Supplementary Table 1: Hill function parameters. We determined the best fit parameters to describe dose-response curves using TCS and Tango approaches in Fig. 3c and Fig. 4dg. Induction data were fit to the Hill function $y = c + \frac{(S-c) \times X^n}{(K^n + X^n)}$, where *y* is Cerulean expression (in norm. u.), *c* is Cerulean basal expression (in norm. u.), *S* is Cerulean maximum expression (norm. u.), *X* is ligand concentration (nM), *K* is EC50, n is the Hill coefficient. Repression data by the antagonist propranolol were fit to the repressor Hill function $y = c + \frac{b}{(K^n + X^n)}$, where K corresponds to IC50. The values in brackets represent 95% confidence intervals.

			Hill parameters			
Method	Interacting partners	Ligand	K (nM)	S or b (Cerulean, norm. u.)	c (Cerulean, norm. u.)	n
	FKBP/FRB	A/C	1.3 (0.02; 2.6)	0.091	3.8E-09	0.86
TCS	β2AR/β-arrestin	Procaterol	5.0 (3.5; 6.4)	0.030	-8.6E-05	1.09
		Isoproterenol	29.1 (-11.2; 69.4)	0.030	-0.0017	0.52
		Clenbuterol	14.3 (11.1; 17.5)	0.0085	0.00048	1.24
		Propranolol	2.7 (2.2; 3.1)	0.091	8.8E-5	1.36
Tango	β2AR/β-arrestin	Procaterol	11.3 (9.1; 13.5)	0.58	-0.0048	0.70
		Isoproterenol	14.5 (0.5; 28.4)	0.57	-0.053	0.51
		Clenbuterol	18.1(10; 26.3)	0.16	0.013	0.75
		Propranolol	3.2 (2.0; 4.2)	1.32	0.015	1.46

Supplementary Table 2: Quantitative characteristics of the rewired GPCR pathways, related to the experiments in Fig. 5. The On/Off ratio (that is, output fluorescence in the presence of a ligand relative to output fluorescence in its absence) of GPCR-NarX H^{mut} (TCS system) fusion and tTA fusion (Tango assay, Barnea¹ or Presto² -like approach) is indicated. On/Off ratio above 2 is indicated with the "+". The constructs are described in Supplementary Fig. 1.

	TCS			Tango		
GPCR gene	Construct	On/Off ratio	> 2	Construct	On/Off ratio	> 2
د مم	β 2AR ^{ΔC} ::V2R ^{ΔN} ::H ^{mut}	40.9	+	β2AR ^{∆C} ::V2R ^{∆N} ::tTA	7.88	+
ADRDZ	β 2AR::V2R^{∆N}::H^{mut}	1.21		β2AR::V2R ^{∆N} ::tTA	1.49	
NMBR	NMB-R::V2R ^{∆N} ::H ^{mut}	28.09	+	NMB-R::V2R ^{∆N} ::tTA	2.93	+
AVPR2	V2R::V2R ^{∆N} ::H ^{mut}	14.03	+	V2R::V2R ^{∆N} ::tTA	7.8	+
LPAR1	LPA-1::V2R ^{∆N} ::H ^{mut}	3.76	+	LPA-1::V2R ^{∆N} ::tTA	1.26	
BDKRB2	B2R::V2R ^{∆N} ::H ^{mut}	0.6		B2R::V2R ^{∆N} ::tTA	1.36	
CXCR4	CXC-R4::V2R ^{∆N} ::H ^{mut}	0.91		CXC-R4::V2R ^{∆N} ::tTA	1.49	
NPY1R	NPY1-R::H ^{mut}	1.11		NPY1-R::V2R ^{∆N} ::tTA	1.07	
NPY5R	NPY5-R ^{∆C} ::V2R ^{∆N} ::H ^{mut}	3.44	+	NPY5-R::V2R ^{∆N} ::tTA	1.87	

Supplementary Table 3: Primer Sequences

Primer name	Sequence
PR1021	GCTGCTGCTCTCGAGTCATTATCATTCGTGAGTGTC
PR1023	GCTGCTACCGGTCGCCACCATGGCCCGCTTGCTCCAGCCGTGG
PR1964	CGCGCCTGATTACAAAACTTTAAAAAGTGCTGTAGCGCCGGCTGATTACAAAACTTTAAAAAGTGCT GTCCA
PR1965	TATGGACAGCACTTTTTAAAGTTTTGTAATCAGCCGGCGCTACAGCACTTTTTAAAGTTTTGTAATCA GG
PR2196	TAAGCGGAATTCATCTTGGCTGAGGAATCTT
PR2197	GCGAATTCTAGACTACTTGTACAGCTCGTCC
PR2258	AATGTGAAGCTAGCGCCACCATGGCTGAAGGATCCGTCG
PR2259	AATGTAATCTAGATCACTCTTCCATCACGCCGATC
PR2442	GCTAGCGCTACCGGACTCAGAT
PR2443	TGGGTGGGGTGCGTCCGCGCGCACAGAAGTCCCGGAAACACCG
PR2444	TGGGTGGGGTGCGTCCGCGCGCACACAGAAGCTCCTGGAAGGCAA
PR3687	GGCACAGTCGAGGCTGATTTTC
PR3707	TGGCAGCGGGCGTCAAGCAG
PR3708	ATGGTGGTGGCAGCGAGGTATGGCAACG
PR3709	CTCGCCGCTGCCACCATGTTGGCGACG
PR4122	GAAATTAATACGACTCACTATAGGGGAC
PR4122	GAAATTAATACGACTCACTATAGGGGAC
PR4345	GAAATTAATACGACTCACTATAGGGGACCGGTCGCCACCATGGCAGCGGGCGTCAAG
PR4346	CACAGTCGAGGCTGATTTTC
PR4541	GTTTGAGAGCTGCCGAGAGTGCTTCTCTCGCG
PR4542	AGCACTCTCGGCAGCTCTCAAACATAGCCAGG
PR4543	CTTCCAGTGCAGCTTCAATCAGATTTCCCAGTGTG
PR4544	TCTGATTGAAGCTGCACTGGAAGCTCTGGGAC
PR4546	GAAATTAATACGACTCACTATAGGGGACCGGTCGCCACCATGCAAGAGCGGCAGCAGCAG
PR4732	GACGGCCAGTCTTAAGCTCGGGCCCGCTCCGGTGCCCGTCAG
PR4733	GAAGTCGTCGCATGGTGGCGACCGGTTCACGACACCTGAAATGGAAG
PR4734	GACGGCCAGTCTTAAGCTCGGGCCTGGGCGGGATTCGTCTTG
PR4747	CAAGAGCGGCAGCAGCAG
PR4747	CAAGAGCGGCAGCAGCAG
PR4748	TTCGTGAGTGTCACCCTGC
PR4766	GAAATTAATACGACTCACTATAGGGGACCGGTCGCCACCATGGGCGTGCAGGTGGAG
PR4767	CGCCACCGCCTGAACCGCCTCCACCTTCCAGTTTTAGAAGCTCCACATC
PR4769	GAAATTAATACGACTCACTATAGGGGACCGGTCGCCACCATGGTAGCCATCCTCTGG
PR4770	CGCCACCGCCTGAACCGCCTCCACCTGATATCCGTCTGAACACGTG
PR4771	AGGCGGTTCAGGCGGTGGCGGGTCGCAAGAGCGGCAGCAGCAG
PR4892	CGCGCCTACCCCTATAGGGGTATAGCGCCGGCTACCCCTATAGGGGTATCCA
PR4893	TATGGATACCCCTATAGGGGTAGCCGGCGCTATACCCCTATAGGGGTAGG
PR4971	TTCTTCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGGGCTC
PR4972	CATCGTCATGGAAGAGAGGGCGACTATTGC

PR4973	GCAATAGTCGCCCTCTCTCCATGACGATG
PR4974	TTCTTCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGGGCGT
PR4975	TTCTTCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGGTAGC
PR4977	TTCTTCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGCAAGAGCGGCAGCAGCAG
PR4978	CCTGATTGGACATGGTGGCGACCGGTTCACGACACCTGA
PR4979	TTCTTCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGCTT
PR4980	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGGGGGGAGAAACCCGGGAC
PR4981	CTCTTGCGAGCCACCGCCAGAGTTGATCATCATAGTCGTC
PR4982	GGTGGCGGTGGCTCGCAAGAGCGGCAGCAGCAG
PR4983	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGGGGCAACCCGGGAAC
PR4985	CTCTTGCGAGCCACCGCCACCCGATGAAGTGTCCTTGGCC
PR5226	ATTACGCCAAGCTACGGGGGCACCTCGACATACTCGAG
PR5227	CCTTGCTCACCATGGTGGCGAGGTACCGAGCTCGAAATCTC
PR5228	ACCGGGAGAAGCGGGGTCTCG
PR5229	CAGTCGAGGCTGATTTTCTCGCTCAAGCGTAATCTGGAAC
PR5230	GTTCCAGATTACGCTTGAGCGAGAAAATCAGCCTCGACTG
PR5231	CCGGGAGCTTTTTGCAAAAGC
PR5232	GGACGGGGCATGGACTCCGCAG
PR5233	GCACAGTCGAGGCTGATTTTCTCGAGTCATTACTACCCACCGTACTCGTCAATTCC
PR5293	CTCTTGCGAGCCACCGCCACCAATTTTTCATTGTCGTCGTTGTTG
PR5294	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGAATTCAACACTTTTTTCTCAGGTG
PR5295	TGGGTGGGGTGCGTCCGCGCGCAGAGACCAGATCAGCCTTAATG
PR5296	TCCATTTCAGGTGTCGTGAaCCGGTCGCCACCATGGACTTGGAGCTGGATGAG
PR5297	GCGCGCGGACGCACCCCAC
PR5396	GGACGCACCCAGCCTG
PR5399	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGGGGCAACCTGGCAATG
PR5400	CAGGCTGGGTGGGGTGCGTCCACCGGTATCGAT
PR5401	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGCTCATGGCCTCTACCAC
PR5402	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGTTCTCACCCTGGAAGATTTC
PR5403	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGGAGGGGATATCAATCTACACATC
PR5404	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGGCCGCTATTAGCACCAG
PR5405	TCCATTTCAGGTGTCGTGAACCGGTCGCCACCATGCCCTCCAAGTCTCTGTC
PR6799	GTGGTATTCTCAGCCTCAAACCATGAGGAAGATGTCG
PR6800	TCATGGTTTGAGGCTGAGAATACCACGATCCTCCC
PR6801	GTGGTATTCTCAAGCTCAAACCATGAGGAAGATGTCG
PR6802	TCATGGTTTGAGCTTGAGAATACCACGATCCTCCC

Supplementary Table 4: List of synthetic DNA sequences used for plasmid constructs

Synthetic	Sequence
DNA name	Sequence
gBlock112	AGATCTCGAGCTCAAGCTTCGAATTCGCCACCATGGGGGAGAAACCCGGGACCAGGGTCTTC AAGAAGTCGAGCCCTAACTGCAAGCTCACCGTGTACTTGGGCAAGCGGGACCTGGTAGATCA CCTGGACAAAGTGGACCCTGTAGATGGCGTGGTGCTTGTGGACCCTGACTACCTGAAGGACC GCAAAGTGTTTGTGACCCTCACCTGCGCCTTCCGCTATGGCCGTGAAGACCTGGATGTGCTG GGCTTGTCCTTCCGCAAAGACCTGTTCATCGCCACCTACCAGGCCTTCCCCCCGGTGCCCAA CCCACCCCGGCCCCCCACCCGCCTGCAGGACCGGCTGCTGAGGAAGCTGGGCCAGCATGCC CACCCCTTCTTCTTCACCATACCCCAGAATCTTCCATGCTCCGTCACACTGCAGGCCAGGCCCA GAGGATACAGGAAAGGCCTGCGGCGTAGACTTTGAGATTCGAGCCTTCTGTGGCTAAATCACTA GAAGAGAAAAGCCACAAAAGGAACTCTGTGCGGCTGGTGATCCGAAAGGTGCAGTTCGCCCC GGAGAAACCCGGCCCCCAGCCTTCAGCCGAAACCACACGCCACTTCCTCATGTCTGACCGGT CCCTGCACCTCGAGGCTTCCTGGACAAGGAGCTGTACTACCATGGGGAGCCCCTCAATGTA AATGTCCACGTCACCAACAACTCCACCAAGACCGTCAAGAAGATCAAAGTCTCTGTGAGACAG TACGCCGACATCTGCCTTCAGCACCGCCCAGTACAAGTGTCCTGTGGGCTCAACTCGAACAA GATGACCAGGTATCTCCCAGCACACTCCGCCCAGTACAAGTGTCCTGTGGGCTCAACTCGAACAA GATGACCAGGTATCTCCCAGGCTCCACATTCTGTAAGGTGTACACCATAACCCCACTGCTCAGC GACAACCCGGCAGAAGCGGGGTCTCGCCCTGGATGGGAAACTCAAGCACGAGGACACCAACC GACAACCGGGAGAAGCGGGGTCTCGCCCTGGATGGGAAACTCAAGCACGAGGACACCAACC GACAACCGGGAGAAGCGGGGTCTCGCCCTGGATGGGAAACTCAAGCACGAGGACACCAACC TGGCTTCCAGCACCATCGTGAAGGAGGGTGCCAACAAGGAGGTGCTGGGGAATCCTGGTGTCC T
gBlock113	GCTGGGAATCCTGGTGTCCTACAGGGTCAAGGTGAAGCTGGTGGTGTCTCCGAGGCGGGGAT GTCTCTGTGGAGCTGCCTTTTGTTCTTATGCACCCCAAGCCCCACGACCACATCCCCCCCAGACCCAGTCAGCCGCTCCGGAGACAGATGTCCCTGTGGACACCACACCTCATTGAATTTGAT ACCAACTATGCCACAGATGATGATGACATTGTGTTTGAGGACTCTGCCGGGCTTCGGCTGAAGGGG ATGAAGGATGACGACTATGATGATCAACTCTGCGGATCCAGCTTGTTTAAGGGACCACGTGAT TACAACCCGATATCGAGCACCATTTGTCATTGACGAATGAAT
gBlock114	GCGCTACCGGACTCAGATCTCGAGGCCACCATGGACTCCCCGATCCAGATCTTCCGCGGGGA GCCGGGCCCTACCTGCGCCCGAGCGCCCGCCTGCCTGCCCCCAACAGCAGCGCCTGGTTTCCC GGCTGGGCCCGAGCCCGACAGCAACGGCAGCGCCGGCCCGAGCGCCGC

gBlock115	AGCGGTGTTTCCGGGACTTCTGTGCGCGCGGACGCACCCCACCCA
gBlock118	GCTAGCGCTACCGGACTCAGATCTCGAGGCCACCATGGGGCAACCCGGGAACGGCAGCGCC TTCTTGCTGGCACCCAATAGAAGCCATGCGCCGGACCACGACGCACCGCAGCAAAGGGACGA GGTGTGGGTGGTGGGGCATGGGCATCGTCATGTCTCTCATCGTCCTGGCCATCGTGTTTGGCA ATGTGCTGGTCATCACAGCCATTGCCAAGTTCGAGCGTCTGCAGACGGTCACCAACTACTTCA TCACTTCACT
gBlock143	ATCTTGGCTGAGGAATCTTCTAACAATTTAGAGCTTAAAAACGCCCACGAGGCGGAGAACGAA ATATCCAGAGAGACGTTAGAAACGTTCAAAAACGTTCGCTAGCGCCACCATGGTGAGCAAGGG CGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGC CACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGA AGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCTCGTGACCACCTTCGGC TACGGCCTGATGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACGCACCTTCTTCAAGTCC GCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGCACCACTACAA GACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGC ATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCA CAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCA CAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCA CAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCCATCGGC GACGGCCCCGTGCTGCTGCCGACAACCACTACCTGAGCTACAACTACAACAGCCA CAACATCGAGAAGCGCGACCACACCAC
gBlock264	GAAATTAATACGACTCACTATAGGGGACCGGTCGCCACCATGGGCTCGAGCAACCTGGTTGC GCAGCTCGAAAACGAAGTTGCGTCTCTGGAAAATGAGAACGAAACCCTGAAGAAAAAGAACCT GCACAAAAAAGACCTGATCGCGTACCTGGAGAAAGAAATCGCGAATCTGCGTAAGAAAATCGA AGAAGGCGGTGGCGGGTCGCAAGAGCGGCAGCAGCAGCT
gBlock265	TGCAGGGTGACACTCACGAAGGCGGTGGCGGGTCGAACCTGGTTGCGCAGCTCGAAAACGA AGTTGCGTCTCTGGAAAATGAGAACGAAACCCTGAAGAAAAGAACCTGCACAAAAAAGACCT GATCGCGTACCTGGAGAAAGAAATCGCGAATCTGCGTAAGAAAATCGAAGAATGATAATGACT CGAGAAAATCAGCCTCGACTGTG

gBlock269	GAAATTAATACGACTCACTATAGGGGACCGGTCGCCACCATGGGCTCGAGCGCGCGC
gBlock270	TGCAGGGTGACACTCACGAAGGCGGTGGCGGGGTCGGCGCGTAACGCGTATCTGCGTAAGAA AATCGCACGTCTGAAAAAAGACAACCTGCAGCTGGAACGTGATGAACAGAACCTGGAAAAAAT CATCGCGAACCTGCGTGACGAAATCGCGCGTCTCGAAAAACGAAGTTGCGTCTCACGAACAGT GATAATGACTCGAGAAAATCAGCCTCGACTGTG

Supplementary Table 5: Sequences of the coding regions used to build the plasmids.

Element	Sequence
envZ	ATGCGACGACTTCGGTTCTCACCGAGGTCCTCATTTGCGAGGACGCTGCTCCTGATCGTCACACTTTTG
	TTCGCCAGCCTGGTGACGACTTACTTGGTAGTACTCAACTTCGCGATTCTTCCCTCCTTGCAGCAGTTC
	AATAAGGTACTGGCGTATGAGGTCAGAATGCTGATGACGGATAAGCTCCAGCTCGAAGATGGGACGCA
	GCTTGTCGTGCCTCCAGCGTTTCGGCGCGAAATCTACCGCGAGCTGGGAATTTCGCTCTACTCGAATG
	AAATCGGCCTCTGGTAGATTTGGAACATGCTGCGCTCCAAGTCGGGAAGGGGATTATTCCTCCACCGC
	TGAGAGAGTACGGTGCCTCGGAAGTGAGGTCAGTAACACGCGCATTCAATCACATGGCAGCGGGCGT
	CAAGCAGCTGGCAGACGACCGGACTCTTCTCATGGCCGGAGTCTCACACGATCTCCGCACGCCCCTG
	ACACGGATTCGCCTTGCGACTGAGATGATGTCCGAGCAGGACGGCTACCTCGCGGAGTCAATTAACAA
	AGATATCGAGGAGTGCAACGCCATCATTGAGCAGTTCATCGACTATCTGCGCACGGGACAAGAAATGC
	CATCGTGCAGAGGATCGTGGATAACCACAATGGGATGTTGGAACTTGGTACAAGCGAAAGAGGGGGGAC
	TCTCCATCCGAGCGTGGCTTCCGGTGCCCGTAACAAGAGCCCAGGGAACTACCAAGGAAGG
ompR	ATGCAAGAAAACTACAAGATTCTCGTGGTGGATGATGACATGCGACTTCGCGCATTGCTCGAAAGATAT
	CTGACCGAGCAGGGATTTCAAGTGCGCTCCGTGGCCAATGCCGAGCAGATGGATAGGCTCTTGACGA
	GGGAGTCGTTCCATCTGATGGTGCTGGACTTGATGCTTCCCGGTGAGGACGGATTGTCCATTTGCCGG
	ATGCCGCTCACATCGGGGGGGGGGGTTTGCGGTCTTGAAAGCACTTGTCTCACACCCGAGAGAACCTCTGTC
	GCGGGATAAACTCATGAATCTGGCGAGAGGCAGAGAGAGTATAGCGCGATGGAAAGGTCCATCGATGTCC
	AGATTAGCCGCCTCCGCCGCATGGTGGAGGAAGATCCAGCCCACCCTCGGTACATCCAGACTGTATG
narX	ATGCTTAAAAGATGTCTCTCACCCCTTACTCTCGTGAACCAGGTGGCGCTTATTGTATTGTTGTCAACCG
	GAAAGGGATGGGCAGCTTGCACAACTTCAGGGGCTCCAAGATTATTGGCGGAACGAATTGATCCCAGC
	GCTTATGAGAGCCCAGAATCGGGAGACAGTCTCAGCAGATGTATCGCAGTTCGTCGCCGGGTTGGATC
	AGCTTGTCTCCGGGTTCGATCGCACCACAGAAATGAGAATTGAAACTGTCGTACTGGTACATAGGGTGA
	TGGCAGTCTTTATGGCATTGTTGCTCGTGTTTACTATCATCTGGCTGAGAGCCCGCTTGCTCCAGCCGT
	GGCGGCAGCTGCTTGCGATGGCTTCGGCGGTGTCCCACCGCGATTTCACTCAGCGGGCTAACATTAG
	GAGAATCATCAGGAGTTCACGTGCCAGCCGGACATGACGTGTGACGACAAGGGTTGCCAGTTGTGTCC
	CAGGGGCGTCCTCCCCGTGGGTGATCGGGGAACCACTTTGAAGTGGCGACTGGCCGATTCACACACG
	CAGTATGGGATTCTCCTGGCGACCCTCCCGCAAGGACGGCATCTGAGCCACGACCAGCAACAACTTGT
	CGACACGTTGGTGGAACAGTTGACGGCCACGCTCGCACTCGACCGCCATCAAGAGCGGCAGCAGCAG
	CACCTGCTTCAGATCGCGAGAGAAGCACTCTCGAATGCTCTCAAACATAGCCAGGCGAGCGA
	GGTGACAGTGGCACAGAACGACAACCAGGTGAAATTGACGGTGCAAGACAACGGATGTGGAGTCCCG
	GAGAATGCGATTAGGTCGAATCATTACGGTATGATCATTATGCGAGATCGCGCGCAATCCTTGAGGGG
	CGACTGTAGAGTCAGGCGGAGGGAGGTCGGGAGGTACGGAGGTCGTAGTAACGTTTATCCCGGAAAAG
narL	
	ATGAGGAAGATGTCGTGACGGCACTCAAGAGGGGTGCCGACGGATACTTGTTGAAAGACATGGAGCC
	GGAGGACCTGTTGAAGGCGCTTCACCAAGCCGCAGCTGGAGAAATGGTGTTGTCAGAGGCGCTGACG

	CGAGAGAGAGGGACATTTTGAAGCTGATTGCGCAGGGGCTTCCCAATAAGATGATTGCCAGACGCCTT GATATCACGGAAAGCACTGTGAAAGTCCACGTGAAACACATGCTCAAAAAGATGAAACTCAAGTCCCGC GTGGAAGCTGCGGTCTGGGTACATCAGGAGCGAATCTTT
VP48	GGACCGGCGGACGCACTGGATGACTTTGACTTGGATATGCTCCCAGCGGATGCGTTGGACGATTTTGA CCTTGACATGTTGCCTGCCGACGCGCTTGACGACTTCGACTTGGACATGCTGCCCGGT
mCherry	ATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTT CGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGAC CAAGGGTGGCCCCCTGCCTTCGCCTGGGACATCCTGTCCCCTAGTTCATGTACGGCTCCAAGGCCT ACGTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGA GCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTC
cerulean	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGAC
	GTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCC TGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCACCCTCGTGACCACCCTGACCTG GGGCGTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATG CCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCG AGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGA CGGCAACATCCTGGGGCACAAGCTGGAGTACAACGCCATCAGCGACAACGTCTATATCACCGCCGACA AGCAGAAGAACGGCATCAAGGCCAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCT CGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTAC
	CTGAGCACCCAGTCCAAGCTGAGCAAAGACCCCCAACGAGAAGCGCGATCACATGGTCCTGGAGTT
amCyan	
(the	
intron is	AATGAGGCTTCAGTACTTTACAGAATCGTTGCCTGCACATCTTGGAAACACTTGCTGGGATTACTTCTTC
underline	AGGTTAACCCAACAGAAGGCTCGAGTGCTGTTGACAGTGAGCGCCGCTTGAAGTTTTTAATTAA
d)	GAAGCCACAGATGTATTTAATTAAAGACTTCAAGCGGTGCCTACTGCCTCGGAGAATTCAAGGGGCTAC
	TTTAGGAGCAATTATCTTGTTTACTAAAACTGAATACCTTGCTATCTCTTTGATACATTTTTACAAAGCTG
	AATTAAAATGGTATAAATTAAATCACTTTTTTCAATTGTTTCCTTTTTTTCCTCAGGGCAGCGGCAAGCC
	GAGAAGATGACCGTGTGCGACGGCATCTTGAAGGGCGACGTGACCGCCTTCCTGATGCTGCAGGGCG
	GCGGCAACTACAGATGCCAGTTCCACACCTCCTACAAGACCAAGAAGCCCGTGACCATGCCCCCCAAC
	CACGTGGTGGAGCACCGCATCGCCAGAACCGACCTGGACAAGGGCGGCAACAGCGTGCAGCTGACC
	GAGCACGCCGTGGCCCACATCACCTCCGTGGTGCCCTTCT
SYNZIP1	AACCTGGTTGCGCAGCTCGAAAACGAAGTTGCGTCTCTGGAAAATGAGAACGAAACCCTGAAGAAAAA GAACCTGCACAAAAAAGACCTGATCGCGTACCTGGAGAAAGAA
SYNZIP2	
OTNER 2	TGAACAGAACCTGGAAAAAATCATCGCGAACCTGCGTGACGAAATCGCGCGTCTCGAAAACGAAGTTG
	CGTCTCACGAACAG
MTOR ²⁰¹⁸	ATGGTAGCCATCCTCTGGCATGAGATGTGGCATGAAGGTCTAGAAGAGGCCTCTCGCTTGTACTTTGG
-773 12098L	GGAGAGGAACGTCAAAGGCATGTTTGAGGTGCTGGAGCCCCTGCATGCTATGATGGAACGCGGTCCC
CODES for	
FKD	
FKBP1A	ATGGGCGTGCAGGTGGAGACTATCTCCCCAGGAGACGGGCGCACCTTCCCCAAGCGCGGCCAGACCT
	GCGTGGTGCACTACACCGGGATGCTTGAAGATGGAAAGAAA
	CCCTTTAAGTTTATGCTAGGCAAGCAGGAGGTGATCCGAGGCTGGGAAGAAGGGGTTGCCCAGATGA
	GTGTGGGTCAGAGAGCCAAACTGACTATATCTCCAGATTATGCCTATGGTGCCACTGGGCACCCAGGC
	ATCATCCCACCACATGCCACTCTCGTCTTCGATGTGGAGCTTCTAAAACTGGAA
ARRB2	ATGGGGGAGAAACCCGGGACCAGGGTCTTCAAGAAGTCGAGCCCTAACTGCAAGCTCACCGTGTACTT
	GGGCAAGCGGGACTTCGTAGATCACCTGGACAAAGTGGACCCTGTAGATGGCGTGGTGGTGCTTGTGGAC
	GATACAGGAAAGGCCTGCGGCGTAGACTTTGAGATTCGAGCCTTCTGTGCTAAATCACTAGAAGAGAA
	AAGCCACAAAAGGAACTCTGTGCGGCTGGTGATCCGAAAGGTGCAGTTCGCCCCGGAGAAACCCCGGC
	CCCCAGCCTTCAGCCGAAACCACACGCCACTTCCTCATGTCTGACCGGTCCCTGCACCTCGAGGCTTC
	CCTGGACAAGGAGCTGTACTACCATGGGGAGCCCCTCAATGTAAATGTCCACGTCACCAACAACTCCA

	CCAAGACCGTCAAGAAGATCAAAGTCTCTGTGAGACAGTACGCCGACATCTGCCTCTTCAGCACCGCC
	CAGTACAAGTGTCCTGTGGCTCAACTCGAACAAGATGACCAGGTATCTCCCAGCTCCACATTCTGTAAG
	GTGTACACCATAACCCCACTGCTCAGCGACAACCGGGAGAAGCGGGGTCTCGCCCTGGATGGGAAAC
	TCAAGCACGAGGACACCAACCTGGCTTCCAGCACCATCGTGAAGGAGGGTGCCAACAAGGAGGTGCT
	GGGAATCCTGGTGTCCTACAGGGTCAAGGTGAAGCTGGTGGTGTCTCCGAGGCGGGGATGTCTCTGTG
	GAGCTGCCTTTTGTTCTTATGCACCCCAAGCCCCACGACCACATCCCCCCCAGACCCCAGTCAGC
	CGCTCCGGAGACAGATGTCCCTGTGGACACCAACCTCATTGAATTTGATACCAACTATGCCACAGATGA
	TGACATTGTGTTTGAGGACTTTGCCCGGCTTCGGCTGAAGGGGATGAAGGATGACGACTATGATGATC
	AACTCTGC
NPY1R	ATGAATTCAACACTTTTTTCTCAGGTGGAGAATCATAGTGTCCATTCCAATTTCAGTGAGAAGAACGCAC
	AAATGAGGAATGTGACGAACATTTIGATAGTCAATCTGTCATTTAGCGATCTCCCCGTAGCAATTATGTG
	TO CONTRACTOR CONTRACTOR CONTRACTOR TO CONTRACTOR TO CONTRACTOR CO
	GATTGAGTTATACAACACTGCTGCTGCTGCTCCTCCAGTACCTCCGGCCCCCCTCTGTTTTATCTTCATGCCA
	CAGCTCAGAGACTAAGCGCATCAACATTATGCTGCTGTCCATTGTGGTTGCGTTCGCAGTTGTTGGCT
	GCCTCTTACAATCTTTAACACTGTGTTCGATTGGAATCATCAGATCATCGCAACCTGTAACCATAACCTG
	TTGTTCCTGCTCTGCCATTTGACAGCCATGATCAGTACATGCGTGAACCCGATCTTTTACGGATTTTTGA
	ACAAGAACTTCCAGCGGGACCTGCAGTTTTTTTCAACTTTTGCGATTTCCGCTCCCGGGATGACGATT
	ACGAGACAATAGCAATGAGTACAATGCACACGGACGTTTCTAAAACGAGTCTGAAGCAGGCCAGCCCC
	GTGGCTTTCAAGAAAATAAACAACAACGACGACAATGAAAAAATT
NPY5R	ATGGACTTGGAGCTGGATGAGTATTACAACAAAACGTTGGCTACTGAGAATAACACCGCAGCCACTAGA
	AATAGCGATTTCCCCGTTTGGGATGACTATAAATCCTCTGTGGACGATCTGCAGTACTTTCTGATCGGC
	CTGTACACTTTTGTGAGTCTGCTGGGGTTCATGGGCAATCTGCTCATTCTCATGGCTCTGATGAAAAAG
	AGGAACCAAAAGACAACAGTGAACTTTCTGATCGGAAACCTCGCCTTCAGTGATATACTGGTGGTCCTC
	TTCTGCAGCCCCTTCACACTGACCTCAGTTTTGCTTGATCAGTGGATGTTTGGAAAGGTGATGTGCCAC
	ATTATGCCTTTCCTGCAATGTGTAAGCGTTCTGGTGTCTACCCTCATACTGATCTCAATCGCCATAGTCA
	GGTACCATATGATCAAGCATCCTATAAGTAACAATCTGACCGCGAACCACGGTTATTTCCTGATCGCTA
	TGGAGTTATAGTTTTATCAAGAAACATAGACGACGGCGTATTCTAAGAAGACGCCTTGTGTGCCGCCTGCC
	CCCGAACGGCCATCCCAGGAGAATCATTCTAGGATCCTGCCCGAGAACTTCGGCTCCGTCCG
	ACTTTCATCTTCTAGCAAGTTCATTCCCGGGGTCCCAACTTGTTTTGAGATTAAGCCAGAAGAAAACTCT
	GATGTGCACGAGCTGAGAGTTAAGCGGTCCGTGACTAGAATTAAGAAGAGATCCAGAAGTGTGTTTTAC
	AGACTGACCATCCTGATCCTCGTGTTCGCAGTCTCCTGGATGCCACTGCACTTGTTCCATGTGGTTACA
	GACTTCAACGATAATCTGATCTCAAACCGACACTTTAAGCTCGTGTATTGCATCTGTCATCTCTTGGGAA
	TGATGTCATGCTGCCTCAACCCCATCCTCTATGGCTTCCTTAATAATGGCATTAAGGCTGATCTGGTCTC
	TTTGATACACTGCCTCCATATG
ADRB2	ATGGGGCAACCTGGCAATGGATCAGCTTTTCTCCTCGCCCCTAATCGGAGCCACGCTCCCGACCACGA
	TGTGACTCAGCAGAGAGACGAGGTCTGGGTTGTAGGCATGGGTATTGTGATGTCACTGATCGTCCTGG
	CAATTGTGTTCGGCAACGTCCTCGTCATTACTGCTATTGCAAAGTTCGAGCGGCTTCAGACGGTTACCA
	TTTATGTGCCTCTGGTTATCATGGTGTTCGTCTCTCGCGGTTTTTCAGGAGGCAAAAAGACAGCTCC
	AGAAAATCGACAAGTCAGAAGGCCGATTTCACGTTCAAAATCTGAGCCAGGTCGAACAAGACGGAAGA
	ACTGGACATGGTCTTCGGAGATCTTCCAAATTTTGCTTGAAGGAACACAAGGCCCTGAAGACCTTGGG
	GATAATTATGGGCACATTCACTCTCTGCTGGCTCCCCTTTTTCATTGTCAATATCGTTCACGTTATACAA
	GACAACTTGATCAGAAAAGAGGTGTATATCCTCCTGAACTGGATTGGCTACGTGAACTCTGGGTTCAAC
	CCTCTGATTTACTGCCGCAGCCCAGACTTCAGAATCGCATTCCAGGAATTGCTGTGTCTGAGGCGCTCT
	TCCTTGAAGGCTTATGGAAACGGATACTCCTCTAATGGCAACACGGGCGAACAGTCAGGATACCACGT
	GGAGCAGGAAAAAGAGAATAAGCTGTTGTGCGAGGACCTCCCTGGCACTGAGGATTTTGTTGGCCACC
	AAGGAACAGTCCCAAGCGACAATATTGACAGCCAGGGGCGAAACTGCAGCACTAATGATTCACTGCTG
AVPR2	ATGCTCATGGCCTCTACCACAAGCGCTGTGCCCGGACATCCATC
	TCACAGGAGAGGCCTCTGGATACCCGGGACCCACTTCTTGCAAGAGCGGAGCTCGCCTTGCTCTCCAT
1	TUAGGTGUTUUUTUAAUTGGUTTGGAAAGUUAUUGATAGATTUUGGGGGUUAGAUGUAUTGTGTGTUGG

	GCCGTGAAATACCTGCAGATGGTGGGGAATGTATGCCAGTTCATATATGATACTTGCTATGACCTTGGAC
	GGTCGAAGGACTGGCTCTCCAGGCGAAGGCGCCCCACGTATCAGCTGCGGTAGCTAAGACCGTACGCA
	I GACACIGGICATCGICGICGITACGITCITIGCIGGGCCCCGITTITITIGGIGCAGCICIGGGCGG
	CCTGGGACCCCGAAGCACCCCTGGAAGGTGCTCCATTCGTTCTGCTCATGCTTCTCGCTTCACTGAAT
	AGCTGTACCAATCCTTGGATTTACGCCTCTTTCTCCTCCAGTGTTAGCTCCGAGCTGCGGAGTCTTCTC
	TGTTGCGCCCGGGGCAGGACCCCCCAAGCCTGGGTCCACAGGACGAATCCTGCACTACCGCCTCCA
	GTTCCCTGGCCAAAGACACCTCTTCT
BDKRB2	ATGTTCTCACCCTGGAAGATTTCTATGTTCCTTTCTGTGCGCGAGGACAGCGTGCCCACAACTGCGAGT
	TTTAGCGCCGACATGCTTAACGTGACCCTGCAGGGCCCCACTCTCAACGGGACATTTGCTCAGTCTAA
	ATGTCCTCAAGTGGAATGGCTCGGCTGGTTGAACACTATCCAGCCCCCTTTCCTTTGGGTTCTTTTTGT
	TCTGGCCACGCTGGAAAACATCTTTGTTCTCTCTGTGTTTTGCCTCCATAAGAGCTCCTGTACGGTGGC
	CGAAATTTACCTGGGTAATTTGGCCGCAGCGGATCTCATTTTGGCCTGTGGCCTGCCT
	TACTATCAGCAATAATTTTGATTGGTTGTTTGGCGAGACCTTGTGTCGCGTGGTGAATGCAATTATCAGT
	ATGAATCTGTACAGCTCAATCTGCTTCCTTATGCTCGTCAGCATTGACAGGTACCTCGCCCTTGTAAAG
	ACTATGAGCATGGGCCGCATGAGGGGCGTACGCTGGGCTAAGCCTCATAGCCTGGTGATTTGGGGTT
	GCACCTCCTCCAGTCACCTATGCTGGTCTTCCGAACGATGAAGGAGTACTCTGACGAGGGCCAC
	GIGGIGGGIIIIIIGCICCCCTTICIGIGATIACCTICIGIACAAIGCAGAICAIGCAAGTIIIGCGAA
	GGGTALCETGAGAACCTCCATTAGCGTGGAGCGACAGATCCACAAGCTCCAGGACTGGGCTGGCT
01/05/	
CXCR4	A I GGAGGGGATATCAACATCACATCAGATAATTACACGGAAGAGATGGGTTCCGGCGATTACGACTC
	A I GAAAGAGCCCG I G I I I I A GAGGGGAAAACGCGAAC I I I AACAAGA I C I I C C C C A C A I C I A C AG
	ATCATCTTTCTCACAGGCATCGTAGGGAACGGCCTGGTCATCCTGGTGATGGGATACCAAAAGAAGCT
	GAGGTCAATGACCGACAAGTATAGGCTCCATCTGTCCGTGGCCGACCTCCTGTTTGTGATTACCCTGC
	CTITITGGGCAGTGACGCTGTCGCTAATTGGTACTTCGGCAACTTCCTCTGTAAGGCAGTGCACGTA
	TCTACACTGTGAATCTTTATAGTTCCGTCTTGATCTTGGCCTTTATCAGTCTCGACAGGTATTTGGCCGAT
	TGTGCACGCTACCAACTCACAACGACCTAGAAAACTCCTGGCTGAGAAGGTGGTTTACGTTGGTGTGT
	GGATTCCAGCTCTCCTGTTGACAATACCAGACTTCATTTTCGCTAATGTGAGCGAGGCCGATGACAGAT
	ACATTTGTGACCGATTTTACCCAAACGATCTGTGGGTAGTGGTATTTCAGTTCCAACACATTATGGTCGG
	GCTGATCTTGCCCGGCATTGTCATACTGTCTTGCTACTGCATCATTATTTCTAAGCTGTCACACTCAAAA
	GGCCACCAAAAGAGGAAGGCTCTGAAAACAACGGTGATCCTGATACTGGCCTTCTTCGCATGTTGGCT
	GCCCTACTATATCGGCATCAGCATTGACTCATTTATACTCCTGGAAATTATCAAGCAGGGCTGCGAGTT
	CGAGAACACCGTTCATAAGTGGATTTCTATAACCGAGGCCCTCGCCTTCTTTCACTGTTGTTTGAATCC
	GATTCTCTACGCGTTTCTTGGCGCCAAATTTAAAACAAGCGCCCAACATGCACTGACATCAGTGTCTAG
	GGGGAGCTCTCTGAAAATCCTCTCCAAGGGAAAACGAGGCGGACATAGCAGTGTCAGCACTGAGTCC
	GAATCCAGCTCATTTCATAGCTCT
LPAR1	ATGGCCGCTATTAGCACCAGTATCCCAGTTATCTCTCAGCCCCAGTTTACAGCGATGAATGA
	TGCTTTTACAACGAAAGCATCGCCTTTTTCTATAACAGATCCGGGAAGCATCTGGCCACCGAATGGAAT
	ACGGTGTCTAAATTGGTCATGGGCCTTGGTATTACCGTTTGCATCTTTATCATGCTTGCAAACTTGCTGG
	TGATGGTGGCTATCTACGTGAACCGCAGATTCCATTTTCCAATTTACTACTTGATGGCAAATCTTGCCGC
	AGCTGACTTCTTCGCGGGGTTGGCATATTTCTACTTGATGTTTAATACCGGGCCCAACACCCCGCAGACT
	TACTGTCTCAACTTGGCTGTTGCGCCAGGGACTCATCGACACTTCCCTGACTGCCTCTGTGGCAAACCT
	GTTGGCCATCGCAATTGAGAGACACATAACGGTGTTCCGAATGCAACTTCATACACGGATGTCAAACCG
	GAGGGTGGTGGTGGTGATCGTGGTGATCTGGACCATGGCTATCGTTATGGGCGCCATTCCTAGCGTG
	GGTTGGAATTGCATTTGCGACATCGAGAACTGTTCCAATATGGCACCTCTGTATTCTGACAGTTATCTG
	GTTTTCTGGGCCATCTTTAATCTCGTGACATTTGTCGTGATGGTGGTACTGTATGCTCACATCTTCGGAT
	ACGTGAGACAACGCACAATGCGGATGTCTCGACACAGCAGCGGAACCGGAATCGGGACACAAT
	GATGTCCCTCCTCAAAACCGTCGTGATCGTGTGGGCGCGCATTTATCATTTGTTGGACCCCCCGGGCTCGT
	ACTECTTCTECTCEACETETETCCCCAETETEACETCTTECCTATEAGAAGTCTTTCTTTETTE
	GCCGAATTCAACTCCGCAATGAATCCTATTATTTACTCTTATCGAGATAAAGAGATGTCCGCAACTTTTC
	GGCAGATCCTCTGCTGCCAGAGGAGCGAGAGCGCGAGAGCCCCACTGAAGGTTCAGATCGGTCAGC
	TICATCCCICAACCACACACCIGGCCGGTGTACACTCCAACGATCATTCCGTGGTC
NMRR	ATGCCCTCCAAGTCTCTGTCAAATCTGAGTGTCACCACCGGAGCTAATGAGAGTGGATCTGTTCCTGAG
	GGATGGGAAAGGGATTTCCTTCCAGCTAGCGATGGGACCACACACA
1	
1	
1	

	CGTGAAGGCAATGGGAATATGGGTGGTGTCAGTGTTGCTGGCTG
	TTGCTAGGATCTCTTCACTGGATAATAGTTCATTCACGGCCTGTATTCCATATCCCCAGACAGA
	TGCACCCTAAGATCCACTCCGTACTTATATTTTTGGTCTATTTTCTGATCCCCCTTGCAATCATCTCAATC
	TATTACTACCACATCGCAAAAACATTGATCAAATCCGCCCATAACCTCCCCGGGGAGTACAATGAACAT
	ACAAAGAAGCAGATGGAGACCAGGAAAAGGCTCGCCAAGATCGTCCTTGTTTCGTTGGGTGCTTTATC
	TTCTGCTGGTTTCCCAATCACATACTGTATGTACCGGAGTTTTAACTATGAGATTGATCCCTCAC
	TCGGACATATGATTGTGACCCTCGTGGCCCGGGTGCTCTCCTTCGGGAATAGCTGTGTCAACCCCTTC
	GCGCTGTACCTGCTCTCCGAGTCTTTTCGCCGACACTTCAATTCACAGCTCTGCTGTGGGAGAAAAAGC
	TACCAGGAACGAGGAACATCTTATCTGCTTTCATCTAGCGCCGTGCGGATGACATCCCTGAAGAGTAAC
	GCGAAGAACATGGTGACGAACTCAGTCCTCCTGAATGGGCATTCCATGAAGCAGGAGATGGCCCTG
TEV	AGCTIGTTAAGGGACCACGTGATTACAACCCGATATCGAGCACCATTIGTCATTIGACGAATGAATCT
protease	GATGGGCACACAACATCGTIGIATGGIATTGGATTTGGTCCCTTCATCATACAAACAAGCACTTGTTTA
protodoo	GAAGAAATAATGGAACACIGTIGGICCAATCACTACATGGIGTATTCAAGGICAAGAACACCACGACTT
+TA	
UA	
	GGGGAAGC I GGCAAGAT I I I I I ACGI AA IAAAGCI I I AAAG I I I AG I CAACACAT CAACACACAT CAACACAT CAACACACAT CAACACAT CAACACACAC
	TAGTATGCCGCCATTATTACGACAAGCTATCGACAACGTCACACGAGCCAGCC
	TICGGCCTTGAATTGATCATATGCGGATTAGAAAAAAAAAA
	CGGGCGCGTACGAAAAACAATTACGGGTCTACCATCGAGGGCCTGCTCGATCTCCCGGACGACGACG
	IGICGACGGCCCCCCCGACGAIGICAGCCIGGGGGGACGAGCICCACIIAGACGGCGAGGACGIGG
	CGAIGCCGCAIGCCGACGCGCIAGACGAIIICGAICIGGACAIGIIGGGGGACGGGGAIICCCCCGGG
	ICCGGGGTTTACCCCCCACGACTCCGCCCCCTACGGCGCTCTGGATATGGCCGACTTCGAGTTTGAGC
	AGATGTTACCGATGCCCTTGGAATTGACGAGTACGGTGGG
rtTA	ATGTCTAGACTGGACAAGAGCAAAGTCATAAACGGCGCTCTGGAATTACTCAATGGAGTCGGTATCGAA
	GGCC1GACGACAAGGAAAC1CGC1CAAAAGC1GGGAG11GAGCAGCC1ACCC1G1AC1GGCACG1GAA
	GAACAAGCGGGCCCTGCTCGATGCCTGCCAATCGAGATGCTGGACAGGCATCATACCCACTTCTGCC
	CCCTGGAAGGCGAGTCATGGCAAGACTTTCTGCGGAACAACGCCAAGTCATTCCGCTGTGCTCTCCTC
	TCACATCGCGACGGGGGCTAAAGTGCATCTCGGCACCCGCCCAACAGAGAAACAGTACGAAACCCTGG
	AAAATCAGCTCGCGTTCCTGTGTCAGCAAGGCTTCTCCCTGGAGAACGCACTGTACGCTCTGTCCGCC
	GTGGGCCACTTTACACTGGGCTGCGTATTGGAGGAACAGGAGCATCAAGTAGCAAAAGAGGAAAGAGA
	GACACCTACCACCGATTCTATGCCCCCACTTCTGAGACAAGCAATTGAGCTGTTCGACCGGCAGGGAG
	CCGAACCTGCCTTCCTTTTCGGCCTGGAACTAATCATATGTGGCCTGGAGAAACAGCTAAAGTGCGAAA
	GCGGCGGGCCGGCCGACGCCCTTGACGATTTTGACTTAGACATGCTCCCAGCCGATGCCCTTGACGA
	CTTTGACCTTGATATGCTGCCTGCTGACGCTCTTGACGATTTTGACCTTGACATGCTCCCCGGGTAA
MGSS	ATGGGCTCGAGC
G4S	GGCGGTGGCGGGTCG
(G4S)2	GGTGGAGGCGGTTCAGGCGGGGGGGGGGGGGGGGGGGGG
TCS	GAGAATCTGTACTTTCAGCTG

Supplementary Table 6: Sequences of promoters used to build the plasmids.

Promoter	Sequence
NarL-RE- promoter	CGCGCCTACCCCTATAGGGGTATAGCGCCGGCTACCCCTATAGGGGTATCCATATGCTCTAGAGGGT ATATAATGGGGGCCACTAGTCTACTACCAGAGCTCATCGCTAGCGGGATCCACCGGTCGCCACCATG
OmpR-RE- promoter	CGCGCCATTTACATTTTGAAACATCTATAGCGCCGGCATTTACATTTTGAAACATCTATCCATATGCTCT AGAGGGTATATAATGGGGGGCCACTAGTCTACTACCAGAGCTCATCGCTAGCGGGATCCACCGGTCGC CACCATG
TRE promoter	CGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGAT GTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGAAC GTATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTATCCCTATCAGTGATAGAGA ACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGGTAGGCGTGTACGGTGGGA GGCCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGATTTCGAGCTCGGTACCTC GCCACCATG
EF1α	TTAAGCTCGGGCCCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCACAGTCCCCGAGAA GTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGGAAACTGGGAAA GTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGGAGAACCGTATATAAGTGCAGTAGT CGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCCAGAACACAGGTAAGTGCCGTGTGTGGTTCC CGCGGGCCTGGCCT
EF1α-V1	Altamura et al, in preparation

Supplementary Table 7. Transfection setup for Fig. 1b. Plasmid amounts per transfection

are shown.

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)	100 ng			
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng
CMV- <i>narL</i> (pJH004)	100 ng	100 ng	100 ng	100 ng
CMV-narX (pJH002)		100 ng		
CMV- <i>narX</i> ¹⁷⁶⁻⁵⁹⁸ (pJH010)			100 ng	
CMV- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ163)				100 ng

Supplementary Table 8. Transfection setup for Fig. 2b. Plasmid amounts per transfection

are shown.

Lane 1	Lane 2	Lane 3	Lane 4	Lane 5
100 ng	100 ng	100 ng	100 ng	100 ng
100 ng				
100 ng	100 ng	100 ng	100 ng	100 ng
100 ng	100 ng	100 ng	100 ng	100 ng
	100 ng			
		100 ng		50 ng
			100 ng	50 ng
	Lane 1 100 ng 100 ng 100 ng 100 ng	Lane 1 Lane 2 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng	Lane 1 Lane 2 Lane 3 100 ng 100 ng 100 ng 100 ng 100 ng	Lane 1 Lane 2 Lane 3 Lane 4 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng

Supplementary Table 9. Transfection setup for Fig. 2c. Plasmid amounts per transfection are shown.

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
EF1α-mCherry (pKH026)	100 ng					
Junk-DNA (pBH265)	100 ng					
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng					
EF1α-narL (pMZ248)	100 ng					
EF1α-V1- <i>narX</i> (pMZ239)		100 ng				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)			100 ng			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)				50 ng	50 ng	50 ng
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)				50 ng		
EF1α-V1- <i>SYNZIP1</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223)						
EF1α-V1- SYNZIP1:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ225)					50 ng	
EF1α-V1- <i>SYNZIP2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224)						
EF1α-V1- SYNZIP2:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ226)						50 ng

Plasmid	Lane 7	Lane 8	Lane 9	Lane10	Lane11	Lane12
EF1α-mCherry (pKH026)	100 ng					
Junk-DNA (pBH265)						
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng					
EF1α <i>-narL</i> (pMZ248)	100 ng					
EF1α -V1- <i>narX</i> (pMZ239)						
EF1α -V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)						
EF1α -V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)						
EF1α -V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)	50 ng	50 ng				
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223)	50 ng		50 ng		50 ng	
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ225)			50 ng			50 ng
EF1α-V1- <i>SYNZIP2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224)		50 ng		50 ng		50 ng
EF1α-V1- SYNZIP2::narX ³⁷⁹⁻⁵⁹⁸ N509A (pMZ226)				50 ng	50 ng	

Supplementary Table 10. Transfection setup for Fig. 3a. Plasmid amounts per transfection are shown.

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
EF1a-mCherry (pKH026)	100 ng					
Junk-DNA (pBH265)	100 ng					
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng					
EF1α- <i>narL</i> (pMZ248)	100 ng					
EF1α-V1- <i>narX</i> (pMZ239)		100 ng				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)			100 ng			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)				50 ng	50 ng	50 ng
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)				50 ng		
EF1α-V1- <i>FKBP1A</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ229)						
EF1α-V1- <i>FKBP1A</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ231)					50 ng	
EF1α-V1- <i>MTOR</i> ²⁰¹⁸⁻¹¹³ T2098L:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ230)						
EF1α-V1- <i>MTOR</i> ²⁰¹⁸⁻¹¹³ T2098L:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ232)						50 ng

Plasmid	Lane 7	Lane 8	Lane 9	Lane 10	Lane 11	Lane 12
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)						
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α-V1- <i>narX</i> (pMZ239)						
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)						
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)						
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)	50 ng	50 ng				
EF1α-V1- <i>FKBP1A</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ229)	50 ng		50 ng		50 ng	
EF1α-V1- <i>FKBP1A</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ231)			50 ng			50 ng
EF1α-V1- <i>MTOR</i> ²⁰¹⁸⁻¹¹³ T2098L:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ230)		50 ng		50 ng		50 ng
EF1α-V1- <i>MTOR</i> ²⁰¹⁸⁻¹¹³ T2098L:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ232)				50 ng	50 ng	

Supplementary Table 11. Transfection setup for Fig. 3c. Plasmid amounts per transfection are shown.

Plasmid	
EF1α-mCherry (pKH026)	100 ng
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng
EF1α-V1 <i>-FKBP1A</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ231)	50 ng
EF1α-V1- <i>MTOR</i> ²⁰¹⁸⁻¹¹³ T2098L:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ230)	50 ng

Supplementary Table 12. Transfection setup for Fig. 4b. Plasmid amounts per transfection are shown

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
EF1α-mCherry (pKH026)	100 ng					
Junk-DNA (pBH265)	100 ng					
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng					
EF1α- <i>narL</i> (pMZ248)	100 ng					
EF1α-V1- <i>narX</i> (pMZ239)		100 ng				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)			100 ng			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)				50 ng	50 ng	50 ng
EF1α-V1 <i>-narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)				50 ng		
EF1α-V1- <i>ARRB2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ251)						
EF1α-V1- <i>ARRB2::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ252)					50 ng	
EF1α-V1-ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257)						
EF1α-V1-ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ N509A (pMZ258)						50 ng

Supplementary Table 14 (cont.)

Plasmid	Lane 7	Lane 8	Lane 9	Lane 10	Lane 11	Lane 12
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)						
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α-V1- <i>narX</i> (pMZ239)						
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)						
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)						
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)	50 ng	50 ng				
EF1α-V1- <i>ARRB2::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ251)	50 ng		50 ng		50 ng	
EF1α-V1- <i>ARRB2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ252)			50 ng			50 ng
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257)		50 ng		50 ng		50 ng
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ258)				50 ng	50 ng	

Supplementary Table 13. Transfection setup for Fig. 4d and 4g. Plasmid amounts per transfection are shown.

Plasmid	TCS	Tango
EF1α-mCherry (pKH026)	100 ng	100 ng
Junk-DNA (pBH265)		
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	
EF1α- <i>narL</i> (pMZ248)	100 ng	
EF1α-V1- <i>ARRB2::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ252)	50 ng	
EF1α-V1- <i>ADRB2</i> :: <i>AVPR2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257)	50 ng	
tTA_RE- <i>cerulean</i> (pMZ290)		100 ng
EF1α-V1- <i>ARRB2</i> ::TEV protease (pMZ291)		100 ng
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ292)		100 ng

Supplementary Table 14. Transfection setup for Fig. 5a. gray and black bars. Plasmid

amounts per transfection are shown

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5
EF1α-mCherry (pKH026)	100 ng				
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng				
EF1α- <i>narL</i> (pMZ248)	100 ng				
EF1α-V1- <i>ARRB2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ252)	50 ng				
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257)	50 ng				
EF1α-V1- <i>ADRB2</i> ¹⁻⁴¹³ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ307)		50 ng			
EF1α-V1- <i>NMBR</i> ¹⁻³⁹⁰ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ312)			50 ng		
EF1α-V1-AVPR2 ¹⁻³⁷¹ ::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ308)				50 ng	
EF1α-V1- <i>LPAR1</i> ¹⁻³⁶⁴ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ311)					50 ng
EF1α-V1- <i>BDKRB2</i> ¹⁻³⁹¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ309)					
EF1α-V1-CXCR4 ¹⁻³⁵⁸ ::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ310)					
EF1α-V1- <i>NPY1R¹⁻³⁸⁴::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ295)					
EF1α-V1- <i>NPY5R</i> ¹⁻⁴³⁸ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ297)					

Plasmid	Lane 6	Lane 7	Lane 8	Lane 9
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng
EF1α-V1- <i>ARRB2::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ252)	50 ng	50 ng	50 ng	50 ng
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257)				
EF1α-V1- <i>ADRB2</i> ¹⁻⁴¹³ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ307)				
EF1α-V1- <i>NMBR</i> ¹⁻³⁹⁰ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ312)				
EF1α-V1- <i>AVPR2</i> ¹⁻³⁷¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ308)				
EF1α-V1- <i>LPAR1</i> ¹⁻³⁶⁴ :: <i>AVPR</i> 2 ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ311)				
EF1α-V1- <i>BDKRB2</i> ¹⁻³⁹¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ309)	50 ng			
EF1α-V1- <i>CXCR4</i> ¹⁻³⁵⁸ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ310)		50 ng		
EF1α-V1- <i>NPY1R¹⁻³⁸⁴::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ295)			50 ng	
EF1α-V1- <i>NPY5R¹⁻⁴³⁸::AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ297)				50 ng

Supplementary Table 15. Transfection setup for Fig. 5a. ligth brown and brown bars.

Plasmid amounts per transfection are shown

Plasmid	Lane 1	Lane	e 2	Lane	e 3	Lane	94	Lane 5
EF1α-mCherry (pKH026)	100 ng	100	ng	100	ng	100 ı	ng	100 ng
tTA_RE- <i>cerulean</i> (pMZ290)	100 ng	100	ng	100	ng	100 r	ng	100 ng
CMV-ARRB2::TEV protease (pBH302)	100 ng	100	ng	100	ng	100 r	ng	100 ng
CMV-ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pBH312)	100 ng							
CMV-ADRB2 ¹⁻⁴¹³ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pMZ300)		100	ng					
CMV- <i>NMBR</i> ¹⁻³⁹⁰ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ305)				100	ng			
CMV-AVPR2 ¹⁻³⁷¹ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pMZ301)						100 r	ng	
CMV- <i>LPAR1</i> ¹⁻³⁶⁴ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ304)								100 ng
CMV- <i>BDKRB2</i> ¹⁻³⁹¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ302)								
CMV-CXCR4 ¹⁻³⁵⁸ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pMZ303)								
CMV- <i>NPY1R</i> ¹⁻³⁸⁴ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ293)								
CMV- <i>NPY5R</i> ¹⁻⁴⁴⁵ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ295)								
Plasmid	Lan	ne 1	Lane	2	Lane	3	Lane	e 4
EF1a-mCherry (pKH026)	100) na	100 1	- na	100 r	na	100	na
tTA RE-cerulean (pMZ290)	100) ng	100 ו	ng	100 r	ng	100	ng
CMV- <i>ARRB2</i> ::TEV protease (pBH302)	100) ng	100 ı	ng	100 r	ng	100	ng
CMV-ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pBH312)		U		U		0		U
CMV-ADRB2 ¹⁻⁴¹³ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pMZ300)								
CMV- <i>NMBR</i> ¹⁻³⁹⁰ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ305)								
CMV-AVPR2 ¹⁻³⁷¹ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pMZ301)								
CMV-LPAR1 ¹⁻³⁶⁴ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pMZ304)								
CMV- <i>BDKRB2</i> ¹⁻³⁹¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ302)	100) ng						
CMV-CXCR4 ¹⁻³⁵⁸ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pMZ303)			100 ı	ng				
CMV-NPY1R ¹⁻³⁸⁴ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pMZ293)					100 r	וg		
CMV- <i>NPY5R</i> ¹⁻⁴⁴⁵ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ295)							100	ng

Supplementary Table 16. Transfection setup for Fig. 6. Plasmid amounts per transfection are shown. The experiment was done in 96 well plates.

Plasmid	NarX fusion	Tango	rtTA
EF1α-mCherry (pKH026)	12.5 ng	12.5 ng	12.5 ng
Junk-DNA (pBH265)	25 ng	12.5 ng	37.5 ng
NarL_RE- <i>cerulean</i> (pMZ219)	25 ng		
EF1α- <i>narL</i> (pMZ248)	12.5 ng		
EF1α-V1- <i>narX</i> (pMZ239)			
EF1α-V1- <i>ARRB2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ251)	12.5 ng		
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ258)	12.5 ng		
tTA_RE- <i>cerulean</i> (pMZ290)		25 ng	25 ng
EF1α-V1- <i>ARRB2</i> ::TEV protease (pMZ291)		25 ng	
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ292)		25 ng	
CMV-rtTA (pZ91)			25 ng

Supplementary Table 17. Transfection setup for Supplementary Fig. 2b. Plasmid amounts per transfection are shown.

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)	100 ng			
OmpR_RE- <i>cerulean</i> (pMZ1)	100 ng	100 ng	100 ng	100 ng
CMV-ompR (pJH003)	100 ng	100 ng	100 ng	100 ng
CMV- <i>envZ</i> (pJH001)		100 ng		
CMV- <i>envZ</i> _cyt (pJH009)			100 ng	
CMV- <i>envZ</i> ²²³⁻⁴⁵⁰ (pMZ123)				100 ng

Supplementary Table 18. Transfection setup for Supplementary Fig. 3. Plasmid amounts

per transfection are shown

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7	Lane 8	Lane 9
EF1α-mCherry (pKH026)	100 ng								
Junk-DNA (pBH265)	100 ng								
NarL_RE- <i>amCyan</i> (pJH7)	100 ng								
CMV-narL (pJH004)	100 ng								
CMV- <i>narX</i> (pJH002)		100 ng							
CMV-narX ³⁷⁹⁻⁵⁹⁸ (pMZ163)			100 ng						
CMV-SYNZIP1::narX ³⁷⁹⁻⁵⁹⁸ (pMZ200)				100 ng		50 ng			
CMV-SYNZIP::narX ³⁷⁹⁻⁵⁹⁸ (pMZ206)					100 ng	50 ng			
CMV- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ ::SYNZIP1 (pMZ202)							100 ng		50 ng
CMV- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ ::SYNZIP2 (pMZ208)								100 ng	50 ng

Supplementary Table 19. Transfection setup for Supplementary Fig. 4a. Plasmid amounts per transfection are shown.

Plasmid	CMV promoter	EF1α promoter
EF1α- <i>citrine</i> (pKH025)	100 ng	100 ng
Junk-DNA (pBH265)	200 ng	
CMV- <i>iRFP</i> (pCS12)	100 ng	
EF1α- <i>iRFP</i> (pCS184)		100 ng

Supplementary Table 20. Transfection setup for Supplementary Fig. 4b. Plasmid amounts

per transfection are shown.

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6	Lane 7	Lane 8	Lane 9
EF1α- <i>mCherry</i> (pKH026)	100 ng								
Junk-DNA (pBH265)	100 ng								
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng								
CMV-narL (pJH004)	100 ng	100 ng	100 ng						
EF1α- <i>narL</i> (pMZ248)				100 ng	100 ng	100 ng			
EF1α-V1 <i>-narL</i> (pMZ249)							100 ng	100 ng	100 ng
CMV-narX (pJH002)		100 ng			100 ng			100 ng	
EF1α-V1- <i>narX</i> (pMZ239)			100 ng			100 ng			100 ng

Supplementary Table 21. Transfection setup for Supplementary Fig. 5c. Plasmid amounts

per transfection are shown.

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
EF1α-mCherry (pKH026)	100 ng					
Junk-DNA (pBH265)	100 ng					
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng					
EF1α- <i>narL</i> (pMZ248)	100 ng					
EF1α-V1- <i>narX</i> (pMZ239)		100 ng				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)			100 ng			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)				100 ng		
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)					100 ng	
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223)						100 ng
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ225)						
EF1α-V1- <i>SYNZIP2::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224)						
EF1α-V1- <i>SYNZIP2::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ226)						

Plasmid	Lane 7	Lane 8	Lane 9	
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	
Junk-DNA (pBH265)				
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	
EF1α-V1- <i>narX</i> (pMZ239)				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)				
EF1α-V1- <i>SYNZIP1</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223)				
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ225)	100 ng			
EF1α-V1- <i>SYNZIP2::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224)		100 ng		
EF1α-V1-SYNZIP2::narX ³⁷⁹⁻⁵⁹⁸ N509A (pMZ226)			100 ng	

Supplementary Table 22. Transfection setup for Supplementary Fig. 5d. Plasmid amounts per transfection are shown.

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
EF1α-mCherry (pKH026)	100 ng					
Junk-DNA (pBH265)	100 ng					
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng					
EF1α- <i>narL</i> (pMZ248)	100 ng					
EF1α-V1- <i>narX</i> (pMZ239)		100 ng				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)			100 ng			
EF1α-V1- <i>SYNZIP1</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223)				50 ng		50 ng
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ225)					50 ng	50 ng
EF1α-V1- <i>SYNZIP2::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224)					50 ng	
EF1α-V1- <i>SYNZIP2::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ226)				50 ng		
EF1α-V1- <i>SYNZIP1</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ221)						
EF1α-V1- <i>SYNZIP2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ222)						

Plasmid	Lane 7	Lane 8	Lane 9	Lane 10	Lane 11
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)					
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α-V1- <i>narX</i> (pMZ239)					
EF1α-V1 <i>-narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)					
EF1α-V1-SYNZIP1::narX ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223)	50 ng				
EF1α-V1- <i>SYNZIP</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ225)		50 ng			
EF1α-V1-SYNZIP2::narX ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224)					
EF1α-V1- <i>SYNZIP2::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ226)					
EF1α-V1-SYNZIP1::narX ³⁷⁹⁻⁵⁹⁸ (pMZ221)			100 ng		50 ng
EF1α-V1-SYNZIP2::narX ³⁷⁹⁻⁵⁹⁸ (pMZ222)	50 ng	50 ng		100 ng	50 ng

Supplementary Table 23. Transfection setup for Supplementary Fig. 5e. Plasmid amounts per transfection are shown.

For SynZip2::H^{mut}+ SynZip2::N^{mut} titration:

E1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)	93.75 ng	87.5 ng	75 ng	50 ng	
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α-V1- <i>SYNZIP2::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224)	3.125 ng	6.25 ng	12.5 ng	25 ng	50 ng
EF1α-V1-SYNZIP2::narX ³⁷⁹⁻⁵⁹⁸ N509A (pMZ226)	3.125 ng	6.25 ng	12.5 ng	25 ng	50 ng

For SynZip1::H^{mut}+ SynZip1::N^{mut} titration:

EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)	93.75 ng	87.5 ng	75 ng	50 ng	
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223)	3.125 ng	6.25 ng	12.5 ng	25 ng	50 ng
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ225)	3.125 ng	6.25 ng	12.5 ng	25 ng	50 ng

For SynZip1::H^{mut}+ SynZip2::N^{mut} titration:

EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)	93.75 ng	87.5 ng	75 ng	50 ng	
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α-V1- <i>SYNZIP1::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223)	3.125 ng	6.25 ng	12.5 ng	25 ng	50 ng
EF1α-V1- <i>SYNZIP2::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ226)	3.125 ng	6.25 ng	12.5 ng	25 ng	50 ng

For SynZip1::N^{mut}+ SynZip2::H^{mut} titration:

EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)	93.75 ng	87.5 ng	75 ng	50 ng	
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α-V1-SYNZIP1::narX ³⁷⁹⁻⁵⁹⁸ N509A (pMZ225)	3.125 ng	6.25 ng	12.5 ng	25 ng	50 ng
EF1α-V1-SYNZIP2::narX ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224)	3.125 ng	6.25 ng	12.5 ng	25 ng	50 ng

For NarX titration:

EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng	100 ng	100 ng
Junk-DNA (pBH265)	93.75 ng	87.5 ng	75 ng	50 ng	
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng	100 ng	100 ng
EF1α-V1- <i>narX</i> (pMZ239)	6.25 ng	12.5 ng	25 ng	50 ng	100 ng

Supplementary Table 24. Transfection setup for Supplementary Fig. 6c. Plasmid amounts

per transfection are shown

Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
100 ng					
100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
100 ng	100 ng	100 ng	100 ng	100 ng	100 ng
	100 ng				
		100 ng			
			100 ng		
				100 ng	
					100 ng
	Lane 1 100 ng 100 ng 100 ng	Lane 1 Lane 2 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng	Lane 1 Lane 2 Lane 3 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng 100 ng	Lane 1Lane 2Lane 3Lane 4100 ng100 ng	Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 100 ng

Plasmid	Lane 7	Lane 8	Lane 9
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng
Junk-DNA (pBH265)			
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng
EF1α-V1 <i>-narX</i> (pMZ239)			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)			
EF1α-V1- <i>FKBP1A</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ229)			
EF1α-V1- <i>FKBP1A</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ231)	100 ng		
EF1α-V1- <i>MTOR</i> ²⁰¹⁸⁻¹¹³ T2098L:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ230)		100 ng	
EF1α-V1- <i>MTOR</i> ²⁰¹⁸⁻¹¹³ T2098L:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ232)			100 ng

Supplementary Table 25. Transfection setup for Supplementary Fig. 7. Plasmid amounts

per transfection are shown

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
EF1α-mCherry (pKH026)	100 ng					
Junk-DNA (pBH265)	100 ng					
NarL_RE- <i>amCyan</i> (pJH007)	100 ng					
CMV-narL (pJH004)	100 ng					
CMV- <i>narX</i> (pJH002)		100 ng				
CMV- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ163)			100 ng			
CMV-FKBP1A::narX ³⁷⁹⁻⁵⁹⁸ (pMZ214)				100 ng		50 ng
CMV- <i>MTOR</i> ²⁰¹⁸⁻¹¹³ T2098L:: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ215)					100 ng	50 ng

Supplementary Table 26. Transfection setup for Supplementary Fig. 8c. Plasmid amounts

per transfection are shown.

Plasmid	Lane 1	Lane 2	Lane 3	Lane 4	Lane 5	Lane 6
EF1α-mCherry (pKH026)	100 ng					
Junk-DNA (pBH265)	100 ng					
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng					
EF1α- <i>narL</i> (pMZ248)	100 ng					
EF1α-V1- <i>narX</i> (pMZ239)		100 ng				
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)			100 ng			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)				100 ng		
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)					100 ng	
EF1α-V1- <i>ARRB2::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ251						100 ng
EF1α-V1- <i>ARRB2</i> :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ252)						
EF1α-V1-ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257)						
EF1α-V1-ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ N509A (pMZ258)						

Plasmid	Lane 7	Lane 8	Lane 9
EF1α-mCherry (pKH026)	100 ng	100 ng	100 ng
Junk-DNA (pBH265)			
NarL_RE- <i>cerulean</i> (pMZ219)	100 ng	100 ng	100 ng
EF1α- <i>narL</i> (pMZ248)	100 ng	100 ng	100 ng
EF1α-V1- <i>narX</i> (pMZ239)			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ (pMZ241)			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244)			
EF1α-V1- <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ247)			
EF1α-V1- <i>ARRB2::narX</i> ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ251			
EF1α-V1- <i>ARRB2::narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ252)	100 ng		
EF1α-V1-ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257)		100 ng	
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>narX</i> ³⁷⁹⁻⁵⁹⁸ N509A (pMZ258)			100 ng

Supplementary Table 27. Transfection setup for Supplementary Fig. 8d. Plasmid amounts per transfection are shown

Plasmid	CMV-Tango	EF1α-V1-Tango
EF1α-mCherry (pKH026)	100 ng	100 ng
tTA_RE- <i>cerulean</i> (pMZ290)	100 ng	100 ng
CMV-ARRB2::TEV protease (pBH302)	100 ng	
CMV-ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ ::tTA (pBH312)	100 ng	
EF1α-V1- <i>ARRB2:</i> :TEV protease (pMZ291)		100 ng
EF1α-V1- <i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ³⁴³⁻³⁷¹ :: <i>tTA</i> (pMZ292)		100 ng

Supplementary Figures

Label	Construct	Figure
NarL-RE- cerulean	NarL-RE cerulean	1b, 2bc, 3ac, 4bdg, 5a, 6 ab, S4b, S5cde, S6c, S8c
NarL (CMV)	PCMV	1b, 2b, S3, S4b, S7
NarX (CMV)	PCMV	1b, 2b, S3, S4b, S7
NarX ¹⁷⁶⁻⁵⁹⁸ (CM	V) PCMV	1b
NarX ³⁷⁹⁻⁵⁹⁸ (CM	V) PCMV	1b, S3, S7
NarL	PEF1a	2c, 3ac, 4bdg, 5a, 6 ab, S4b, S5cde S6c, S8c
NarX H399Q (CMV)	PCMV	2b
NarX N509A (CMV)	PCMV	2b
NarX	PEF1a-V1	2c, 3a, 4b, S4b, S5cd, S6c, S8c
NarX ³⁷⁹⁻⁵⁹⁸	PEF1α-V1	2c, 3a, 4b, S4ab, S5cd, S6c, S8c
NarX ³⁷⁹⁻⁵⁹⁸ H399Q (H ^{mut})	PEF1a-V1	2c, 3a, 4b, S5c, S6c, S8c
NarX ³⁷⁹⁻⁵⁹⁸ N509A (N ^{mut})	PEF1Q-V1	2c, 3a, 4b, S5c, S6c, S8c
SYNZIP1::H ^{mut}	SYNZIP1::narX ³⁷⁹⁻⁵⁹⁸ H3990 PEF1α-V1	2c, S5cde
SYNZIP1::N ^{mut}	SYNZIP1::narX ³⁷⁹⁻⁵⁹⁸ Ν5094 Η Α ΡΕΓ1α-V1	2c, S5cde
SYNZIP2::H ^{mut}	SYNZIP2::narX ³⁷⁸⁻⁵⁸⁸ H3990 PEF1α-V1	2c, S5cde
SYNZIP2::N ^{mut}	SYNZIP2::narX ^{379-598 N509A}	2c, S5cde
FK::H ^{mut}	FKBP1A::narX ³⁷⁹⁻⁵⁹⁸ H3990 Q N PEF10-V1	3a, S6c

Label	Construct	Figure
FK::N ^{mut}	FKBP1A::narX ³⁷⁹⁻⁵⁶⁸ N509A H A PEF1a-V1	3ac, S6c
FR::H ^{mut}	MTOR ^{2018-2113 Т2088} .::narX ³⁷⁹⁻⁵⁸⁸ H3990 Q N PEF1α-V1	3ac, S6c
FR::N ^{mut}	MTOR ²⁰¹⁸⁻²¹¹³ Τ2088L.;;narX ³⁷⁸⁻⁵⁸⁸ N509A Η Α ΡΕΓ1α-V1	3a, S6c
β-arrestin::H ^{mut}	ARRB2::narX379-588 H3990 Q N PEF10-V1	4b, 6ab, S8c
β-arrestin::N ^{mut}	ARRB2::narX378-388 N509A	4bdg, 5a, S8c
β2AR ^{∆C} :: V2R ^{∆N} ::H ^{mut}	<i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ⁸⁴³⁻³⁷¹ :: <i>narX</i> ^{879-598 H396 Q N PEF1α-V1}	4bdg, 5a, S8c
β2AR ^{∆C} :: V2R ^{ΔN} ::N ^{mut}	<i>ADRB2</i> ¹⁻³⁴¹ :: <i>AVPR2</i> ⁸⁴³⁻³⁷¹ :::narX ^{879-588 N50}	4b, 6ab, S8c
β2AR:: V2R ^{ΔN} ::N ^{mut}	ADRB2-AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ H399Ω Q Ν PEF1α-V1	5a
NMB-R:: V2R ^{an} ::H ^{mut}	NMBR::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁶⁹ H3990	5a
V2R:: V2R ^{∆N} ::H ^{mut}	AVPR2::AVPR2 ²⁴³⁻³⁷¹ ::narX ⁸⁷⁹⁻⁵⁹⁸ H399Q	5a
LPA-1:: V2R ^{an} ::H ^{mut}	LPAR1::AVPR2 ⁹⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁹⁸ H399Q	5a
B2R:: V2R ^{∆N} ::H ^{mut}	BDKRB2::AVPR2 ³⁴³⁻³⁷¹ ::narX ³⁷⁹⁻⁵⁸⁸ H3990	5a
CXC-R4:: V2R ^{∆N} ::H ^{mut}	CXCR4::AVPR2 ⁸⁴³⁻³⁷¹ ::narX ⁸⁷⁹⁻⁵⁹⁸ H3990 Q N PEF10-V1	5a
NPY1-R::H ^{mut}	NPY1R::narX ³⁷⁹⁻⁵⁹⁸ H3990 Q N PEF1α-V1 Q N	5a
NPY5-R ^{ΔC} :: V2R ^{ΔN} ::H ^{mut}	NPY5R ¹⁻⁴³⁸ ::AVPR2 ²⁴³⁻³⁷¹ ::narX ⁹⁷⁹⁻⁵⁹⁸ H395 PEF1α-V1	5a
Tet-RE- Cerulean	Tet-RE cerulean	4dg, 5a, 6ab, S8d
β-arrestin::TEV (EF1α-V1)	ARRB2::TEV	4dg, 6ab, S8d

Label	Construct	Figure	Label
β-arrestin::TEV	ARRB2::TEV	5a, S8d	NarL-RE AmCya
β2AR ^{∆C} ::V2R ^{∆N} ::tTA (EF1α-V1)	ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ :::tTA PEF1a-V1	4dg, 5a, 6ab, S8d	Nar
β2AR ^{∆C} :: V2R ^{∆N} ::tTA	ADRB2 ¹⁻³⁴¹ ::AVPR2 ³⁴³⁻³⁷¹ :::tTA PCMV	5a, S8d	SYNZIP1::Na (CMV)
β2AR:: V2R ^{∆N} ::tTA	ADRB2::AVPR2 ⁹⁴³⁻³⁷¹ ::tTA PCMV	5a	SYNZIP2::Na (CMV)
NMB-R:: AVPR2 [∆] N::tTA	NMBR::AVPR2 ⁹⁴³⁻³⁷¹ ::tTA	5a	NarX ³⁷⁹⁻⁵⁹⁸ ::S) (CMV)
V2R:: V2R [∆] N::tTA	AVPR2::AVPR2 ^{843:371} ::tTA PCMV	5a	NarX ³⁷⁹⁻⁵⁹⁸ ::S) (CMV)
LPA-1:: AVPR2∆N::tTA	LPAR1::AVPR2 ^{343:371} ::tTA PCMV	5a	EF1α-iRI
B2R:: V2R [∆] N::tTA	BDKRB2::AVPR2 ⁹⁴³⁻³⁷¹ ::tTA PCMV	5a	CMV-iRF
CXC-R4:: AVPR2 [∆] N::tTA	CXCR4::AVPR2 ⁹⁴³⁻³⁷¹ ::tTA	5a	NarL (EF1c
NPY1-R:: AVPR2 [∆] N::tTA	NPY1R::AVPR2 ^{843:371} :::TA PCMV	5a	FK::NarX ^{3:} (CMV)
NPY5-R:: AVPR2 [∆] N::tTA	NPY5R::AVPR2 ⁸⁴³⁻³⁷¹ ::tTA PCMV	5a	CMV-FR::Na (CMV)
rtTA	PCMV	6ab	
OmpR-RE- cerulean	OmpR-RE cerulean Pmin	S2b	
OmpR (CMV)	PCMV	S2b	
EnvZ (CMV)	PCMV	S2b	
EnvZ ¹⁸⁰⁻⁴⁵⁰ (CMV)	PCMV	S2b	
EnvZ ²²³⁻⁴⁵⁰ (CMV)		S2b	

Label	Construct	Figure
NarL-RE- AmCyan		S3, S7
NarL-RE	amCyan I1 E2	
Pmin		
SYNZIP1::NarX ³⁷⁹⁻⁵⁹⁸ (CMV)	SYNZIP1::narX ³⁷⁰⁻⁵⁹⁸ H N PCMV	S3, S5d
SYNZIP2::NarX ³⁷⁹⁻⁵⁹⁸ (CMV)	PCMV	S3, S5d
NarX ³⁷⁹⁻⁵⁹⁸ ::SYNZIP1 (CMV)	narX ³⁷⁹⁻⁵⁹⁸ ::SYNZIP1 H N PCMV	S3
NarX ³⁷⁹⁻⁵⁹⁸ ::SYNZIP2 (CMV)	PCMV	S3
EF1a-iRFP	<i>iRFP</i> PEF1α	S4a
CMV-iRFP	PCMV	S4a
NarL (EF1α-V1)	NarL VP48 PEF1q-V1	S4b
FK::NarX ³⁷⁹⁻⁵⁹⁸ (CMV)	FKBP1A::narX ³⁷⁸⁻⁵⁹⁸ H N PCMV	S7
CMV-FR::NarX ³⁷⁹⁻⁵⁹⁸ (CMV)	MTOR ²⁰¹⁸⁻²¹¹³ T2098L :: narX 379-598 H N PCMV	S7

Supplementary Fig. 1 | Schematic representation of the transfected DNA constructs. The promoters, the genes (for gene fragments the numbers indicate the first and the last amino acid encoded by the sequence, mutated codons are also indicated), and the DNA binding elements are indicated. RE, response element; P_{CMV} , early-late cytomegalovirus promoter; $P_{EF1\alpha}$, human elongation factor-1 alpha promoter; $P_{EF1\alpha-V1}$, modified human elongation factor-1 alpha promoter; $P_{EF1\alpha-V1}$, modified human elongation factor-1 alpha promoter. P_{min} is a minimal TATA box known as "YB-TATA", described previously (Angelici, B., Mailand, E., Haefliger, B. & Benenson, Y. Synthetic

Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells. *Cell Reports* **16**, 2525-2537 (2016)). The label D in the coding sequence of the RRs OmpR and NarL, corresponds to the phosphorylated aspartate. The labels H and N in the coding sequence of the HKs EnvZ and NarX correspond, respectively, to the phosphorylatable histidine and the asparagine important for the ATP binding of the HK. The labels Q and A present in the coding sequence of NarX correspond, respectively, to the mutants of the phosphorylatable histidine and the asparagine important for the ATP binding. The labels E1, I1 and E1 indicate the first exon, the first intron, and the second exon of *amCyan*. The violet stripes indicate the sequence coding for the transmembrane domains. The black strip corresponds to the AVPR2³⁴³⁻³⁷¹. The white bar between AVPR2³⁴³⁻³⁷¹ and *tTA* represents the sequence coding for TEV protease cleavage site. The size and the localization of the transmembrane domain have been collected from UniProt website (UniProt, C. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res* **47**, D506-D515 (2019)).

Supplementary Fig. 2 I Identification of truncated HK cytoplasmic domains with reduced intrinsic signaling (see also Fig.1). **a**, Schematics of the dimerization testing of the various truncated cytoplasmic domains of the HK receptors. The corresponding EnvZ and NarX domains are indicated in the panel. **b**, Dimerization tests for EnvZ. The bars show Cerulean expression in cells transfected with response regulator OmpR, OmpR-inducible cerulean reporter and the indicated truncated mutant when applicable. The bar height indicates Cerulean expression normalized to the transfection control and averaged across independent biological triplicate, shown as mean \pm SD. The circles indicate individual measurements. **c**, Representative microscopy images of HEK293 cells are shown for transfections indicated in bold in panel **b**. The top and the bottom row of images show, respectively, the expression of mCherry transfection. The white scale bars correspond to 200 μ M. Constructs are described in Supplementary Fig. 1. The results were reproduced at least once in an independent experiment.

Supplementary Fig. 3 | Restoration of two-component signalling via forced dimerization of protein moieties fused at the C or the N-termini of NarX. The bars represent signalling levels in mammalian cells expressing the response regulator NarL from the CMV promoter and NarL-inducible AmCyan fluorescent reporter, alone or with different combinations of SYNZIP1 and SYNZIP2 fused at the C-terminus or at the N-terminus of NarX, as indicated in the chart. The bar height indicates AmCyan expression normalized to the transfection control. Similar experiments were done with small modifications, leading to similar conclusions. Constructs are described in Supplementary Fig. 1.

Supplementary Fig. 4 | Comparison of CMV and EF1 α promoters. a, iRFP fluorescence of HEK cells transfected with the plasmid expressing iRFP from the CMV promoter (white bars) or from the EF1 α promoter (black bars). The reporter expression in DMEM without any ligand or in the presence of 1 μ M of procaterol or 2 μ M of epinephrine is shown as indicated. The bar chart displays iRFP level normalized to the frequency of the transfection marker Citrine-positive cells (rel. u.) as mean ± SD of independent biological triplicates. **b**, Activity of the NarX/NarL pathway expressed from CMV or EF1 α promoters. Every transfection contains NarL-inducible Cerulean reporter and plasmids expressing NarL and NarX from CMV, EF1 α or EF1 α -V1 promoters, as indicated in the chart. The bar height indicates Cerulean expression normalized to the transfection control and averaged across independent biological triplicate, shown as mean ± SD. The circles indicate the individual measurements. Constructs are described in Supplementary Fig. 1. The results were reproduced at least once in an independent experiment.

132, 6025-6031 (2010)). Upon dimerization, phosphate is transferred to the histidine and then to the aspartate in NarL (PDB: 1RNL, Baikalov, I. et al. Structure of the Escherichia coli response regulator NarL. Biochemistry 35, 11053-11061 (1996)), resulting in reporter gene expression. **c**, Cerulean expression in the presence of NarL, driven by the promoter $EF1\alpha$, and NarL-inducible Cerulean reporter, alone or with individual variants of NarX mutant fused to SYNZIP1 or SYNZIP2, as indicated. d, Cerulean expression in the presence of NarL and NarL-inducible Cerulean reporter, alone or with different combinations of SYNZIP1 and SYNZIP2 fused to wild-type NarX or various NarX mutants, as indicated in the chart. e, Dose-dependency of signaling intensity for different interacting components and varying plasmid amounts as indicated in the plot. The ng amount indicates the total amount of NarXcontaining plasmids, for example for NarX-wt 100 ng corresponds to 100 ng of this construct, but for combinations of two constructs this means 50 ng of each. The bar height and the dots' Y coordinate indicates Cerulean expression normalized to the transfection control and averaged across independent biological triplicate, shown as mean ± SD. The circles in the panels c, d indicate individual measurements. Constructs are described in Supplementary Fig. 1. The results were reproduced at least once in independent experiments.

Supplementary Fig. 6 | Control experiments and additional data related to the transduction of cytoplasmic ligand to gene expression (see also Fig. 3). **a**, Schematics of ligand-induced signaling. The structures of FKBP and FRB domains and the dimerizer ligand are based on the report describing the complex between FKBP, FRB and rapamycin (PDB: 3AFP, Marz, A.M., Fabian, A.K., Kozany, C., Bracher, A. & Hausch, F. Large FK506-binding proteins shape the pharmacology of rapamycin. *Mol. Cell. Biol.* **33**, 1357-1367 (2013)), an analog of A/C ligand. **b**, Representative microscopy images of HEK293 cells are shown for selected transfections indicated in Fig. 3a. In all panels the top and the bottom

row of images show, respectively, the expression of mCherry transfection reporter (red), and pathway-induced Cerulean protein output (cyan) in the same transfection with or without the ligand (A/C). The white scale bar in **b** corresponds to 200 μ M. **c**, Cerulean expression in the presence of the RR NarL and NarL-inducible Cerulean reporter, alone or with individual fusion variants of NarX and FKBP or FRB, as indicated. For each pair of bars, the bar on the left (white) represents reporter expression without the A/C ligand, and the bar on the right (black) represents reporter expression with the ligand (100 nM). The bar height indicates Cerulean expression normalized to the transfection control and averaged across independent biological triplicate, shown as mean ± SD. The circles indicate the individual measurements. Constructs are described in Supplementary Fig. 1. The results were reproduced at least once in independent experiments.

Supplementary Fig. 7 | Restoration of two-component signalling via ligand induced dimerization of protein moieties fused at the N-termini of NarX. AmCyan expression in the presence of NarL and NarL-inducible AmCyan fluorescent protein reporter, alone or with individual fusion variants of NarX and FKBP or FRB, as indicated. For each pair of bars, the bar on the left (white) shows reporter expression without the A/C ligand, and the bar on the right (black) shows reporter expression with the ligand (1 μ M). The bar height indicates AmCyan expression normalized to the transfection control. Similar experiments were done with small modifications, leading to similar conclusions. Constructs are described in Supplementary Fig. 1.

Supplementary Fig. 8 | Data related to Figure 4. a, Schematics of transducing ligandinduced GPCR-β/arrestin interaction (Shukla, A.K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218-222 (2014)) into gene expression using the Tango assay. The proteins and the DNA binding domain are indicated (tTA: PDB: 2TRT, Hinrichs, W., et al., Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. (1994) Science 264: 418-420; TEV: PDB: 1Q31, Nunn, C. M. et al., Crystal structure of tobacco etch virus protease shows the protein C terminus bound within the active site. (2005) J. Mol. Biol. 350: 145-155). The brown segment between the GPCR and tTA represents the TEV protein cleavage site. b, Representative microscopy images of the transfections whose images are shown in Fig. 4, here showing the expression of the mCherry transfection control. In all panels the top and the bottom row of images show, respectively, the expression of mCherry transfection reporter (red) and pathway-induced Cerulean protein output (cyan) in the same transfection with or without ligand. **c**, Signalling levels in mammalian cells expressing the response regulator NarL and NarL-regulated Cerulean fluorescent protein reporter, alone or with the indicated individual protein domains or fusions. d, Signalling levels in mammalian cells expressing the Tango assay components from CMV or EF1 α -V1 promoters. For each pair of bars in panels **a** and **d**, the bar on the left (white) represents reporter expression without procaterol, and the bar on the right (black) represents reporter expression with procaterol (2 µM). The bar height indicates Cerulean expression normalized to the transfection control and averaged across independent biological triplicate, shown as mean ± SD. The value above the bars in d indicates the fold

change of the Cerulean expression between cells grown with and without procaterol. The circles indicate individual measurements. Constructs are described in Supplementary Fig. 1. The scale bar in **b** corresponds to 200 μ M. The results were reproduced at least once in independent experiments.

Supplementary Fig. 9 I Supplementary imaging data for Fig. 5. Representative microscopy images of the conditions described in Fig. 5, here also showing the expression of the mCherry transfection control. In all panels the top and the bottom row of images show, respectively, the expression of mCherry transfection reporter (red), and pathway-induced Cerulean protein output (cyan) in the same transfection with or without ligand. The modified GPCRs used for the transfection are indicated on top and the fused domains (H^{mut} or tTA) are shown on the left. The scale bars correspond to 200 µM.

NPY1-R(321-346)GFLNKNFQRDLQFFFNFCDFRSRDDB2R(336-361)GKRFRKKSWEVYQGVCQKGGCRSEPCXC-R4(303-328)AFLGAKFKTSAQHALTSVSRGSSLK

Supplementary Fig. 10 | Sequence analysis of the GPCRs used in this study. a, Phylogenetic trees of selected class A GPCRs based on full sequence. The eight GPCRs used in this study are highlighted in green for the GPCR that we were able to rewire either using the TCS fusions or the Tango assay, in blue for GPCRs that we were able to rewire using the TCS fusions only, and in red for GPCR that we were unable to rewire using either method. The type of ligand is indicated by color code in the outside circle and indicated in the box. **b**, Multiple sequence alignment based on MULTALIN of the 5 GPCR rewireable with TCS. The alignment of the 25 amino acids following the end of the 7th transmembrane helix of the V2R, β 2AR, NMB-R, LPA-1 and NPY5-R has been realized with the software Multalin version 5.4.1. The amino acids conserved in 60% or 80% of the sequences are indicated in blue and red, respectively. The sequence of the GPCR NPY1-R, B2R and CXC-R4 are shown below the alignment. The numbers in brackets indicate the position number in

b

the protein of the first and the last amino acid shown. Note that NPY5-R has only 17 amino acid after the end of the 7th transmembrane helix. GPCR name is highlighted with the same color as the one used in panel **a**.

Supplementary Fig. 11 | Time lapse traces obtained in the dynamic characterization (See also Fig. 6). Charts represent, from left to right, rtTA-Dox (rtTA), GPCR signaling via TCS pathway (TCS fusions) and GPCR signaling via a Tango assay (Tango). The top row shows the comparison of On-On-On to On-Off-On sequence for the indicated signaling approaches. The solid lines show On-On-On sequences while the dotted traces are On-Off-On sequences. The bottom row compares the Off-On-On (solid lines) to Off-On-Off (dotted lines) sequences. The dotted red frames highlight the time intervals in which the treatments diverged between the samples. Lines of the same color represent consecutive time lapse traces obtained from the same well. Black lines represent background readout.

Supplementary Fig. 12 | Illustration of responsiveness evaluation method (see also Fig. 6). Time-lapse traces corresponding to On and Off induction interval are fitted with a linear fit and the relative change in signal is calculated according to the formulas in the panel. The responsiveness is defined as a difference between the two, as shown. For rtTA time course, the fit does not use the first 18 time points for both On and Off traces due to biphasic behavior of the Off traces.

Supplementary Fig. 13 I Illustration of gating in flow cytometry analyses. **a-f**, Cell gating examples. **a-c**, Gating using untransfected HEK293 cells. **a**, Live cells gating is determined by plotting all events recorded from the biological sample on SSC-A and FSC-A density plot. **b**, Single cell live gating is done by plotting live cells on FSC-A and FSC-H density plot. **c**, Cerulean+ gating and mCherry+ gating are determined from untransfected HEK293 cells with 99.9% Cerulean+ and mCherry+ outside of the gate, respectively. **d-f**, Examples of gating applied to HEK293 expressing different TCS pathways. **d**, HEK293 cells expressing the WT NarX/NarL TCS. **e**, HEK293 cells expressing FKBP::H^{MUT}/FRB::N^{MUT} in absence of the heterodimezer. **f**, HEK293 cells expressing FKBP::H^{MUT}/FRB::N^{MUT} in the

presence of the heterodimerizer. **g-h**, Beads gating examples. **g**, The single bead gating is determined by plotting beads on FSC-A and SSC-H density plot. **h**, The three brighter populations of colored flow cytometry calibration particles are determined by plotting all single beads on mCherry histogram plot. The number of events shown on each plot is indicated in the top left corner of the plot. The value on the right of the name of each gate indicates the percentage of the events present inside the gate.

Supplementary Notes

Supplementary Note 1: Recombinant DNA cloning protocols.

OmpR_RE-*cerulean* (pMZ1): The Cerulean coding sequence from EF1α-*cerulean* (pKH024³) was digested with *Not*I and *Sma*I and cloned into the plasmid OmpR_RE*amCyan* (pJH008⁴) digested with *Afe*I and *Psp*OMI.

CMV-*envZ* N347A (pMZ37): The 5' and the 3' fragments of *envZ* were PCR amplified with PR3687/PR3708 and PR3707/PR3709 from the plasmid CMV-*envZ* (pJH001⁴). The primers were designed to introduce a mutation exchanging the codon encoding for the asparagine (N) at the 347th position to codon encoding for an alanine (A). Both PCR products and the plasmid CMV-*envZ* (pJH001⁴), digested with *Xho*I and *Pvu*II, were assembled using Gibson mix.

CMV-*envZ*²²³⁻⁴⁵⁰ (pMZ123): The 3' fragment of *envZ* was PCR amplified with PR4345/PR4346 from the plasmid CMV-*envZ* (pJH001⁴). The primers were designed to amplify the sequence from the 20th codon upstream of the codon encoding for the phosphorylatable histidine at the position 243 till the end of the gene, and to insert ATG sequence in front of this amplified sequence. The PCR product and the plasmid CMV-*envZ* (pJH001⁴), digested with *Xho*l and *Age*l, were assembled using Gibson mix.

CMV-*narX* N509A (pMZ160): The 5' and the 3' fragments of *narX* were PCR amplified with PR4122/PR4541 and PR4346/PR4542 from the plasmid CMV-*narX* (pJH002⁴). The primers were designed to introduce a mutation exchanging the codon encoding for the asparagine (N) at the 509th position to codon encoding for an alanine (A). Both PCR products and the plasmid CMV-*envZ* (pJH001⁴), digested with *Xho*I and *Age*I, were assembled using Gibson mix.

CMV-*narX*³⁷⁹⁻⁵⁹⁸ (pMZ163): The 3' fragment of *narX* was PCR amplified with PR4345/PR4546 from the plasmid CMV-*narX* (pJH002⁴). The primers were designed to amplify the sequence from the 20th codon upstream the codon encoding for the

phosphorylatable histidine at the position 399 till the end of the gene, and to insert ATG sequence in front of this amplified sequence. The PCR products and the plasmid CMV-*envZ* (pJH001), digested with *Xho*I and *Age*I, were assembled using Gibson mix.

EF1 α -V1-*envZ*-*mCherry* (pMZ194): The EF1 α -V1, as shortened version of EF1 α , was PCR amplified with PR4733/PR4734 from the plasmid pRA114 (Altamura et al, manuscript in preparation). The promoter and the plasmid EnvZ-GGGGS-mCherry (pEM017⁴), digested with *Psp*OMI and *Age*I, were assembled using Gibson mix.

CMV-*SYNZIP1*::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ200): We performed de novo synthesis of gBlock sequence encoding for MGSS starting sequence, SYNZIP1 and G4S linker (gBlock264) via IDT. The coding sequence of NarX³⁷⁹⁻⁵⁹⁸ was PCR amplified with PR4346/PR4747 from the plasmid CMV-*narX*¹⁷⁶⁻⁵⁹⁸ (pJH010). The gBlock, the PCR product and the plasmid CMV-*envZ* (pJH001⁴), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

CMV-*narX*³⁷⁹⁻⁵⁹⁸::*SYNZIP1* (pMZ202): We performed de novo synthesis of gBlock sequence encoding for G4S linker and SYNZIP1 (gBlock265) via IDT. The coding sequence of NarX^{379-⁵⁹⁸ was PCR amplified with PR4122/PR4747 from the plasmid CMV-*narX*³⁷⁹⁻⁵⁹⁸ (pMZ163). The gBlock, the PCR product and the plasmid CMV-*envZ* (pJH001⁴), digested with *Age*I and *Xho*I, were assembled using Gibson mix.}

CMV-*SYNZIP2::narX*³⁷⁹⁻⁵⁹⁸ (pMZ206): We performed de novo synthesis of gBlock sequence encoding for MGSS starting sequence, SYNZIP2 and G4S linker (gBlock269) via IDT. The coding sequence of NarX³⁷⁹⁻⁵⁹⁸ was PCR amplified with PR4346/PR4747 from the plasmid CMV-*narX*¹⁷⁶⁻⁵⁹⁸ (pJH010). The gBlock, the PCR product and the plasmid CMV-*envZ* (pJH001⁴), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

CMV-*narX*³⁷⁹⁻⁵⁹⁸::*SYNZIP2* (pMZ208) : We performed de novo synthesis of gBlock sequence encoding for G4S linker and SYNZIP2 (gBlock270) via IDT. The coding sequence of NarX³⁷⁹⁻ ⁵⁹⁸ was PCR amplified with PR4122/PR4748 from the plasmid CMV-*narX*³⁷⁹⁻⁵⁹⁸ (pMZ163). The gBlock, the PCR product and the plasmid CMV-*envZ* (pJH001⁴), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

CMV-*MTOR*²⁰¹⁸⁻¹¹³ T2098L::*CBRC* (pMZ211): The sequences coding for N-terminus of FRB and the C-terminus of FRB with CBRC were PCR amplified with PR4122/PR4541 and PR4346/PR4542 from the plasmid *MTOR*²⁰¹⁸⁻¹¹³::*CBRC*⁵. The primers were designed to introduce a mutation exchanging the codon coding for the threonine (T) at 2098th position (relative to the full protein Serine/Threonine-protein kinase TOR1) to a codon coding for a leucine (L). Both PCR products and the plasmid *MTOR*²⁰¹⁸⁻¹¹³::*CBRC*, digested with *Bam*HI and *Age*I, were assembled using Gibson mix.

CMV-*FKBP1A*::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ214): The sequence coding for FKBP was PCR amplified with PR4766/PR4767 from the plasmid *CBRN*::*FKBP1A*⁵. The coding sequence of NarX³⁷⁹⁻ ⁵⁹⁸ was PCR amplified with PR4346/PR4771 from the plasmid CMV-*narX*¹⁷⁶⁻⁵⁹⁸ (pJH010). The primers were designed to insert sequence encoding for (G4S)2 linker between the amplified fragment. Both PCR products and the plasmid CMV-*envZ* (pJH001⁴), digested with *Agel* and *Xhol*, were assembled using Gibson mix.

CMV-*FRB* T2098L::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ215): The sequence coding for FRB T2098L was PCR amplified with PR4769/PR4770 from the plasmid CMV-*MTOR*²⁰¹⁸⁻¹¹³ T2098L::*CBRC* (pMZ211). The coding sequence of NarX³⁷⁹⁻⁵⁹⁸ was PCR amplified with PR4346/PR4771 from the plasmid CMV-*narX*¹⁷⁶⁻⁵⁹⁸ (pJH010). The primers were designed to insert sequence coding for (G4S)2 linker between the amplified fragment. Both PCR products and the plasmid CMV-*envZ* (pJH001⁴), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

NarL_RE-*cerulean* (pMZ219): The minimal response element NarL_RE was formed by annealing the primers PR4892 and PR4893. The annealed product and the plasmid OmpR_RE-*cerulean* (pMZ1), digested with *Asc*I and *Nde*I, were assembled using Gibson mix.

EF1 α -V1-SYNZIP1::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ221): The sequence coding for MGSS starting sequence, SYNZIP1, G4S linker, and NarX^{379to383} was PCR amplified with PR3687/PR4971 from the plasmid CMV-SYNZIP1:: *NarX*³⁷⁹⁻⁵⁹⁸ (pMZ200). The PCR product and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-SYNZIP2::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ222): The sequence coding for MGSS starting sequence, SYNZIP2, G4S linker, and NarX^{379to383} was PCR amplified with PR3687/PR4971 from the plasmid CMV-*SynZip2::narX*³⁷⁹⁻⁵⁹⁸ (pMZ206). The PCR product and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*SYNZIP1::narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ223): The sequence coding for MGSS starting sequence, SYNZIP,1 and G4S linker was PCR amplified with PR4971/PR4973 from the plasmid CMV-*SYNZIP1::narX*³⁷⁹⁻⁵⁹⁸ (pMZ200). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR4972 from the plasmid CMV-*narX* H399Q (pEM014⁴). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Agel* and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*SYNZIP2::narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ224): The sequence coding for MGSS starting sequence, SYNZIP2, and G4S linker was PCR amplified with PR4971/PR4973 from the plasmid CMV-*SYNZIP2::narX*³⁷⁹⁻⁵⁹⁸ (pMZ206). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR4972 from the plasmid CMV-*narX* H399Q (pEM014⁴). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Agel* and *Xho*I, were assembled using Gibson mix.

EF1α-V1-*SYNZIP1*::*narX*³⁷⁹⁻⁵⁹⁸ N509A (pMZ225): The sequence coding for MGSS starting sequence, SYNZIP1, and G4S linker was PCR amplified with PR4971/PR4973 from the plasmid CMV-*SYNZIP1*::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ200). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ N509A was PCR amplified with PR3687/PR4972 from the plasmid CMV-*narX* N509A (pMZ160).

Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Agel* and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*SYNZIP2::narX*³⁷⁹⁻⁵⁹⁸ N509A (pMZ226): The sequence coding for MGSS starting sequence, SYNZIP2, and G4S linker was PCR amplified with PR4971/PR4973 from the plasmid CMV-*SYNZIP2::narX*³⁷⁹⁻⁵⁹⁸ (pMZ206). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ N509A was PCR amplified with PR3687/PR4972 from CMV-*narX* N509A (pMZ160). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*FKBP1A*::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ229): The sequence coding for FKBP and (G4S)2 linker was PCR amplified with PR4974/PR4973 from the plasmid CMV-*FKBP1A*:: *NarX*³⁷⁹⁻⁵⁹⁸ (pMZ214). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR4972 from the plasmid CMV-*narX* H399Q (pEM014⁴). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1α-V1-*MTOR*²⁰¹⁸⁻¹¹³ T2098L::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ230): The sequence coding for FRB T2098L and (G4S)2 linker was PCR amplified with PR4975/PR4973 from the plasmid CMV-*MTOR*²⁰¹⁸⁻¹¹³ T2098L::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ215). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR4972 from the plasmid CMV-*narX* H399Q (pEM014⁴). Both PCR products and the plasmid EF1α-V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*FKBP1A*::*narX*³⁷⁹⁻⁵⁹⁸ N509A (pMZ231): The sequence coding for FKBP and (G4S)2 linker was PCR amplified with PR4974/PR4973 from the plasmid CMV-*FKBP1A*::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ214). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ N509A was PCR amplified with PR3687/PR4972 from the plasmid CMV-*narX* N509A (pMZ160). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix. EF1 α -V1-*MTOR*²⁰¹⁸⁻¹¹³ T2098L::*narX*³⁷⁹⁻⁵⁹⁸ N509A (pMZ232): The sequence coding for FRB T2098L and (G4S)2 linker was PCR amplified with PR4975/PR4973 from the plasmid CMV-*MTOR*²⁰¹⁸⁻¹¹³ T2098L::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ215). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ N509A was PCR amplified with PR3687/PR4972 from the plasmid CMV-*narX* N509A (pMZ160). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*narX* (pMZ239): The sequence coding for NarX was PCR amplified with PR3687/PR4979 from the plasmid CMV-*narX* (pJH002⁴). The PCR product and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*narX*³⁷⁹⁻⁵⁹⁸ (pMZ241): The 3' fragment of *narX* was PCR amplified with PR4977/PR3687 from the plasmid CMV-*narX* (pJH002⁴). The primers were designed to amplify the sequence from the 20th codon upstream the codon encoding for the phosphorylatable histidine at the position 399 till the end of the gene and to insert the ATG sequence in front of this amplified sequence. The PCR product and the plasmid EF1 α -V1*envZ-mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*narX* H399Q (pMZ242): The sequence coding for NarX was PCR amplified with PR3687/PR4979 from the plasmid CMV-*narX* H399Q (pEM014⁴). The PCR product and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ244): The 3' fragments of *narX* was PCR amplified with PR4977/PR3687 from the plasmid CMV-*narX* H399Q (pEM014⁴). The primers were designed to amplify the sequence from the 20th codon upstream of the codon encoding for the phosphorylatable histidine at the position 399 till the end of the gene and to insert the ATG sequence in front of this amplified sequence. The PCR product and the plasmid EF1 α -

V1-*envZ-mCherry* (pMZ194), digested with *Agel* and *Xhol*, were assembled using Gibson mix.

EF1 α -V1-*narX* N509A (pMZ245): The sequence coding for NarX was PCR amplified with PR3687/PR4979 from the plasmid CMV-*narX* N509A (pMZ160). The PCR product and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Agel* and *Xhol*, were assembled using Gibson mix.

EF1 α -V1-*narX*³⁷⁹⁻⁵⁹⁸ N509A (pMZ247): The 3' fragment of *narX* was PCR amplified with PR4977/PR3687 from the plasmid CMV-*narX* N509A (pMZ160). The primers were designed to amplify the sequence from 20 codon upstream the codon encoding for the phosphorylatable histidine at the position 399 to the end of the gene and to insert the ATG sequence in front of this amplified sequence. The PCR product and the plasmid EF1 α -V1-*envZ-mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -*NarL* (pMZ248): The EF1 α promoter was PCR amplified with PR4732/PR4978 from the plasmid pRA58 (Altamura et al, manuscript in preparation). The PCR product and the plasmid CMV-*narL* (pJH004⁴), digested with *Psp*OMI and *Age*I, were assembled using Gibson mix.

EF1 α -V1-*NarL* (pMZ249): The EF1 α -V1 promoter was PCR amplified with PR4734/PR4978 from the plasmid pRA114 (Altamura et al, manuscript in preparation). The PCR product and the plasmid CMV-*narL* (pJH004), digested with *Psp*OMI and *Age*I, were assembled using Gibson mix.

EF1α-V1-*ARRB2*::*narX*³⁷⁹⁻⁵⁹⁸ (pMZ250): The sequence coding for β-arrestin-2 was PCR amplified with PR4980/PR4981 from the plasmid CMV-*ARRB2*::TEV protease (pBH302). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ was PCR amplified with PR3687/PR4982 from the plasmid CMV-*narX* (pJH002⁴). The primers were designed to insert sequence encoding for G4S linker between the amplified fragment. Both PCR products and EF1α-V1-*envZ*-*mCherry* the plasmid (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix. EF1α-V1-*ARRB2*::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ251): The sequence coding for β-arrestin-2 was PCR amplified with PR4980/PR4981 from the plasmid CMV-*ARRB2*::TEV protease (pBH302). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR4982 from the plasmid CMV-*narX* H399Q (pEM014⁴). The primers were designed to insert sequence encoding for G4S linker between the amplified fragment. Both PCR products and the plasmid EF1α-V1-*envZ-mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1α-V1-*ARRB2::narX*³⁷⁹⁻⁵⁹⁸ N509A (pMZ252): The sequence coding for β-arrestin-2 was PCR amplified with PR4980/PR4981 from the plasmid CMV-*ARRB2:*:TEV protease (pBH302). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ N509A was PCR amplified with PR3687/PR4982 from the plasmid CMV-*narX* N509A (pMZ160). The primers were designed to insert sequence encoding for G4S linker between the amplified fragment. Both PCR products and the plasmid EF1α-V1-*envZ-mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257): The sequence coding for β 2AR¹⁻³⁴¹::V2R³⁴³⁻³⁷¹ was PCR amplified with PR4983/PR4985 from the plasmid CMV-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH312). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR4982 from the plasmid CMV-*narX* H399Q (pEM014). The primers were designed to insert sequence encoding for G4S linker between the amplified fragment. Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ N509A (pMZ258): The sequence coding for β 2AR¹⁻³⁴¹::V2R³⁴³⁻³⁷¹ was PCR amplified with PR4983/PR4985 from the plasmid CMV-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH312). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ N509A was PCR amplified with PR3687/PR4982 from the plasmid CMV-*narX* N509A (pMZ160). The primers were designed to insert sequence encoding for G4S linker between the amplified fragment. Both PCR products and the plasmid EF1α-V1-*envZ-mCherry* (pMZ194), digested with *Agel* and *Xhol*, were assembled using Gibson mix.

DcuR_RE-*cerulean* (pMZ259): The minimal response element DcuR_RE was formed by annealing the primers PR1964 and PR1965. The annealed product and the plasmid OmpR_RE-*cerulean* (pMZ1), digested with *Asc*I and *Nde*I, were assembled using Gibson mix.

tTA_RE-*cerulean* (pMZ290): The promoter regulated by tTA was PCR amplified with PR5226/PR5227 from the plasmid tTA_RE-*mCherry* (pIM003⁶). The PCR product and the plasmid DcuR_RE-*cerulean* (pMZ259), digested with *Ascl* and *Agel*, were assembled using Gibson mix.

EF1α-V1-*ARRB2:*:TEV protease (pMZ291): The sequence coding for β-arrestin-2²⁸³⁻⁴⁰⁹ and for the TEV protease was PCR amplified with PR5228/PR5229 from the plasmid CMV-*ARRB2:*:TEV protease (pBH302). The sequence of the bGH poly(A) signal was PCR amplified with PR5230/PR5231 from the plasmid EF1α-V1-*ARRB2::narX*³⁷⁹⁻⁵⁹⁸ (pMZ250). Both PCR products and the plasmid EF1α-V1-*ARRB2::narX*³⁷⁹⁻⁵⁹⁸ (pMZ250), digested with *Bsa*I and *Avr*II, were assembled using Gibson mix.

EF1 α -V1-*NPY1R*::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ295): The sequence coding for NPY1-R was PCR amplified with PR5293/PR5294 from the plasmid CMV-*NPY1R*::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pMZ293). The sequence coding for NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR4982 from the plasmid EF1 α -V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). The primers were designed to insert sequence encoding for G4S linker between the amplified fragment. Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*l and *Xho*I, were assembled using Gibson mix.

EF1α-V1-*NPY5R*¹⁻⁴³⁸::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ297): The sequence coding for NPY5-R¹⁻³³⁸ was PCR amplified with PR5295/PR5296 from the plasmid CMV- *NPY5R*¹⁻⁴⁴⁵::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pMZ294). The sequence coding for V2R³⁴³⁻³⁷¹::NarX³⁷⁹⁻⁵⁹⁸ H399Q was

PCR amplified with PR3687/PR5297 from the plasmid EF1 α -V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). The primers were designed to insert sequence encoding for G4S linker between the amplified fragment. Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1 α -V1-*ADRB2*¹⁻⁴¹³::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ307): The sequence coding for β 2AR¹⁻⁴¹³::V2R³⁴³⁻³⁴⁹ was PCR amplified with PR5399/PR5400 from the plasmid CMV- *ADRB2*¹⁻⁴¹³::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pMZ300). The sequence coding for V2R³⁴³⁻³⁷¹::NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR5396 from the plasmid EF1 α -V1-*ADRB2*^{1-³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.}

EF1α-V1-*AVPR2*¹⁻³⁷¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ308): The sequence coding for V2R⁻³⁷¹::V2R³⁴³⁻³⁴⁹ was PCR amplified with PR5401/PR5400 from the plasmid CMV-*AVPR2*¹⁻³⁷¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pMZ301). The sequence coding for V2R³⁴³⁻³⁷¹::NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR5396 from the plasmid EF1α-V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). Both PCR products and the plasmid EF1α-V1-*envZ*-*mCherry* (pMZ194), digested with *Agel* and *Xhol*, were assembled using Gibson mix.

EF1α-V1-*BDKRB2*¹⁻³⁹¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ309): The sequence coding for B2R¹⁻³⁹¹::V2R³⁴³⁻³⁴⁹ was PCR amplified with PR5402/PR5400 from the plasmid CMV-*BDKRB2*¹⁻³⁹¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pMZ302). The sequence coding for V2R³⁴³⁻³⁷¹::NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR5396 from the plasmid EF1α-V1-*ADRB2*^{1-³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). Both PCR products and the plasmid EF1α-V1-*envZ-mCherry* (pMZ194), digested with *Agel* and *Xhol*, were assembled using Gibson mix.} EF1 α -V1-*CXCR4*¹⁻³⁵⁸::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ310): The sequence coding for CXC-R4¹⁻³⁵⁸::V2R³⁴³⁻³⁴⁹ was PCR amplified with PR5403/PR5400 from the plasmid CMV-*CXCR4*¹⁻³⁵⁸::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pMZ303). The sequence coding for V2R³⁴³⁻³⁷¹::NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR5396 from the plasmid EF1 α -V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Agel* and *Xhol*, were assembled using Gibson mix.

EF1 α -V1-*LPAR1*¹⁻³⁶⁴::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ311): The sequence coding for LPA-R1¹⁻³⁶⁴::V2R³⁴³⁻³⁴⁹ was PCR amplified with PR5404/PR5400 from the plasmid , CMV-*LPAR1*¹⁻³⁶⁴::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pMZ304). The sequence coding for V2R³⁴³⁻³⁷¹::NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR5396 from the plasmid EF1 α -V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). Both PCR products and the plasmid EF1 α -V1-*envZ*-*mCherry* (pMZ194), digested with *Age*I and *Xho*I, were assembled using Gibson mix.

EF1α-V1-*NMBR*¹⁻³⁹⁰::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ312): The sequence coding for NMB-R¹⁻³⁹⁰::V2R³⁴³⁻³⁴⁹ was PCR amplified with PR5405/PR5400 from the plasmid , CMV-*NMBR*¹⁻³⁹⁰::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pMZ305). The sequence coding for V2R³⁴³⁻³⁷¹::NarX³⁷⁹⁻⁵⁹⁸ H399Q was PCR amplified with PR3687/PR5396 from the plasmid EF1α-V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). Both PCR products and the plasmid EF1α-V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). Both PCR products and the plasmid EF1α-V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257). Both PCR products and the plasmid EF1α-V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*narX*³⁷⁹⁻⁵⁹⁸ H399Q (pMZ257).

EF1α-V1-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH292): The sequence coding for β2AR²⁵⁴⁻ ³⁴¹::V2R³⁴³⁻³⁷¹::tTA was PCR amplified with PR5232/PR5233 from the plasmid CMV-*ADRB2*^{1-³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH312). The PCR product and the plasmid EF1α-V1-*ADRB2*^{1-³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH312). The PCR product and the plasmid EF1α-V1-*ADRB2*¹⁻ ³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH312). The PCR product and the plasmid EF1α-V1-*ADRB2*¹⁻}} CMV-*ARRB2*::TEV protease (pBH302): We performed de novo synthesis of gBlock sequence encoding for β -arrestin-2 fused with the TEV protease with 2 gBlock (gBlock112 and gBlock 113) via IDT. The gBlock and the plasmid pZsYellow1-N1 (Clontech 632445), digested with *Not*I and *Eco*RI, were assembled using Gibson mix.

CMV-*OPRK1*¹⁻³⁴⁵::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH309): Via IDT, We performed de novo synthesis of gBlock (gBlock114) sequence encoding for KOR-1 and of gBlock (gBlock115) sequence encoding for V2R fused to tTA. The sequence coding for KOR-1¹⁻³⁴⁵ was PCR amplified with PR2442/PR2443 from gBlock114. The PCR product, gBlock115 and the plasmid pZsYellow1-N1 (Clontech 632445), digested with *Xho*I and *Mfe*I, were assembled using Gibson mix.

CMV-*ADRB2*¹⁻³⁴¹::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH312): Via IDT, We performed de novo synthesis of gBlock (gBlock118) sequence encoding for β 2AR. The sequence coding for β 2AR¹⁻³⁴¹ was PCR amplified with PR2442/PR2444 from gBlock118. The PCR product and the plasmid CMV-*OPRK1*¹⁻³⁴⁵::*AVPR2*³⁴³⁻³⁷¹::*tTA* (pBH309), digested with *Xho*I and *Bss*HII, were assembled using Gibson mix.

EF1 α ::*iRFP* (pCS184): The iRFP coding sequence from CMV-*iRFP* (pCS12⁷) was PCR amplified with PR2258/PR2259. The PCR product and the plasmid EF1 α ::*citrine* (pRA001, Altamura et al, manuscript in preparation), digested with *Bmt*I and *Xba*I, were assembled using ligation mix.

CMV-*narX*¹⁷⁶⁻⁵⁹⁸ (pJH010): The 3' fragment of *narX* was PCR amplified with PR1021/PR1023 from CMV-*narX* (pJH002). The primers were designed to amplify the sequence of NarX from the codon encoding the alanine at the position 176 to the end of the gene and to insert the ATG sequence in front of this amplified sequence. The PCR products and CMV-*narX* (pJH002⁴) were digested with *Xho*I and *Age*I. The two digested products are then ligated together.

The following plasmids were reported previously: CMV-*envZ* (pJH001), CMV-*narX* (pJH002), CMV-*ompR* (pJH003), CMV-*narL* (pJH004), OmpR_RE-*amCyan* (pJH008), CMV-*envZ_*cyt (pJH009), CMV-*envZ* H243V (pEM013), CMV-*narX* H399Q (pEM014), EnvZ-GGGGSmCherry (pEM017)⁴, CBRN::FKBP1A and MTOR²⁰¹⁸⁻¹¹³::CBRC⁵, Ef1 α -Cerulean (pKH024), Ef1 α -citrine (pKH025), Ef1 α -mCherry (pKH026) and Junk-DNA (pBH265)³, pTRE Bidirectional mCherry-pA (pIM003)⁶, CMV-rtTA (pZ91) ⁸. The plasmid CMV-*iRFP* (pCS12) was obtained from Addgene (plasmid 31857⁷). The plasmid CMV-*NPY1R*::AVPR2³⁴³⁻³⁷¹::tTA (pMZ293, addgene number 66453), CMV-*NPY5R*¹⁻⁴⁴⁵::AVPR2³⁴³⁻³⁷¹::tTA (pMZ294, addgene number 66456), CMV-*ADRB2*¹⁻⁴¹³::AVPR2³⁴³⁻³⁷¹::tTA (pMZ300, addgene number 66220), CMV-AVPR2¹⁻³⁷¹::AVPR2³⁴³⁻³⁷¹::tTA (pMZ301, addgene number 66227)), CMV-BDKRB2¹⁻ ³⁹¹::AVPR2³⁴³⁻³⁷¹::tTA (pMZ302, addgene number 66230), CMV-CXCR4¹⁻³⁵⁸::AVPR2³⁴³⁻³⁷¹::tTA (pMZ304, addgene number 66418), CMV-*NMBR*¹⁻³⁹⁰::AVPR2³⁴³⁻³⁷¹::tTA (pMZ305, addgene number 66445) were obtained from Addgene².

Supplementary Note 2: Preparation of chemicals used in this study

A/C Heterodimerizer (Clontech; Cat# 635057) solution at 50 μM was prepared in ethanol (Honeywell; Cat# 02860) and diluted in DMEM to have final concentration of 500 nM of A/C Heterodimerizer.

Procaterol (Sigma; Cat# P9180-10MG) solution at 200 μ M was prepared in DMSO (Sigma; Cat# D4540, BCBT0803) and diluted in DMEM to have final concentration of 2 μ M of procaterol.

Bradykinin acetate salt (Sigma; Cat#B3259) solution at 10 mM was prepared in water (Invitrogen; Cat#10977-035) and diluted in DMEM to have final concentration of 10 μ M of Bradykinin.

Lysophosphatidic Acid (Santa cruz Biotech; Cat#SC201053) solution at 2 mM was prepared in PBS (Gibco; Cat#10010-015) and diluted in DMEM without serum to have final concentration of 10 µM of Lysophosphatidic Acid.

[Arg8]-Vasopressin (Tocris; Cat#2935) solution at 1mM was prepared in water (Invitrogen; Cat#10977-035) and diluted in DMEM to have final concentration of 10 μ M of [Arg8]-Vasopressin.

NMB (Tocris; Cat#1908) solution at 1 mM was prepared in DMSO (Sigma; Cat#D4540) and diluted in DMEM without serum to have final concentration of 10 µM of NMB.

Recombinant Human CXCL12 (SDF-1 α , Lys22 to lys89) (Biolegend; Cat#581202) at 25 μ M (200 μ g/ml) was diluted in DMEM without serum to have final concentration of 0.2 μ M of CXCL12.

NPY (Sigma; Cat#N5017) was prepared in water (Invitrogen; Cat#10977-035) and diluted in DMEM without serum to have final concentration of 0.5 μM of NPY.

For the titration experiment 5 μ l of the chemical tested at 100x of the desired final concentration were added to the 500 μ l of DMEM present in the wells. The different stock solution used were prepared as indicated below:

A/C Heterodimerizer (Clontech; Cat# 635057) stock solution was prepared in ethanol (Honeywell; Cat# 02860): 250μM, 50 μM, 20 μM, 8 μM, 3.2 μM, 1.28 μM, 512 nM, 205 nM, 81.9 nM, 32.8 nM, 13.1 nM, 5.24 nM, 1.04 nM.

Procaterol (Sigma; Cat# P9180-10MG) stock solution was prepared in DMSO (Sigma; Cat# D4540, BCBT0803): 1mM, 286 μ M, 81.6 μ M, 23.3 μ M, 10 μ M, 6.6 μ M, 1.9 μ M, 544 nM, 155 nM, 44.4 nM and 12.7 nM.

Isoproterenol (Sigma; Cat# I6504) stock solution was prepared in DMSO (Sigma; Cat# D4540): 1mM, 286 μM, 81.6 μM, 23.3 μM, 6.6 μM, 1.9 μM, 544 nM, 155 nM, 44.4 nM and 12.7 nM.

Clenbuterol (Sigma; Cat# C5423) stock solution was prepared in DMSO (Sigma; Cat#

D4540): 1mM, 286 $\mu M,$ 81.6 $\mu M,$ 23.3 $\mu M,$ 6.6 $\mu M,$ 1.9 $\mu M,$ 544 nM, 155 nM, 44.4 nM and

12.7 nM.

Propranolol (Sigma; Cat# P0884) stock solution was prepared in water (Invitrogen;

Cat#10977-035): 1mM, 286 µM, 81.6 µM, 23.3 µM, 6.6 µM, 1.9 µM, 544 nM, 155 nM, 44.4

nM and 12.7 nM.

Supplementary References

- 1. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. *Proc. Natl. Acad. Sci. USA* **105**, 64-69 (2008).
- 2. Kroeze, W.K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. *Nat. Struct. Mol. Biol.* **22**, 362–369 (2015).
- 3. Prochazka, L., Angelici, B., Haefliger, B. & Benenson, Y. Highly modular bow-tie gene circuits with programmable dynamic behaviour. *Nature Communications* **5**, 4729 (2014).
- 4. Hansen, J. et al. Transplantation of prokaryotic two-component signaling pathways into mammalian cells. *Proc. Natl. Acad. Sci. USA* **111**, 15705-15710 (2014).
- 5. Schramm, A. et al. Establishing a Split Luciferase Assay for Proteinkinase G (PKG) Interaction Studies. *Int. J. Mol. Sci.* **19**, 20 (2018).
- 6. Angelici, B., Mailand, E., Haefliger, B. & Benenson, Y. Synthetic biology platform for sensing and integrating endogenous transcriptional inputs in mammalian cells. *Cell Reports* **16**, 2525-2537 (2016).
- 7. Filonov, G.S. et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe. *Angewandte Chemie International Edition* **51**, 1448-1451 (2012).
- 8. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAibased logic circuit for identification of specific cancer cells. *Science* **333**, 1307-1311 (2011).