 

of 25%. 

 

Convergence and stopping criterion 

As theoretically proved in Bhandari et al. (1996), two conditions are necessary and sufficient for GA to 

converge as the number of iterations goes to infinity:  

• The best solution in the present population has a fitness value no less than the fitness values of 

the optimal strings from the previous populations (verified through our selection step). 

• Each solution has a positive probability of going to an optimal string within a finite number of 

iterations (verified through our mutation step). 

The designed operators meet those conditions but an infinite number of generations is not praticable so 

the maximum number of generations is set to 2000. It has been set by studying the evolution of fitness 

function for several runs and by choosing a number at least twice as large as the number of generations 

required to reach criterion stability.  

 

 

 

 



Appendix 3. Random Forests 

The Random Forest (RF) analysis was performed using the randomForest R package.  

Use of importance parameters 

In this package two measurements of variable importance are provided (Breiman, 2001): the mean 

decrease of accuracy (loss of accuracy when a variable is eliminated from trees) and the mean decrease 

of Gini Index (the same for the Gini Index which is used to choose the best variable and threshold value 

at each split). They were both used to choose the final set of selected ratios. For example, in the following 

figure (application to all the ratios), 8 ratios (red points) were selected as having high values of both 

indicators.  
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