Supplementary Information
Quantitative evidence for early metastatic seeding in colorectal cancer

Zheng Hu'2?3, Jie Ding 1238, Zhicheng Ma'-238, Ruping Sun'?3, Jose A. Seoane'-?3, J. Scott
Shaffer?, Carlos J Suarez*, Anna S Berghoff®%7, Chiara Cremolini®, Alfredo Falcone?, Fotios
Loupakis®, Peter Birner®>', Matthias Preusser®®, Heinz-Josef Lenz'', Christina Curtis®2%

Affiliations

' Department of Medicine, Division of Oncology, Stanford University School of Medicine,
Stanford, California, USA

2 Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
3 Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California,
USA

4 Department of Pathology, Stanford University School of Medicine, Stanford, California,
USA

> Comprehensive Cancer Center CNS Tumor Unit, Medical University of Vienna, Vienna,
Austria

6 Division of Oncology, Department of Medicine |, Medical University of Vienna, Vienna,
Austria

" Institute of Neurology, Medical University of Vienna, Vienna, Austria

8 Azienda Ospedaliero-Universitaria Pisana and University of Pisa, Pisa, Italy

9 Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto
Oncologico Veneto, IRCCS Padua ltaly

10 Department of Pathology, Medical University of Vienna, Vienna, Austria

" Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of
Medicine, University of Southern California, Los Angeles, California, USA

§ These authors contributed equally to this work

* Corresponding author: Christina Curtis, Stanford University School of Medicine, 265
Campus Drive, Lorry Lokey Building Suite G2120C, Stanford, CA 94305 Tel: 650-498-9943,
Email: cncurtis@stanford.edu




Supplementary Figures (p. 2-50)
Supplementary Figures 1-26

Supplementary Tables (p.51-54)

Supplementary Table 1. Clinical features of the metastatic colorectal cancer cohort
Supplementary Table 5. Spatial computational tumor model (SCIMET) parameters
Supplementary Table 6. Description of summary statistics for SCIMET

Supplementary Table 7. SCIMET Summary statistics for the metastatic colorectal cancer cohort

Supplementary Note (p.55-58)



Supplementary Figures

| : |
OOO @ 000
T /9/@

Exome capture library preparation

|

Whole exome sequencing

|

FASTQ files

|

Alignment to reference genome
(BWA)

|

Duplication read marking
(Pichard tools)

|

Local realignment and recalibration
(GATK)

|

BAM files

BAM files—» Somatic indel calling

(Strelka)
Somatic SNV calling Copy number calling
(MuTect) (TitanCNA)

| l

Additional filters
(Varscan2)

| l

Comblnlng/sglvaglng ShE Estimated CNA profiles
across multiple samples

|

Annoation of SNVs
(Annovar)

|

Somatic coding SNVs

CCF estimation

(CHAT)

l

Estimated VAF and CCF of SNVs

— N

Spatial computational Phylogenetic tree reconstrution
modeling and inference (maximum parsimony)

Manual review of CNA calls

Supplementary Figure 1. Workflow summarizing the data input and analytical approach.
Overview of analysis workflow based on whole-exome (multi-region) sequencing of paired primary
colorectal cancers (CRCs), metastases, and normal controls. Blue modules represent the samples
and data inputs. Red modules represent experiments, data analysis and computational modeling,
where tools/methods are indicated by parentheses. Green modules represent the data output or

results.
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the brain metastasis and liver metastasis cohorts. For the publicly available datasets (liver
metastasis cohort), tumors with low tumor cell purity (<0.4) were excluded. The brain metastasis

cohort consists of 72 tumor samples from 10 patients while the liver metastasis cohort consists of

Supplementary Figure 2. Tumor cell purity estimates by TitanCNA in each tumor sample in
46 tumor samples from 13 patients.



Neutral model Selection model (s=0.1)
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Supplementary Figure 3. Multi-region sequencing (MRS) is required to confidently identify
clonal mutations. We employed our previously described spatial-agent based model of tumor growth
' to evaluate the utility of sequencing increasing numbers (n=1, 2, 4, 8) of samples to correctly
distinguish clonal and subclonal mutations under distinct evolutionary modes (neutral, s=0 and
stringent selection, s=0.1). For each ‘virtual’ tumor, 8 regions were sampled and sequenced in silico
(mean depth=80X) and clonal sSNVs were called based on a merged CCF cutoff of 60%. Similarly, 1,
2 or 4 regions were down sampled from the 8 regions to identify “clonal” sSNVs by this subset of
regions. The fraction of true clonal sSNVs amongst all “clonal” sSNVs (merged CCF>60%) in the
corresponding sampling scenario was evaluated. n=100 tumors for each model and number of
regions/samples. Bar, median; box, 25th to 75th percentile (interquartile range, IQR); whiskers, data
within 1.5 times the IQR.
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Supplementary Figure 4. Driver enrichment analysis. The enrichment of CRC or pan-cancer
‘driver’ genes amongst shared, primary-private, and metastasis-private clonal non-silent sSNVs and
indels was evaluated separately in the (a) brain metastasis or (b) liver metastasis cohorts. A CCF
value of 60% (or merged CCF=60% for tumors with multi-region sequencing data) was used to
distinguish clonal and subclonal sSNVs. n=50 down-samplings of patients. P-value, Wilcoxon Rank-
Sum Test (two-sided). Bar, median; box, 25th to 75th percentile (interquartile range, IQR); vertical line,
data within 1.5 times the IQR.
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Supplementary Figure 5. Genetic concordance and heterogeneity amongst copy number
alterations (CNAs) between paired primary CRCs and metastases. Segmented log depth ratios
for each primary CRC and paired metastasis were adjusted for estimated tumor purity and ploidy in
each sample and averaged across multiple-regions from the same tumor site. The green dashed line
denotes mean log depth ratios. Grey boxes denote regions where CNAs were differentially altered in
metastases relative to the primary CRC and satisfied the following criteria: absolute copy number is
larger than 2.8 or less than 1.2; copy number relative to mean ploidy is larger than 0.8 or less than -
0.8; and changes relative to the primary tumor in both absolute copy number and relative copy number
are larger than 0.8 or less than -0.8. Putative CRC driver genes in the grey-boxed differential CNA
regions are labeled.
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Supplementary Figure 5 - continued.
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Supplementary Figure 5 - continued.
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Supplementary Figure 5 - continued.
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Supplementary Figure 6. Defining clonal and subclonal mutations based on the merged cancer
cell fraction (CCF) from multi-region sequencing data. (a) The distribution of CCF values for P-M
shared sSNVs (above) and P or M-private sSNVs (below). CCF values from cases with multi-region
sequencing data were merged. For a given sSNV, the CCF estimates in different tumor sites are
calculated separately by CHAT (Methods) and only CCF estimates = 0.1 are counted. An sSNV is
classified as a “shared” if it has a CCF20.2 (equivalent to VAF20.1) in both P and M for a given patient
otherwise it is classified as “private” in P or M. The vast majority (99%) of P-M shared sSNVs have
CCF>60%, a cutoff that also clearly distinguishes private clonal and subclonal sSNV clusters. (b)
Scatterplot of merged CCF values in the primary versus brain metastasis (BM) for a representative
patient (V402), where the cutoff of CCF=60% is indicated and classes of sSNVs are labeled. The CCF
distribution of sSNVs in the primary tumor and metastasis are indicated on the corresponding
histograms.
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Supplementary Figure 7. The number of primary tumor-private clonal sSNVs (Lp,) and
metastasis-private clonal sSNVs (L») in mCRCs. A cutoff CCF=60% was used to identify clonal
sSNVs. Merged CCF was used for tumors with multi-region sequencing data. (a) L, and L, values in
25 mCRC P/M pairs (10 brain metastases (BM), 14 liver metastases (LI) and 1 lung metastasis (LU));
(b) Pearson correlation (r) between Ly, and L, across patients in the mCRC cohort (n=25 P/M pairs).
(¢) Lp and L, values in liver metastasis CRCs (n=14 P/M pairs) and brain metastasis CRCs (n=10 P/M
pairs), respectively. P-value, Wilcoxon Rank-Sum Test (two-sided). Bar, median; box, 25th to 75th

percentile (interquartile range, IQR); vertical line, data within 1.5 times the IQR.
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Supplementary Figure 8. Mutation spectra in whole-exome sequencing data from paired
primary CRCs and metastases. (a) The proportion of seven mutation types (six sSNV types plus
small indels) in each tumor region. Tumor samples acquired after chemotherapy are highlighted in
bold. (b) The proportion of shared clonal (S), primary-private (P) or brain metastasis-private (BM)
sSNVs and small indels in chemotherapy-naive patients or patients who received chemotherapy
(chemo-treated) prior to diagnosis of the brain metastasis are shown. Of note, all primary tumors were
resected prior to therapy. Only coding sSNVs and small indels were included. A mutation is called as
present in a given sample if there are at least 3 supporting variant reads and a VAF of at least 0.05 or
a CCF of at least 0.1, regardless of the number of variant supporting reads.
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Supplementary Figure 9. Clinical history and intra-tumor heterogeneity (ITH) in paired primary
CRCs and metastases. Patterns of within and between lesion heterogeneity amongst sSNVs and
indels based on whole-exome sequencing of paired primary CRCs and metastases, where canonical
CRC ‘driver’ genes are labeled. Dark and light green bars represent mutations with VAF=0.1 and
VAF<0.1. The number of mutations shared amongst different lesions is indicated below the
corresponding colored horizontal bars (upper left): ubiquitously P-M shared (red), partially P-M shared
(green-M1 or blue-M2), P-private (pink) or M-private (yellow-M1 or gray-M2 or cyan-M1&M2). M1 and
M2 correspond to different metastatic sites in the same patient. The number of detected mutations in
corresponding sample was labelled at the right of each row. Patterns of within and between lesion
heterogeneity amongst CNAs (upper right). Phylogeny reconstruction via maximum parsimony
(PHYLIP) based on mutational presence/absence (bottom left). Canonical CRC drivers are labeled.
Clinical and treatment history (bottom right). Dx: diagnosis; Sx: surgical operation; BM: brain
metastasis; LU: lung metastasis; LI: liver metastasis; LN: lymph node metastasis.
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Supplementary Figure 10. Fst based quantification of genetic divergence and Ki67 proliferative
indices in metastatic CRCs. (a) Fst based quantification of genetic divergence in paired primary
CRCs and metastases computed based on subclonal sSNVs (merged CCF<60%) in cases with multi-
region sequencing data (n=9 P/M pairs). (b) Ki67 proliferative indices in paired primary CRCs and
brain metastases (n=10 P/M pairs). P-value, Wilcoxon Rank-Sum Test (two-sided). Bar, median; box,
25th to 75th percentile (interquartile range, IQR); vertical line, data within 1.5 times the IQR.
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Supplementary Figure 11. Density plot of CCF estimates in paired primary CRCs and metastases
in brain metastasis cohort. Merged cancer cell fraction (CCF) estimates are shown for tumors with
multi-region sequencing (MRS) data. Putative CRC driver genes are labeled.
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Supplementary Figure 11 - continued. Density plot of unadjusted VAF in paired primary CRCs
and metastases in brain metastasis cohort. Merged VAFs are shown for tumors with multi-region
sequencing (MRS) data. Putative CRC driver genes are labeled.
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Supplementary Figure 12. Density plot of CCF estimates in paired primary CRCs and metastases
in the liver metastasis cohort. Merged VAFs are shown for tumors with multi-region sequencing (MRS)
data. Putative CRC driver genes are labeled.
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Supplementary Figure 12 - continued. Density plot of unadjusted VAF in paired primary CRCs
and metastases in the liver metastasis cohort. Merged VAFs are shown for tumors with multi-region
sequencing (MRS) data. Putative CRC driver genes are labeled.
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Supplementary Figure 13. Density plot of simulated CCFs in paired primary carcinoma and
metastasis. The simulation framework and model are detailed in the Methods and Supplementary
Fig. 15. During monoclonal seeding, a single cell was randomly chosen from the primary carcinoma
and seeds the metastasis. Whereas during polyclonal seeding, 10 random cells sampled from whole
primary tumor were chosen to seed a metastasis. The CCF density plot is shown where regions of
metastasis (M)-private clonal mutations and primary (P)-M shared subclonal regions are indicated by
red and blue ovals, respectively. Three exemplary CCF plots for P/M pairs are shown for monoclonal
seeding (upper) and polyclonal seeding (lower), respectively.
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Supplementary Figure 14. Schematic illustration of the distinction between the time of P-M
phylogenetic divergence and the actual time of dissemination. The time of metastatic
dissemination may occur later than the time of phylogenetic divergence between primary tumor and
metastasis. This is a well- known phenomenon in population genetics. Viewing the genealogical
process backward, one can envision that some time is required for the metastasis-founding cell to
coalesce to the common ancestor present in bulk primary tumor sequencing data.
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Supplementary Figure 15. A 3-D spatial-agent based model of tumor growth. (a) Tumor growth
is simulated via the expansion of deme subpopulations (mimicking the glandular structure in primary
colorectal cancers (CRCs) and metastases each containing 5-10K cells 3) within a defined 3-D cubic
lattice according to explicit rules dictated by spatial constraints, where cells within each deme are well-
mixed and grow via a stochastic branching (birth-death) process, as previously described (Methods).
The metastasis is assumed to be seeded by a single disseminated cell derived from the periphery of
primary CRC when the tumor size is Ny. Metastatic growth follows the same spatial constraints and
growth rate as in the primary CRC °. The final sizes of both the primary carcinoma and metastasis is
~10° cells (~2x10% demes). Different evolutionary scenarios in P/M pairs were simulated including
Neutral/Neutral (or N/N), Neutral/Selection (or N/S), Selection/Neutral (or S/N) and Selection/Selection
(or S/S). Here selection is modeled by assuming a constant beneficial mutation rate (denoted by up,
~107° per cell division 7) that alters the cell birth/death probability according to the selection coefficient
(denoted s). By simulating the acquisition of random mutations (neutral or beneficial), tracing the
mutation genealogy of each cell as the tumor expands and subsequently spatially sampling and
sequencing the ‘final’ virtual tumor as is done experimentally after resection or biopsy, we obtain the
variant allele frequencies (VAF) and cancer cell fraction (CCF). Using this framework, we can evaluate
the impact of the timing of dissemination, the bottleneck effect and subclonal selection on the number
of primary-private clonal mutations (Lp), metastasis-private clonal mutations (Ln) and the metric
H=Lm/(Lp+1). (b) The deme subdivision model of peripheral growth results in exponential growth
initially followed by power-law growth (cell number N; ~ 3) subsequently due to stringent spatial
constraints in a relatively large tumor. Here the birth/death probability ratio, p/g=0.55/0.45~1.2 at each
cell generation was used, resulting in ~250 cell generations (or ~1000 days or ~3 years assuming 4
days for each cell cycle &) from recent founder cell to diagnosis of malignant primary tumor (~10° cells).
(c) Representative 2D clone map simulated under neutral evolution (s=0) or stringent selection
(s=0.1). Each dot indicates a deme and each color indicates a unique clone, where only mutations
with VAF>0.4 in each deme are shown. Selection promotes subclonal expansions and genetic
divergence between distant tumor regions.
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Supplementary Figure 16. The modes of tumor evolution in paired primary CRCs and
metastases. Different modes of primary tumor and metastatic growth are considered, corresponding
to four evolutionary scenarios, namely Neutral/Neutral, Neutral/Selection, Selection/Neutral and
Selection/Selection. Stringent selection results in an increased number of P or M-private high-
frequency mutations in the corresponding lesion. Some of these high-frequency mutations may be
clonal in localized tumor regions. When the primary tumor grows in an effectively neutral fashion
(Neutral/Neutral or Neutral/Selection), later dissemination gives rise to a larger number of metastasis-
private high-frequency (or clonal) mutations (large Ln) due to the more stringent bottleneck effect.
When the primary tumor is subject to subclonal selection, the primary carcinoma may possess many
private high-frequency (even clonal) mutations (resulting in large L,) if dissemination occurs early. We
employ a spatial (3-D) agent-based tumor growth model to simulate these four scenarios and
systematically investigate the contribution of selection and the timing of metastasis on the number of
primary-private clonal mutations (L) and metastasis-private clonal mutations (Lm).
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Supplementary Figure 17. Correlation between L, Ln and H and the timing of dissemination
(NJ) based on spatial computational modeling of tumor growth. L, and L», correspond to the
number of primary tumor-private and metastasis-private clonal sSNVs (CCF>60% in one site &
CCF<1% in the other site), respectively. As in Fig. 4b, values for each parameter combination (row)
are based on 100 paired primary tumors and metastases (n=100 P/M pairs) simulated within the
spatial agent-based model and the timing of dissemination, Ny, was randomly sampled from a uniform
distribution log10(Nq)~U(2,9). Here we evaluate the correlation (Pearson's r) between Ly, Lm and H
with Ny while varying the cell birth probability p (death probability g=1-p), selection coefficient s and
mutation rate u. pp and pm correspond to the cell birth probability during growth of the primary tumor
and metastasis, respectively, while s, and sn, are the selection coefficients. u is neutral passenger
mutation rate per cell division at exonic regions. The parameter values used are as indicated.
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Supplementary Figure 18. Correlation between L, and Nqyunder variable sampling intensities.
Varied numbers of regions (n=1, 10, 50 and 100, each ~108 cells) from each primary tumor were
randomly sampled and sequenced, and the sSNVs with CCF>1% in each region were considered.
Here Lm is defined as the number of M-clonal sSNVs with CCF>60% in whole metastasis while absent
in any of the sampled regions in primary tumor. As in Fig. 4b, values for each model and sampling
scenario are based on 100 paired primary tumors and metastases (n=100 P/M pairs) simulated within
the spatial agent-based model and the timing of dissemination, Ny, was randomly sampled from a
uniform distribution log10(Ng)~U(2,9). Pearson’s r is reported.
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Supplementary Figure 19. Schematic of SCIMET (Spatial Computational Inference of MEtastatic
Timing). The parameters we sought to infer via Approximate Bayesian Computation (ABC) 2 are 6(u,
Nqy) where u is the mutation rate (per cell division in exonic regions) and Ny is the cell number in primary
colorectal carcinoma at the time of dissemination. Step (I): Randomly sample u’ and Ny from two
independent prior distributions of discrete values: u ~ U{0.003, 0.006, 0.015, 0.03, 0.06, 0.15, 0.3, 0.6,
1.5, 3} and Ny~ U{103, 104, 105, 108, 107, 108, 109}, respectively. Step (ll): Simulate spatial tumor growth
to obtain ‘virtual’ paired primary tumors and metastases (P/M pairs) (~10° cells each) under each of four
evolutionary modes: Neutral/Neutral, Neutral/Selection, Selection/Neutral and Selection/Selection,
where the selection coefficient is s=0.1 for selection and s=0 for neutral evolution. Four tumor regions
(~108 cells) are sampled in each P/M, the sequencing process is simulated and nine summary statistics,
S’'={S1, S, ..., So} are computed based on the CCF (or merged CCF for multi-region sequencing data).
Step (lll): Compare the simulated summary statistics S’ to the observed S for a given P/M pair by
computing the distance between S’ and S, d(S’, S)<¢. Step (IV): If d(S"’, S)<¢, accept the prior value of
u’ and Ny and repeat steps (I)-(lll). In our paper, we use a common variation of ABC 24, Rather than
using a fixed threshold, &, we sort all distances calculated in by d(S’, S) (Step 3), and accept the 8’ that
generated the smallest 100xn percent distances. 70,000 P/M pairs were simulated under each of the
four evolutionary scenarios. In total, 280,000 P/M pairs were simulated. n=0.01 was used thus the
posterior is composed of 70000x0.01=700 data points. The ABC procedure is performed using the R
package abc 6. To select the tumor evolution model (N/N, N/S, S/N or S/S) in paired primary
CRCs/metastases, we run the postpr method implemented in the R package abc, which integrates all
simulation data from the four models to run the ABC procedures (steps 1-4) and gives the probability of
each model based on the posterior distribution. The model with the highest posterior probability was
selected.
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Supplementary Figure 20. Robust recovery of parameters via SCIMET on synthetic data. We
evaluated the ability of SCIMET to recover the parameters u’ and Ny’ from synthetic data (virtual P/M
pairs) via cross-validation. Scatterplots comparing the inferred (mean posterior value) versus true values
are shown based on 200 Monte Carlo samplings under each combination of evolutionary modes. These
results highlight the robustness of SCIMET across all evolutionary modes. Red circle, median of 200

simulations.
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Supplementary Figure 21. Patient-specific inference of the mutation rate and timing of
metastasis via SCIMET assuming a high birth/death probability ratio. Parameters are the same
as Fig. 5a except that the birth/death probability ratio at each cell generation for the founding lineage
in the primary carcinoma is p/q=0.6/0.4=1.5 (rather than p/q=0.55/0.45~1.2), thus the tumor growth
rate here is higher than assumed in Fig. 5a. All the metastases classified as /ate dissemination in Fig.
5a were also classified as /ate dissemination when assuming higher tumor growth rate as illustrated
here. Two additional metastases (V824 _BM and Lim21_LlI) classified as early dissemination in Fig.
5a were classified as /ate dissemination here. These results highlight the robustness of SCIMET based
inference to increases in the cell birth/death ratio.
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Supplementary Figure 22. Patient-specific inference of the mutation rate and timing of
metastasis via SCIMET assuming collective dissemination (cluster size=10 cells). To model
collective dissemination by localized cell cluster from primary tumor front, a cluster of 10 cells were
randomly sampled as metastasis founder cells from a peripheral deme during the expansion of primary
carcinoma. All other parameter values are the same as in Fig. 5a. All the metastases classified as /ate
dissemination in Fig. 5a were also classified as /ate dissemination when assuming collective
dissemination as illustrated here. Three additional metastases (V46_BM, V559 BM and Lim21_LlI)
classified as early dissemination in Fig. 5a were classified as /ate dissemination here. These results
highlight the robustness of SCIMET based inference irrespective of whether collective cell
dissemination or single cell seeding is assumed.
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23. Patient-specific inference of the mutation rate and timing of

metastasis via SCIMET assuming single-region sequencing data. To evaluate the impact of limited
spatial sampling, only one tumor region (~10° cells) was sampled and “sequenced” from each of paired
virtual primary tumor and metastasis within SCIMET. All parameter values are the same as in Fig. 5a.
All the metastases classified as /ate dissemination in Fig. 5a were similarly classified as late
dissemination based on single-region simulation data as illustrated here. Two metastases (V559 BM
and Lim21_LlI) classified as early dissemination in Fig. 5a were classified as /ate dissemination here.
This is anticipated since single-region sampling results in a larger number of metastasis-private clonal
mutations (larger Ln» and larger H) compared with multi-region sequencing, such that the timing of
dissemination would be overestimated in accordance with the positive correlation between L, or H
and N,. Overall, these results highlight the robustness of SCIMET and its utility for analyzing single
region sequencing data.
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Supplementary Figure 24. Estimation of the time span between dissemination and surgical
resection of the primary tumor (years). We used the inferred primary tumor size at time of
dissemination (Ny) by SCIMET and the recorded size of the primary tumor at the time of surgery to
estimate the time elapsed between dissemination and surgery by employing an approximate growth
function for our 3D spatial tumor growth model (Eq(S7) in Supplementary Note). The 1%t and 3
quantile of time span shown here correspond to the conversion from the 15t and 3™ quantile of Ny,
respectively.
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Supplementary Figure 25. Enrichment of canonical driver gene modules in metastatic versus
early stage CRCs. We evaluated the enrichment of a subset of canonical ‘core’ drivers (APC, KRAS,
TP53 or SMAD4; A,K,P,S) plus recurrent mutations in candidate metastasis drivers (AMER1, ATM,
BRAF, PIK3CA, PIK3R1, PTPRT, TCF7L2) identified in the mCRC cohort in an independent cohort of
metastatic versus early stage CRC patients. Fisher’s exact test was performed for all possible
combinations of putative ‘core’ modules plus putative metastasis driver genes to determine the
enrichment amongst metastatic versus early-stage CRCs (Supplementary Table 8, Methods).
Significant (Two-sided Fisher’s exact test with Benjamini-Hochberg adjustment for multiple testing; g-
values<0.1) combinations based on the core canonical backbone plus one additional putative

mmm Early stage CRC (n=1813)

metastasis-associated driver gene are shown.
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Supplementary Figure 26. Driver enrichment analysis stratified by the mode of tumor evolution.
Violin plots illustrate the driver fold enrichment for shared, primary-private, and metastasis-private
clonal non-silent sSNVs based on known CRC or pan-cancer ‘drivers’. Analyses are similar to Fig. 2c,
except that tumors were stratified by the mode of evolution namely neutral evolution or stringent
selection (identified via ABC, Fig. 5a) (Methods). Amongst metastatic lesions (n=23), 10 were found
to exhibit neutral evolution and 13 exhibited stringent selection. Amongst primary CRCs (n=21), the
majority (19/21) evolved under stringent selection. We therefore compared primary tumors evolving
under stringent selection (n=19) to an early stage CRC cohort (n=6) ', where 4/6 exhibited patterns
consistent with neutral evolution focusing on high-frequency non-silent mutations (CCF>20%) in
primary tumors and metastases since high-frequency mutations are anticipated under stringent clonal
selection. For metastatic tumors, we focused on all metastasis-private high-frequency non-silent
mutations (CCF>20%), which include both private clonal (CCF>60%) and private subclonal
(20%<CCF<60%) events. For primary tumors, we evaluated high-frequency private and shared
subclonal mutations (20%<CCF<60%) to enable comparisons with an early stage CRC cohort.
Bootstrapping was performed (Methods) where 60 percent of tumors were down-sampled at each
iteration (n=50 down-samplings) and integrated to compute an enrichment score (n=20 down-
samplings were repeated for the early stage primary CRC cohort). P-value, Wilcoxon Rank-Sum Test
(two-sided). Bar, median; box, 25th to 75th percentile (interquartile range, IQR); vertical line, data
within 1.5 times the IQR.
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Supplementary Table 1. Clinical features of the metastatic colorectal cancer cohort

. Age at Treatment before Prima Met Total Number of
Paltll:;ant Sex diaggosis of Diagnosis history diagnosis of tumor sri};e tumor number of primary tumor Number ff P MRS of bgtlcl t Data source
primary tumor asynchronous met (cm) size (cm) samples samples met samples Primary and Me
V46 M 60 P&LN — LU(2y7m) — BM(3y9m) yes 4 3 (BM) 3 1 1 (BM), 1(LN) no This study
V402 F 47 P — BM(4y8m) no 7.5 5 (BM) 8 4 4 (BM) yes This study
V514 M 73 P&LN — BM(0y6m) yes 9 2.5 (BM) 5 1 2 (BM), 2 (LN) no This study
V559 M 49 P&LI — LU(1y5m) — BM(1y8m) yes 4.5 3.5 (BM) 4 1 1 (BM), 2 (LI) no This study
V750 M 65 P&LN&LI&LU — BM(0y6m) yes 10 3 (BM) 13 5 5 (BM), 3 (LN) yes This study
V824 M 61 P&LN — BM&LU(Oy10m) no 8 5 (BM) 9 3 3 (BM), 3 (LN) yes This study
v8ss M 57 P&LN — BM(0y4m) yes 6 3 (BM) 2 1 1 (BM) no This study
V930 F 71 P — LI(2y2m) — LU(5y8m) — yes 4 NA 13 5 5 (BM), 3 (LU) yes This study
BM(8y7m)
V953 F 68 P — BM(2y6m) no 8.1 5 (BM) 7 3 4 (BM) yes This study
VI74 F 60 P&BM — RecBM(0y5m) no 10 5 (BM) 8 3 5 (BM) yes This study
Uchi2 M 81 P&LI no 5.2 NA 12 9 3 (L) yes Uchi et al. 2016
Kim1 M 69 P&LI no 6 NA 7 4 3 (L) yes Kim et al. 2015
Kim2 M 79 P — LI(Oy7m) no 10.5 NA 7 5 2 (LI yes Kim et al. 2015
Leungl M 77 P&LI no NA NA 2 1 1 (LI) no Leung et al. 2017
Leung2 M 64 P&LI no NA NA 2 1 1 (LI) no Leung et al. 2017
Lim3 M 46 P&LI no NA NA 2 1 1(LI) no Lim et al. 2015
Lim6 M 59 P&LI no NA NA 2 1 1(LI) no Lim et al. 2015
Lim7 F 54 P&LI no NA NA 2 1 1(LI) no Lim et al. 2015
Lim8 M 57 P&LI no NA NA 2 1 1(LI) no Lim et al. 2015
Lim11 M 57 P&LI no NA NA 2 1 1(LI) no Lim et al. 2015
Lim12 M 71 P&LI no NA NA 2 1 1(LI) no Lim et al. 2015
Lim16 M 77 P&LI no NA NA 2 1 1(LI) no Lim et al. 2015
Lim21 M 52 P&LI no NA NA 2 1 1(LI) no Lim et al. 2015
Total 118 55 63

Abbreviations: P — primary tumor; BM — brain metastasis; LN — lymph node metastasis; LI — liver metastasis; LU — lung metastasis; met - metastasis; MRS — multi-region sequencing;
NA- not available; & — synchronous; m- month; y - year

Note: samples from primary tumor and synchronously diagnosed

metastases were untreated
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Supplementary Table 5. Spatial computational tumor model parameters

Parameters

Description

Default in basic model

Justifications/Remarks

Nt

p and q

Up

Final tumor size

Deme size

The birth and death probability
for each cell at each generation
during deme expansion,
respectively

Passenger mutation rate per
cell division in the ~60Mb
exonic regions

Mutation rate of beneficial driver
mutations per cell division

Selection coefficient

The primary tumor size in cell
number at the time of
dissemination

The number of cells from
primary tumor seeding a
metastasis

N 7~10° cells for both primary
tumor and metastasis

K=5,000-10,000 cells

p=0.55 and g=0.45

u=0.3

up=10°

s=0.1

log10(N4)~U(2, 9)

There are ~10° or more cells in a typical solid tumor.

The demes recapitulate the glandular structure often found in colorectal cancer in which the
gland size is approximated at 2,000-10,000 cells 3 The deme size recapitulates the degree
of spatial constraint and clone mixing during tumor growth. For instance, small deme size
represents stringent spatial constraint and reduced subclone mixing, thereby hindering the
efficacy of selection. In contrast, large deme size results in relaxed spatial constraint and
enhanced subclone mixing.

It has been reported that there is no significant growth rate difference in paired primary

tumors and metastases °. We therefore assume the same birth and death rates in primary
tumor and metastasis. Given the choice of p and q values here, it takes about 3 years
(assuming 4 days for each cell cycle) for the tumor to grow from founder cell to diagnosis

(~10° cells) (Fig. 15b).

Mutation rate in normal somatic cells is at the order of 10 per base pair per cell division ° .
Because of the genomic instability in many cancers, the per-cell division mutation rate for

cancer is significantly higher than normal cells. We assume a mutation rate 5x10 /base
pair/division (equivalent to u=0.3 per cell division for the 60M exonic region) in the
simulations, giving rise to 20-200 subclonal SNVs (10%<CCF<60%) in each bulk sample in
the simulations which is in consistent with the observed number in current study.

Bozic et al  estimated u, to be at the order of 10 per cell division in the genome.

We use relatively high selection s=0.1, in order to robustly distinguish with the evolutionary
dynamics of effectively neutral evolution '

We randomly chose 100 dissemination time points, correponding to the primary tumor size
at the time of dissemination from a uniform distribution log10(Nd)~U(2, 9), each giving rise
to an independent paired primary tumor and metastasis.

We assume one single cell from a deme in tumor periphery seeds the metastasis based on
the pattern of commonly monoclonal seeding in the mCRC cohort.
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Supplementary Table 6. Description of summary statistics for SCIMET

Summary statistics Descriptions

The total number of primary-private sSNVs
S;,,S,,S3and Sy that are present at merged CCF>10%,
20%,40% and 60%, respectively.

The total number of metastasis-private
sSNVs that are present at merged
CCF>10%, 20%, 40% and 60%,
respectively.

S5,S6,S7 and Sg

The total number of sSNVs that are
metastasis-clonal (merged CCF>60%)
while primary-subclonal (10%<merged
CCF<60%).
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Supplementary Table 7. SCIMET Summary statistics for the metastatic colorectal cancer cohort

PM_pair S1 S2 S3 S4 S5 S6 S7 S8 S9
V402_BM 106 29 9 6 24 21 20 20 2
V824 BM 108 23 4 2 39 29 26 25 3
V953 _BM 295 190 64 33 54 33 21 21 2
V974 _BM 66 59 49 45 35 30 30 30 1
V930 LU 32 12 7 2 88 78 48 33 2
V930_BM 29 11 6 2 52 48 47 47 1
V750 _BM 63 26 6 2 98 42 19 17 11
V46_BM 20 19 12 11 58 54 51 45 4
V514_BM 16 16 16 9 42 27 26 24 2
V559 LI 18 15 13 11 103 68 13 6 5
V559 BM 13 13 11 8 66 65 34 26 4
V855 BM 32 32 21 14 21 21 14 12 2
Uchi2_LI 11 5 2 2 12 12 10 8 0
Kim1_LI 42 8 0 0 8 5 3 2 4
Kim2_LI 79 34 6 1 16 15 15 14 22
Leung1 LI 8 8 7 5 16 16 13 11 3
Leung2_ LI 24 21 17 14 138 118 103 91 3
Lim3_LI 42 41 23 13 30 28 23 17 0
Lim7_LI 17 11 8 7 13 13 5 4 0
Lim8_LI 65 65 59 49 123 122 114 102 0
Lim12_LI 24 24 19 13 40 40 32 17 0
Lim16_LI 14 14 7 5 17 12 7 7 0
Lim21 LI 2 2 2 2 28 28 25 20 0
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Supplementary Note

An algorithm for efficiently simulating virtual P/M tumor pairs and multi-region
sequencing data

We devised an algorithm to accelerate the simulation of virfual P/IM tumor pairs and multi-
region sequencing data. The strategy is first to simulate the deme partition history in paired
P/M tumors without involving mutation occurrence. Multiple regions in each of P and M (n=4,
each composed of 10-100 demes) were then sampled and tracked back to the very first deme.
All the demes that are not in the partition history of the sampled demes were trimmed (Part
I). Second, we simulate the cell evolutionary dynamics along the partition history of the
sampled demes via random cell birth or death and mutation occurrence (neutral or beneficial)
(Part IlI). The growth dynamics and parameters employed here are the same as were
employed for the 3-D agent-based model described in the Methods. Using this strategy, we
only simulate the mutation occurrence along the partition history in sampled demes rather in
the whole tumor, thus allowing for large-scale simulations of P/M tumor pairs under different
evolution modes (effective neutrality or subclonal selection) via SCIMET.

Algorithm of Part | — Simulation of deme-partition history
For i=1 to 70,000:
While tumor volume < 0.2 million demes (~10° cells) in both primary tumor and
metastasis:

Do

1) Primary tumor grows via the 3D agent-based model,

2) Randomly choose a peripheral deme where the disseminated cell or
cell cluster will be sampled from (denoted as DC deme), at a time when
primary tumor size is Ng;

3) Metastatic tumor grows via the same 3D agent-based model started
from the sampled disseminated cell or cell cluster;

4) Keep track of the parental and offspring relationship for each deme;

End while

Sample four regions, each composed of 10-100 demes, from both primary tumor
and metastasis;

Trace back the deme ancestors to the very first deme and trim the non-sampled
demes to obtain the partition history of sampled demes;

End for

After obtaining the deme patrtition history of multi-region samples for each P/M pairs, we next
simulate the cell evolutionary dynamics along the partition history. We simulate different
evolutionary scenarios in P/M pairs, namely Neutral/Neutral (N/N), Neutral/Selection (N/S),
Selection/Neutral (S/N) or Selection/Selection (S/S). The growth dynamics under each of the
scenarios is as described in the paper.
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Algorithm of Part Il — Simulation of cell evolutionary dynamics
For tumor evolution mode in [N/N, N/S, S/N, S/S]:
For i=1 to 70,000:
1) Load deme-partition history;
2) Simulate cell birth-death process, mutation occurrence and deme partition
in primary tumor started from a single transformed founder cell;
3) Randomly choose a dissemination cell or cell cluster from the DC deme;
4) Simulate cell birth-death process, mutation occurrence and deme partition
in metastasis started from the disseminated cell or cell cluster;
End for

Implement the sequencing and mutation calling processes in each bulk sample to
obtain the variant allele frequency (VAF) and cancer cell fraction (CCF) for each
sSNV

Endfor

Mathematical analysis for the special case of neutral evolution and exponential growth

We consider a growing tumor cell population that starts from a single founder cell at
transformation and expands via a stochastic continuous-time birth-death process. Each cell
divides at rate b and dies at rate d with neutral point mutation rate u per cell division in the
exonic region of the genome. Hence, the population growth rate is A=b-d, the death-birth rate
ratio is 6=d/b and the expected population size at time t is N(t) = e*. Bozic et al. '° have
reported that the expected number of clonal mutations (m.) and subclonal mutations present
at a cancer cell fraction (CCF) larger than a (denoted by m.(a)) are:

_ Ou

mo=r— (S1) and ms(a)—M (S2), respectively.

C(1-8)a

We denote m; as the number of somatic mutations that occurred prior to primary tumor
founder cell, including mutations that occurred during development, tissue self-renewal and
multi-step carcinogenesis, which are typically shared by all descendent tumor cells including
metastasis. The total number of somatic mutations present in the primary tumor with CCF
larger than « is:
ou, u,(l-a) _ u, 1

. m,+—-—(—+6, -1)
1-6, (1-5)a -6 a 7

p

M (a)=m +m +m(a)=m +

where &, is the death-birth rate ratio and up is the mutation rate during primary tumor growth.

We denote t; as the time of dissemination (time O is the beginning of malignant growth
from primary tumor founder cell) and N, as the expected primary tumor size at the time of
dissemination. Thus, N, = e*t4. We denote m, as the number of somatic mutations that
occurred on the metastasis-founder cell during the growth of primary tumor. Here the
mutation rate is specified as per cell division and time is continuous calendar time with units
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as days. We denote T, as the expected number of cell generations at the time of
dissemination, so my = u,T;. The cell generation time g = 1/b, hence, T4 is given by:

T _l_ In(N,) _ In(V,) _ In(V,)

‘g A/b, (b-d)b, 1-6,

where 0n, is the death-birth rate ratio and um the mutation rate during metastatic growth.
Denoting um=yup, the total number of somatic mutations present in the metastasis at CCF >

a is:

u,In(N,) yu

+ ”(l+5m—1)
1-6, 1-9, a

1
M, (a)=m +u,T, + “n (—+0,-1)=m,+
1-6, a

Setting /(a) = Mm(a) - Mp(a), thus:

upln(Nd)+u_p( y 1
1-0, a 1-6, 1-

l(a)=M,(a)~-M (@)= 5 )—u,(y=1)

p

When there is no significant change for the point mutation rate in metastasis, namely y=1 and

Um = Up = U, thus:

uln(Nd)Jrz( 11
-8 a'1-6, 1-8

p

I(a) = ) (S3)

CRC metastases usually grow at rates comparable to or slightly faster than primary CRCs
31112 thus 1 -6, ~ 1 — 8,,. Therefore:

uln(N,)
1-6,

(o) =
(S4)

Let Ly(a) and Lm(a) be the number of primary tumor-private and metastasis-private
mutations with CCF>a in primary tumor and metastasis, respectively, then:

Ho)=M,(a@)-M (o)=L, ()~ L, () (S5)

According to our spatial model simulations (Fig. 4b, Supplementary Fig. 18-19), L,(a)~0
when tumor is under neutral evolution and a is large (e.g. 0.6). Let L, be the number of
metastasis-private clonal mutations, thus:

,_uln(y,)

" 1-9, (S6)

Therefore, in the special case of neutral evolution and exponential growth, the number
of metastasis-private clonal sSNVs (L) is linearly related with the log scale of primary
tumor size at time of dissemination (log(Ny)). Of note, the positive relationship between L,
and log(Ny) is non-linear under spatial growth model suggesting the linearity between Ln,
and log(Ny) is model dependent (Fig. 4b, Supplementary Fig. 18-19).

Estimating the time span between dissemination and primary tumor resection

We converted the estimated primary tumor size at time of dissemination (Ny) to the time span
between dissemination and surgical resection of the primary tumor. The conversion was
based on the 3D spatial tumor growth model (Supplementary Fig. 15b) and the recorded
size of the primary tumor at time of surgery (Supplementary Table 1) as well as the Ny
estimations by SCIMET. The net tumor growth under the spatial agent-based model can be

fitted by an initial exponential model followed by a power-law model as:
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nee’™, t < t,
(w+mt)d, t=>t,

n(t) = { (S7)

where n(t) is the cell number t days after the primary tumor founder cell is established (no=1).
By fitting the tumor growth simulation data and assuming a 4-day cell division time for
colorectal cancer 8, the parameters in Eq. (S7) were estimated as: r=0.0454, w=-341.7,
m=1.445 and t-=300 days (Supplementary Fig. 15b). Given a tumor with diameter, D (cm),

the number of cells was estimated as: gn(gf X C = %nCD3, where C is the number of cells

in a 1cm? tumor (equivalent to ~108 cells). Using Eq. (S7), the estimated Nyand primary tumor
size at surgery, we can compute the time span (in years) between dissemination and primary
tumor surgery for each patient (Supplementary Fig. 24).
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