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SUMMARY

Methods for single-cell RNA sequencing (scRNA-
seq) have greatly advanced in recent years. While
droplet- and well-based methods have increased
the capture frequency of cells for scRNA-seq, these
technologies readily produce technical artifacts,
such as doublet cell captures. Doublets occurring
between distinct cell types can appear as hybrid
scRNA-seq profiles, but do not have distinct tran-
scriptomes from individual cell states. We introduce
DoubletDecon, an approach that detects doublets
with a combination of deconvolution analyses and
the identification of unique cell-state gene expres-
sion. We demonstrate the ability of DoubletDecon
to identify synthetic, mixed-species, genetic, and
cell-hashing cell doublets from scRNA-seq datasets
of varying cellular complexity with a high sensitivity
relative to alternative approaches. Importantly, this
algorithm prevents the prediction of valid mixed-
lineage and transitional cell states as doublets
by considering their unique gene expression.
DoubletDecon has an easy-to-use graphical user
interface and is compatible with diverse species
and unsupervised population detection algorithms.
INTRODUCTION

Single-cell genomics provides a powerful means to derive and

ultimately characterize novel cell populations and transitional

states (Olsson et al., 2016; Velten et al., 2017; Villani et al.,

2017; Yanez et al., 2017). While single-cell profiling technologies

continue to evolve at an astonishing pace, many challenges

remain, including the separation of biological signal from tech-

nical noise. A common source of confounding gene expression
1718 Cell Reports 29, 1718–1727, November 5, 2019 ª 2019 The Au
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in single-cell RNA-sequencing (scRNA-seq) is the occurrence

of multiplet cell profiles that result from the simultaneous capture

of multiple cells in a single well or droplet (Kang et al., 2018).

As demonstrated by species mixing experiments, the fre-

quency of mutliplets increases with greater loading of cells for

droplet-based scRNA-seq platforms (Goldstein et al., 2017;

Gong and Szustakowski, 2013; Macosko et al., 2015; Stoeckius

et al., 2018). As a result, researchers are often advised to load

fewer cells to decrease the occurrence of multiplets, hence

limiting the cellular depth afforded by these technologies.

Beyond the simultaneous capture of multiple cells due to a

high concentration of cells, insufficient dissociation will increase

the frequency of aggregates and subsequently multiplet cap-

tures. Doublets, multiplets with two captured cells, can be

grouped into two main classes: (1) those that occur between

transcriptionally distinct cell types (heterotypic) and (2) those

that occur within the same cell type (homotypic), with multiplets

of more than two cells being exceedingly rare (0.36%, assuming

a doublet rate of 8%). Experimental methods, such as Cell Hash-

ing, aim to address the challenge of doublet identification by la-

beling cells with different oligonucleotide bar codes to remove

artifacts, but they are costly, increase the likelihood of cell death,

and cannot be applied to previously generated datasets (Stoeck-

ius et al., 2018).

Retention of doublets can significantly confound the analysis

and interpretation of scRNA-seq data, in particular the identifica-

tion of novel cell states, developmental trajectories, and mixed-

lineage progenitors (Magella et al., 2018; Olsson et al., 2016).

Mixed-lineage cells include multi-lineage progenitors, which

coincidently prime markers for multiple lineages and that exist

at bifurcations within in silico developmental trajectories (Chen

et al., 2019; Lu et al., 2018; Olsson et al., 2016). As such, the

spatial location and shared gene expression of these cells with

others complicate doublet detection methods that rely solely

on their similarity to synthetic doublets for identification. Hence,

the erroneous exclusion of such mixed-lineage populations can

hinder the unbiased evaluation of progenitor hierarchies in

healthy cells and disease states. Conversely, the inappropriate
thors.
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retention of doublets can confound single-cell analyses in which

refined clustering is used to establish novel cell states (i.e.,

doublet cell clusters).

While the need for specialized in silico doublet removal

methods is evident, there remain many biological and computa-

tional challenges. First, multiplet detection is confounded by

varying degrees of sparsity of the transcriptomic data, with as

little as a few hundred unique molecular identifiers (UMIs) for a

single-cell transcriptome, resulting in poor correlation to compa-

rable bulk RNA-seq profiles (Kashima et al., 2018; Mantsoki

et al., 2016). Although multiplets should have a distinct global

distribution of genes and UMI counts, with twice the RNA con-

tent, these variables are insufficient to accurately predict which

cells are doublets on their own (Stoeckius et al., 2018). Further-

more, differing RNA abundance and/or technical variation in

cDNA generation may result in uneven contribution from each

cell. Hence, modeling doublets as an equal contribution of two

different cells is likely to be overly simplistic. Two recently devel-

oped methods, DoubletFinder and Scrublet, approach the prob-

lem from a synthetic doublet nearest-neighbor strategy to find

hybrid transcriptomes (McGinnis et al., 2019; Wolock et al.,

2019). While these methods have high reported accuracy, the

authors note that algorithm performance is highly dependent

on the selection of appropriate parameters, such as the ex-

pected doublet rate, which is not always known. Additionally,

thesemethods do not explicitly consider the added complication

of transitional and mixed-lineage cell states, which can possess

hybrid transcriptomes.

Here, we describe a deconvolution-based strategy to remove

heterotypic doublets while preserving transitional and progenitor

cell states. Our approach, DoubletDecon, applies nonnegative

decomposition, a deconvolution method originally designed to

estimate cell-type proportions in bulk RNA-seq data, to single-

cell datasets to assess the underlying contribution of concurrent

gene expression programs within a single-cell library. This

approach compares the proportional makeup of each cell,

termed here as the deconvolution cell profile (DCP), to all cell

clusters in the dataset to find those that match one of many

possible synthetic doublet combinations. DoubletDecon em-

ploys marker genes and cell clusters from well-established

unsupervised scRNA-seq workflows, including Iterative Clus-

tering andGuide-gene Selection (ICGS) and Seurat, as reference

states for deconvolution (Olsson et al., 2016; Satija et al., 2015).

To overcome the specific computational challenges associated

with the detection of doublets, DoubletDecon includes three

approaches not present in alternative tools. To account for un-

equal contribution of the originating cell transcriptomes during

doublet formation, synthetic doublets are generated by either

an average of two cells from distinct clusters in the dataset or

with an additional set of weighted synthetics with 30%/70%

contribution from the cells. DoubletDecon also accounts for

the presence of transcriptionally similar clusters, an often unin-

tended result of unsupervised clustering methods, by cluster

merging to define discrete cell types for use as deconvolution

references. Finally, to improve the accuracy of its predictions,

DoubletDecon considers unique gene expression inherent to

biologically valid transitional states and progenitors to ‘‘rescue’’

singlet captures from inaccurate classification as doublets.
We demonstrate the power of this approach to identify real,

synthetic, and biologically confounding doublet cells in diverse

scRNA-seq datasets of varying size and complexity. We further

provide guidelines to users for best-practice application of this

this software and discuss its applicability to diverse scRNA-

seq datasets. Finally, we performed comprehensive bench-

marking of multiple doublet detection algorithms to provide

guidance on the choice of appropriate tools and parameters

for doublet removal.

RESULTS

Overview
To detect heterotypic doublet captures and distinguish them

fromgradual cellular transitions, we developed amulti-step anal-

ysis strategy that identifies an initial set of putative doublets

based on deconvolution analysis, then rescues erroneously pre-

dicted doublet clusters that have unique gene expression (STAR

Methods; Figure 1A). The program first calculates centroids

based on previously defined cell clusters from supervised or

unsupervised methods to create distinct deconvolution refer-

ences. During the creation of references for deconvolution,

DoubletDecon accounts for the presence of transcriptionally

similar cell clusters through cluster merging (Figure 1B). Next,

DoubletDecon creates a deconvolution cell profile, or DCP, con-

taining the percentage estimates of the contribution of each

reference cell state, each of which sums to 100% (Figure 1C).

In the initial ‘‘remove’’ step, cells whose DCP is most similar to

the DCP of generated synthetic cell clusters are considered pu-

tative doublets. These cells are removed from their original clus-

ters and regrouped by their top deconvolution contributors in the

‘‘recluster’’ step. Finally, putative doublet clusters that have gene

expression patterns not prevalent in the original clusters are re-

turned to their initial clusters, with the remaining cells being

labeled as doublets in the ‘‘rescue’’ step. To evaluate the per-

formace of DoubletDecon in diverse use cases, we selected

test datasets with distinct biological and technical challenges

(Figure 1D). We used input data from both ICGS and Seurat

workflows, in which unique cell states and cell-state-associated

genes sets were already defined or re-derived, with a variety of

cell filtering options and parameters. In the evaluation of these

datasets we optimized selection of the cluster merging statistic

(r0) to visually merge similar clusters in the DoubletDecon graph-

ical interface prior to optimizing synthetic doublet creation. A

detailed description of the DoubletDecon algorithm is included

in the STAR Methods, along with information on datasets, eval-

uations, parameter tuning, possible limitations of the approach,

and instructions for using the graphical user interface (Figure S1).

Identification of Doublets from Species Mixing
Experiments
As a first evaluation of DoubletDecon’s ability to identify dou-

blets, we considered a mixed-species scRNA-seq experiment.

Analysis of a publicly available dataset of murine NIH 3T3 and

human HEK293 cells, mixed at roughly equal proportions and

profiled by 10x Genomics produced �6% heterotypic doublets

that are clearly separable from their single-species counterparts

by principal-component analysis (PCA) (Figure 2A). Output of the
Cell Reports 29, 1718–1727, November 5, 2019 1719
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Figure 1. Deconvolution and Detection of Cell Doublets with DoubletDecon

(A) Outline of the broad steps employed by DoubletDecon, including cluster merging, synthetic doublet generation, deconvolution, and rescue of initially pre-

dicted doublets through unique gene expression identification. The principal file inputs and sources are indicated alongwith distinct tabular and graphical outputs

from the DoubletDecon package in R or through an easy-to-use graphical interface.

(B) Illustration of cluster similarity determination from DoubletDecon to determine the threshold for cluster merging prior to synthetic doublet creation and de-

convolution. Each centroid is calculated from the average gene expression of each separate cell state for all algorithm-selected cell-state marker genes (e.g.,

Seurat, ICGS). Initially, a centroid or medoid correlation matrix is created (left). Next, a threshold for centroid or medoid similarity is defined by the formula for r

(outlined in the STAR Methods), with the user-defined value of r0 used to set the level of similarity required for a cluster to be considered correlated (middle).

Finally, this new binary correlation matrix is visualized with a heatmap and Markov clustering is used to determine which sets of clusters should be merged for

multiplet detection (right).

(C) The frequency of cell-state deconvolution profiles is shown for a datasetwithout doublets (microscopy validated) (Olsson et al., 2016). Each column represents

a different cell, in which each color indicates the percentage contribution of a reference cell type for that cell. Note, the majority are predicted to be composed

principally of a single-cell-type reference.

(D) Datasets evaluated to assess DoubletDecon’s accuracy on gene expression evidenced doublets with the number of cells and method of single-cell capture.
deconvolution step in DoubletDecon can be summarized as a

value between 0% and 100% for each original cluster, in this

casemouse and human, for each cell. Visualization of the decon-

volution results within the original PCA shows an expected se-

lective enrichment for each of the single-species clusters and

overlapping intermediate results within mouse-human hybrid
1720 Cell Reports 29, 1718–1727, November 5, 2019
cells (Figure 2B). When only the mouse-human hybrids are

considered, we observe a bimodal distribution of deconvolution

with peaks at 30% human and 70% mouse, instead of the ex-

pected 50% split (Figure 2C). As anticipated, the deconvolution

results for single-species mouse or human cells were heavily

skewed toward 100% (Figure 2D). As expected from the
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Figure 2. DoubletDecon Readily Distinguishes Experimentally Validated Doublets in Species-Mixing scRNA-Seq

(A) Separation of mouse, human, and mixed-species doublet scRNA-seq profiles by principal-component analysis (PCA) of ICGS variable genes. Species as-

signments are defined by the total number of aligned reads to either human (yellow), mouse (blue), or both (red) genomes.

(B) Projection of species-specific deconvolution results (against human or mouse ICGS clusters) are displayed along the same PCA plot. Cells in gray indicate

<10% identify to the indicated cluster, >90% in dark red, and lighter shades of red indicating intermediate scores.

(C) Histogram of the mouse (blue) and human (yellow) DCP results (x axis) for known species mixed cells, indicating a bi-modal distribution for deconvolution

scores peaking at 30% and 70%.

(D) The same histogram is shown for deconvolution scores in only human cells (left) and only mouse cells (right), indicating a skewed distribution toward the

correct species.

(E) The accuracy of DoubletDecon doublet predictions using synthetic reference doublets derived from either a 50/50 equal contribution of cell transcriptomes

(‘‘only50’’ parameter) or from weighted averages of 30/70 and 70/30, in addition to the 50/50 synthetic doublets.

(F) Projection of final called doublets (black) in the PCA, using 30/70 synthetic doublets.
distributions of these DCPs, using synthetic doublets with a

30/70 weighted average detects mixed-species cells with a rela-

tively high accuracy (�95% sensitivity and �97% specificity),

whereas use of 50/50 synthetic doublets alone results in close

to 100% specificity at the cost of reduced doublet sensitivity

(�70%) (Figures 2E and 2F). We note that cells that were incor-

rectly classified as mouse-human doublets in the 30/70 analysis

have �30% fewer expressed genes (normalized counts/gene >

1, t test p < 0.001) than other single-species cells, indicating

that poorly sequenced singlets have an increased likelihood to

be called doublets.

Evaluation of Synthetic Doublets from Complex Tissue
While DoubletDecon accurately identified doublets in a mixed-

species dataset, this example is not representative of typical

scRNA-seq data, which frequently has subtle cell-state differ-

ences and more than two populations. To assess the ability of

DoubletDecon to detect homotypic and heterotypic doublets in

a more realistic example, we produced a synthetic doublet

evaluation dataset in which both heterotypic and homotypic
doublets could be generated and separately assessed. This

dataset comprised four human immune and three melanocyte

tumor populations (SMART-Seq2 protocol, index sorting) (Tirosh

et al., 2016), with synthetic doublets integrated into existing cell

clusters using the recently developed label projection approach,

cellHarmony (STAR Methods, Evaluation Dataset Processing

Parameters). Consistent with the mixed species results, hetero-

typic synthetic doublets were identified with high sensitivity

(average 90.7% ± 1.2%) and moderate-to-high specificity

(average 82.7% ± 0.9%) (Figure S2A), while synthetic homotypic

doublets could not be effectively detected (average sensitivity of

5.6% ± 0.2%) (Figure S2B). Though homotypic doublets are

not detected using DoubletDecon or alternative methods, the

presence of these artifacts does not appear to impede the iden-

tification of valid cell populations, making homotypic doublets

less problematic than heterotypic doublets. Importantly, false

positives in this analysis will be overestimated, contributing to

the relatively lower specificity, as real doublets exist in this data-

set but are not annotated as doublets by the original dataset

authors.
Cell Reports 29, 1718–1727, November 5, 2019 1721
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Figure 3. Recovery of Rare Transitional Cell States through Singlet Rescue

Evaluation of a scRNA-seq dataset of mouse hematopoietic progenitors, with rare transitional states, is shown. All initially detected multiplets were removed

through a microscopy validation step to selectively evaluate specificity for doublet detection.

(A) Identification of highly related clusters for DoubletDecon reference creation from the original ICGS unsupervised population predictions (Olsson et al., 2016).

(Left) Highlighted ICGS cell populations within a t-Distributed Stochastic Neighbor Embedding (t-SNE) before cluster merging. (Middle) DoubletDecon cluster

similarity heatmaps indicating similarity and clustering merging. (Right) t-SNE plot of the merged cell populations.

(B) Bar graph displaying number of cells within each cluster that were never removed (dark gray, ‘‘predicted singlets’’), removed during the ‘‘remove’’ step but

were subsequently rescued (light gray, ‘‘rescued singlets’’), and removed during the ‘‘remove’’ step and were not rescued (white, ‘‘final doublets) per total cells in

each cluster (left) and percentage of cells in each cluster (right).
Rescue of Transitional Cell States Predicted as
Doublets
As previously demonstrated, developmental and progenitor cell

specification hierarchies inherently contain cells with transition-

ing gene expression and mixed-lineage cell states (Lu et al.,

2018; Magella et al., 2018; Olsson et al., 2016). We postulate

that such states may result in frequent false-positive doublet

predictions when the unique gene expression intrinsic to those

populations is not considered during doublet identification.

Analysis of a published hematopoietic dataset of 383 cells

over eight independent cell captures using the Fluidigm tech-

nology in parallel with microscopic doublet cell exclusion was

used as validation of DoubletDecon’s ability to retain these

transitioning and mixed-lineage cells. Importantly, this dataset

is enriched in experimentally validated transitional and multi-

lineage cell populations, appearing as hybrids, representing a

continuum of divergent differentiation cell states in mouse

bone marrow. Given the high similarity of clusters called by

ICGS, we selected a cluster merging threshold (r0) that led to

merging of the HSCP-1 and HSCP-2 (HSCP-merged) and the

monocyte and macrophage-dendritic cell precursor (MDP-

Mono) clusters (Figure 3A; STAR Methods). Using a 50/50

average for synthetic doublet generation, as recommended

for datasets with a small percentage of expected doublets,

this evaluation results in 80.7% specificity in the initial doublet

detection step, which increases to 95.0% when unique gene

expression is considered (Figure 3B). These data suggest that

rescue of erroneously predicted doublets is necessary to retain

transitional cell states.

Identification of Experimentally Verified Doublets from
Mixed-Donor PBMCs
As further validation of DoubletDecon, we analyzed two recently

described human peripheral bloodmononuclear cell (PBMC) da-

tasets in which multiplets were experimentally defined using

either (1) donor SNP information with the software Demuxlet

(Kang et al., 2018) or (2) through selective antibody-mediated
1722 Cell Reports 29, 1718–1727, November 5, 2019
oligonucleotide labeling via Cell Hashing (Stoeckius et al.,

2018). In these experiments, the research teams intentionally

overloaded a single 10x Chromium port with cells from eight in-

dependent donors to yield a high proportion of doublet cell cap-

tures (> 10%). For both datasets, we only considered cellular bar

codes with a minimum number of genes and UMIs expressed

consistent with well-accepted guidelines in the field (STAR

Methods, Evaluation Dataset Processing Parameters). When

evaluated byDoubletDecon, analysis of the Demuxlet-annotated

dataset identified verified doublets with amean (SD) sensitivity of

56.9% (2.1%) and a specificity of 81.2% (1.2%) over 10 indepen-

dent trials. Specificity in the Cell Hashing dataset was similar to

that in Demuxlet, 82.4% (0.6%), while sensitivity averaged

38.1% (1.2%) (Figures 4A and 4B; Table 1). Though the recall

in these datasets is relatively low, this result is expected, as

homotypic doublets are prevalent in this dataset and experimen-

tally indistinguishable from heterotypic doublets. Comparison

of our doublet predictions to those from two other doublet

detection tools, Scrublet and DoubletFinder, reveals that

DoubletDecon uniquely identifies hundreds of true-positive dou-

blets (Figures 4C and 4D), with improved sensitivity and slightly

decreased specificity when using default parameters and

suggested filtering (Table 1). As the authors of Scrublet, and

DoubletFinder have reported different doublet exclusion perfor-

mance on this Demuxlet dataset, we reanalyzed this dataset

with a range of software parameters and dataset filtering op-

tions. While the performance of DoubletDecon remained largely

stable across the evaluated parameters (r0 and min_uniq),

DoubletFinder and Scrublet varied widely in reponse to different

UMI filtering cutoffs, expected doublet rate, and non-default pro-

grammatic options (Table S1).While varying these options signif-

icantly improves sensitivity for Scrublet and DoubletFinder,

without a priori knowledge of known doublets for parameter

tuning, obtaining such results would remain extremely problem-

atic for the end user.

An alternative to running independent doublet detection

methods is a consensus approach, in which the results from



−5 0 5 10 15
UMAP-X

−5

0

5

10

15

20

25

30

U
M
AP

-Y

−5 0 5 10 15
UMAP-X

−5

0

5

10

15

20

25

30

U
M
AP

-Y
−5 0 5 10 15

UMAP-X

−5

0

5

10

15

20

25

30

U
M
AP

-Y

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Macrophage

Neutrophil DC

T-cell

NK

B-cell

−5 0 5 10 15 20 25 30
UMAP-X

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

U
M
AP

-Y

−5 0 5 10 15 20 25 30
UMAP-X

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

U
M
AP

-Y

−5 0 5 10 15 20 25 30
UMAP-X

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

U
M
AP

-Y

2
3
6
4
7
1
5
3

T-cell

B-cell

Monocyte

DC

Neutrophil

NK

Mitototic

SNP
Doublets DoubletDecon

729 861

86 265

358

83

194 86

121
72

101104

101 129

171

Cell Hashing
Doublets

Scrublet DoubletFinderScrublet DoubletFinder

DoubletDecon

477 756

73 144

440

28

32 109

59
45

7940

38 191

180

C D

mix scRNA-Seq

A
Detect SNPs

Hash 1

Hash 2 Hash 3

mix scRNA-Seq

B

Hashed Doublets DoubletDecon
Final Doublets

Demuxlet Doublets
(Defined by SNPs)

DoubletDecon
Final Doublets

Figure 4. Detection of Experimentally Validated Doublets from Peripheral Blood Mononuclear Cells (PBMCs)

(A and B) The analysis schema is shown for the evaluation of DoubletDecon on in silico identified doublet cell profiles obtained from the (A) Dexmulet software and

(B) the Cell Hashing protocol. Demuxlet identifies cells with a combination of genomic variants associated with the eight profiled single-cell donors to find cellular

bar codes with hybrid genotype profiles, whereas Cell Hashing selectively labels all cells from a single sample (donor) using different oligonucleotides conjugated

to a common antibody. (Left) A Uniform Manifold Approximation and Projection (UMAP) plot of the de novo clusters obtained from analysis with ICGS. (Middle)

UMAP projection of Demuxlet called doublets are indicated in blue. (Right) UMAP projections of DoubletDecon-classified doublets are highlighted in blue. Labels

for each cell population were independently derived through ICGS version 2.0 using a published database of hematopeotic and immune markers via GO-Elite

gene set enrichment analysis (Hay et al., 2018).

(C and D) Venn diagrams representing the number of overlapping doublet predictions from the software packages DoubletDecon, Scrublet, andDoubletFinder on

two previously published datasets of overloaded donor PBMCs using the (C) Demuxlet or (D) Cell Hashing protocols using the same filtered datasets described

above. Hashing doublets, doublets defined from distinct hashtag oligo (HTO). If two or more HTOs had >20% of the total hashtag reads, they were considered

multiplets (4,200 out of the initial total 12,000 cellular bar codes). Demuxlet doublets, doublets identified by Kang et al. (2018) using the software Demuxlet.
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Table 1. Relative Performance of Doublet Removal Tools

Dataset Tool Parameters Sensitivity, % (SD, %) Specificity, % (SD, %)

Demuxlet n = 6,525 DoubletDecon rhop = 1.2, min_uniq = 4 56.90 (2.1) 81.20 (1.2)

Demuxlet n = 6,525 DoubletFinder 10 PCs, pN = 0.25, pK = auto, rate = 12.5% -

homotypic adj.

21.31 (2.8) 93.87 (0.8)

Demuxlet n = 6,525 Scrublet 25 PCs, top 25% HVGs, rate = 12.5%, Z

scores, theta = auto

31.00 (2.3) 93.94 (1.0)

Cell Hashing n = 8,402 DoubletDecon rhop = 1.2, min_uniq = 4 38.10 (1.2) 82.40 (0.6)

Cell Hashing n = 8,402 DoubletFinder 10 PCs, pN = 0.25, pK = auto, rate = 20% -

homotypic adj.

32.23 (3.8) 89.42 (1.1)

Cell Hashing n = 8,402 Scrublet 30 PCs, top 15% HVGs, rate = 20%, Z

scores, theta = 0.37

26.16 (0.6) 94.70 (0.2)

Each indicated tool was applied 10 times to the Demuxlet or Cell Hashing dataset with the indicated number of cells (filtered for number of UMIs and

genes). rhop, cluster merging parameter for reference dataset; min_uniq, number of uniquely expressed genes in a doublet cluster necessary for clus-

ter to be ‘‘rescued’’; PCs, principal components; pN, controls number of simulated doublets added to dataset; pK, controls size of neighborhood used

to compute doublet score, user-specified value, or auto(matic) determination by tool; rate, putative doublet rate supplied to tool; homotypic adj, adjust-

ment applied to reduce rate to account for (undetectable) homotypic doublets; HVGs, highly variable genes; Z scores, count data centered and scaled;

and theta, doublet score threshold for classifying a cell as a doublet, user-specified value, or auto(matic) determination by tool. See STARMethods for

additional details and Table S1 for additional performance results for the same datasets with different cell-gene expression filtering options.
multiple algorithms are compared or a single method is rerun

multiple times. Such approaches can in principle be used to

favor higher sensitivity or higher specificity, depending on the

specific goals of the analysis. To test this assertion, we use the

F1 score as a measure of overall performance given the uneven

class distribution in these evaluation datasets. We find that the

union of all three doublet detection algorithms (DoubletDecon,

DoubletFinder, and Scrublet) increases sensitivity and gives

the highest F1 score (0.52 and 0.50) when compared with any

two methods combined or individual methods alone (Table 2).

Specificity can be further improved by intersecting doublet calls,

which results in lower sensitivity than eachmethod applied on its

own. Alternatively, specificity can be increased by performing

multiple runs of DoubletDecon with the same parameters.

Because of the random nature of synthetic doublet generation,

not every run of DoubletDecon will produce exactly the same

doublet calls. By running the algorithm 20 times and selecting

only those cells that are predicted as doublets all 20 times, spec-

ificity nears 90% at a moderate loss of sensitivity (Table 2). This

provides another option for users who wish to prioritize higher

specificity.

Resolving Disease-Associated Cell States
An important application of doublet removal is the identification

of biologically valid cellular heterogeneity among transcription-

ally related cell types. One such example is the identification

of discrete cell states within healthy or diseased tissue. The

presence of heterotypic doublet cells directly impedes this pro-

cess, as unsupervised analysis tools cannot easily distinguish

between valid cellular heterogeneity and contamination. To

this end, we performed overloaded droplet-based single-cell

profiling on �13,000 heart cells from a surgical model of heart

failure (transverse aortic constriction). Our initial analysis with

the software Seurat identified eight transcriptionally distinct

clusters corresponding to well-defined heart populations, with

the exception of cardiomyocytes not effectively captured by

droplet-based methods due to size (Figure 5A). DoubletDecon
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predicted 1,170 doublets, localized to the peripheries of the ma-

jor cell clusters. Notably, similar doublet-enriched populations

were observed with the tools Scrublet and DoubletFinder in

this dataset, though DoubletFinder erroneously predicted

epicardial cells as a doublet cluster (Figure S3A). To explore

the specific impact of doublets on the identification of cell states

within a well-defined cell type, we focused on the largest cluster

of cells (endothelial, n = 4,411), with 375 DoubletDecon-pre-

dicted doublets. Prior to removal of these predicted doublets,

a distinct doublet cluster was identified, marked by high Postn

gene expression, a specific marker of injury-associated pro-

fibrotic fibroblasts (Figure 5B). However, when Seurat was re-

run on the endothelial cell cluster without predicted doublets,

this same doublet population was not observed, as evidenced

by no consistent Postn expression among the identified clus-

ters, which resulted in more accurate cell-state predictions

(Figure 5C). These data empirically demonstrate the importance

of accurate heterotypic doublet exclusion on identifying cell

identity programs without prior knowledge. Finally, to assess

the stability of DoubletDecon’s predictions, we re-analyzed

the same heart scRNA-seq dataset using lower and higher

Seurat resolutions to generate fewer (5) and more (11) clusters

with the same cluster merging threshold (r0 = 1.5). Importantly,

the majority of the detected doublets were retained across

these different resolutions, indicating that such predictions are

largely stable for different unsupervised clustering solutions

(Figure 5D).

DISCUSSION

As the number and size of single-cell datasets increases, stan-

dardized multiplet discovery workflows are necessary to remove

technical artifacts that can confound the identification of valid

cell states. DoubletDecon takes advantage of existing unsuper-

vised population detection approaches, such as Seurat and

ICGS, to model doublet gene expression profiles. Our approach

is applicable to both large and small datasets with both discrete



Table 2. Performance of Combinations of Doublet Removal Tools

Cell Hashing Doublets

Tools Combination TPs FPs TNs FNs Sensitivity Specificity F1

DoubletDecon – 759 1,169 5,364 1,110 40.61 82.11 0.40

DoubletFinder – 570 559 5,974 1,299 30.5 91.44 0.38

Scrublet – 487 345 6,188 1,382 26.06 94.72 0.36

DoubletDecon and DoubletFinder union 1,057 1,506 5,027 812 56.55 76.95 0.48

DoubletFinder and Scrublet union 782 731 5,802 1,087 41.84 88.81 0.46

DoubletDecon and Scrublet union 946 1,327 5,206 923 50.62 79.69 0.46

All three methods union 1,140 1,592 4,941 729 61 75.63 0.50

DoubletDecon and DoubletFinder intersection 272 222 6,311 1,597 14.55 96.6 0.23

DoubletFinder and Scrublet intersection 275 173 6,360 1,594 14.71 97.35 0.24

DoubletDecon and Scrublet intersection 300 187 6,346 1,569 16.05 97.14 0.26

All three methods intersection 171 101 6,432 1,698 9.15 98.45 0.16

DoubletDecon 20 runs 510 705 5,828 1,359 27.29 89.21 0.33

Demuxlet Doublets

Tools Combination TP FP TN FN Sensitivity Specificity F1

DoubletDecon – 849 1,003 4,096 577 59.54 80.33 0.52

DoubletFinder – 290 327 4,772 1,136 20.34 93.59 0.28

Scrublet – 439 306 4,793 987 30.79 94 0.40

DoubletDecon and DoubletFinder union 921 1,192 3,907 505 64.59 76.62 0.52

DoubletFinder and Scrublet union 509 509 4,590 917 35.69 90.02 0.42

DoubletDecon and Scrublet union 917 1,121 3,978 509 64.31 78.02 0.53

All three methods union 949 1,265 3,834 477 66.55 75.19 0.52

DoubletDecon and DoubletFinder intersection 218 138 4,961 1,208 15.29 97.29 0.24

DoubletFinder and Scrublet intersection 220 124 4,975 1,206 15.43 97.57 0.25

DoubletDecon and Scrublet intersection 371 188 4,911 1,055 26.02 96.31 0.37

All three methods intersection 180 79 5,020 1,246 12.62 98.45 0.21

DoubletDecon 20 runs 664 629 4,470 763 46.53 87.66 0.49

The number of overlapping doublet predictions from the software packages DoubletDecon, Scrublet, and DoubletFinder on two previously published

datasets of overloaded donor PBMCs using the Demuxlet or Cell Hashing protocol. DoubletDeconwas also testedwith 20 test runs, with cells called as

doublets all 20 times being considered DoubletDecon doublets for statistical analyses. Cell Hashing doublets, doublets defined from distinct hashtag

oligo (HTO). If two or more HTOs had > 20%of the total hashtags reads, they were consideredmultiplets (4,200 out of the initial total 12,000 cellular bar

codes). Demuxlet doublets, doublets identified by Kang et al. (2018) using the software Demuxlet. TPs, true positives (true doublets); FPs, false pos-

itives; TNs, true negatives (true singlets); FNs, false negatives; and F1, F1 score. See STAR Methods for additional details.
cell populations and gradual cellular transitions, by automatically

grouping correlated cell states. This approach is methodologi-

cally distinct from alternative solutions by considering each cell

as the decomposition of all possible reference cell populations.

Given that valid hybrid transcriptomic states exist throughout

development, such as transitional cell states and bi-potential in-

termediates, DoubletDecon includes specialized methods to

rescue preliminarily removed cell clusters that include unique

gene expression patterns. As demonstrated here, this method

can significantly reduce the number of doublets that are known

false positives.

Although DoubletDecon is able to effectively identify and

exclude a high proportion of multiplet captures, we believe

that this method can be further exploited to identify additional

unwanted and desired sources of variation. False negatives

with this approach currently include extremely rare multiplets

of more than two cells, as well as doublets of highly similar

cell states. We aim to enable the discovery of such multiplets
in the future, which theoretically should be identifiable using

our existing deconvolution-based strategy. These analyses

demonstrate the importance of doublet exclusion in diverse bio-

logical use cases, from clarifying population heterogeneity to

protection against removal of transitional cell states. As with

other computational doublet exclusion methods, proper param-

eter tuning remains a critical determinant of performance. Here,

we comprehensively benchmark multiple doublet detection al-

gorithms, providing the user with guidance on the choice of

tools and associated parameters. We further provide guidelines

to users for best-practice application of this software and

discuss its applicability to diverse scRNA-seq datasets and

research questions (STAR Methods; Parameter Tuning and Po-

tential Limitations). DoubletDecon’s parameters can be easily

tuned through an intuitive graphical user interface to iteratively

evaluate the impact on putative doublet cells. As noted in these

recommendations, while this tool performs well in diverse test

datasets, DoubletDecon relies on a number of assumptions
Cell Reports 29, 1718–1727, November 5, 2019 1725
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Figure 5. Empirical Removal of Confounding Doublet-Cell Populations for Unsupervised Subtype Detection

(A) t-SNE visualization of the predominant cell populations identified from Seurat of�13,000 heart cells collected via Drop-Seq. (Left panel) Cell-type predictions

are based on established heart marker genes (literature) and gene set enrichment in the software GO-Elite (cellular biomarker database). (Right panel)

DoubletDecon doublet predictions overlaid on top of the Seurat t-SNE plot, localized to the periphery of the major Seurat clusters. The dashed circle highlights

endothelial-specific predicted doublets adjacent to fibroblasts.

(B and C) Secondary analysis of all Seurat-identified endothelial cells with (B) all doublets included and (C) doublets excluded with DoubletDecon prior to

clustering. The left panel indicates distinct endothelial cell clusters with the doublet-enriched fibroblast cells highlighted (dashed circle), while the right panel

visualizes expression of a fibroblast-specific marker.

(D) Venn diagram of DoubletDecon doublet predictions with three sepearte Seurat clustering resolutions of the entire heart dataset. The numbers of doublets

identified were 1,251 (5 clusters), 1,170 (8 clusters), and 1,189 (11 clusters), with 790 (63%) in common.
that may not hold true in all applications. These assumptions

include the required presence of appropriate reference cell

states from which to model doublets, accurate clustering of

the data, that homotypic doublets are relatively benign, and

that mixed-lineage or transitional cell states will have unique

gene expression. Strategies to address these concerns are

further discussed in the STAR Methods. While our method per-

formed comparably to alternative approaches, these algorithms

appear to be quite complementary in identifying distinct subsets

of experimentally validated doublets. Using a combination of

doublet detection algorithms gives the user the ability to priori-

tize sensitivity or specificity, depending on the properties of the

data and the research question. For many, a loss of true singlets

is a reasonable trade-off for excluding unwanted contaminants.

For other applications the exclusion of singlets could hinder the

identification of rare cell populations or transitional states. The

information in Table 2 provides users a basis for informed appli-

cation of multiple doublet detection tools. Ultimately, additional

optimization and improvement of these methods will enable

greater precision in the characterization of cells from samples

with frequent doublets in diverse single-cell platforms and

studies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT OR RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Chemegenes Drop-Seq beads Chemgenes CSO-2011

Droplet Generation Oil for Probes Bio Rad 1863005

Nextera XT DNA Library Preparation Kit Illumina FC-131-1096

Maxima H Minus Reverse Transcriptase (200 U/mL) ThermoFisher EP0753

SPRIselect Reagent Beckman Coulter B23318

Deposited Data

Single cell RNA-seq raw data Synapse GEO https://www.synapse.org/#!Synapse:syn18459941

GEO: GSE128934

Experimental Models: Organisms/Strains

Black 6 mice (C57BL6/J) The Jackson Laboratories 000664 jBlack 6

Software and Algorithms

DoubletDecon This paper https://github.com/EDePasquale/DoubletDecon

AltAnalyze Olsson et al., 2016 http://altanalyze.org/

cellHarmony DePasquale et al., 2019 http://altanalyze.org/

Seurat Satija et al., 2015; Butler et al.,

2018

https://satijalab.org/seurat/

DoubletFinder McGinnis et al., 2019 https://github.com/chris-mcginnis-ucsf/DoubletFinder

Scrublet Wolock et al., 2019 https://github.com/AllonKleinLab/scrublet

Other

scRNA-seq UMI counts of PBMCs demultiplexed

using Demuxlet

Kang et al., 2018 GEO: GSE96583

scRNA-seq UMI counts of PBMCs demultiplexed

using Cell Hashing

Stoeckius et al., 2018 GEO: GSE108313

1:1 mixture of fresh frozen human (HEK293T) and

mouse (NIH 3T3) cells

10X Genomics Single Cell

Gene Expression Datasets

https://support.10xgenomics.com/single-cell-gene-

expression/datasets/2.1.0/hgmm_12k

Single cell RNA-seq analysis of melanoma Tirosh et al., 2016 GEO: GSE72056

Single-cell RNA-Seq for unbiased analysis of

developmental hierarchies

Olsson et al., 2016 GEO: GSE70245
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to the Lead Contact, Nathan Salomonis (nathan.

salomonis@cchmc.org). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Single-Cell RNA-Sequencing
Transverse aortic constriction (TAC) was performed on C57BL6/J wild-type (WT) 8-10-week-old male mice (The Jackson Labora-

tories and confirmed via echocardiographic analysis, similar to previously described; Duan et al., 2017). Mice with an estimated pres-

sure gradient across the aortic constriction below 40 mmHg were not included in the experiments. Hearts (n = 4, pooled) were

collected at 14 days post-TAC, perfused with ice-cold PBS to remove red blood cells followed by perfusion with 50 mM KCl to arrest

the heart in diastole and then fixed for 4 hours in freshly prepared 4% PFA at 4 �C, rinsed with PBS and cryoprotected in 30% su-

crose/PBS overnight before embedding in OCT (Tissue-Tek). DropSeq was performed as previously described (Macosko et al.,

2015). The quantity and quality of cDNA was measured using an Agilent Bioanalyzer hsDNA chip. To generate a library cDNA was

fragmented and amplified (12 cycles) using the Nextera XT DNA Sample prep kit with three separate reactions of 600, 1,200 and

1,800 pg input cDNA. The libraries were pooled and purified twice using 0.7X volume of SPRIselect beads. The purified libraries

were quantified using an hsDNA chip and were sequenced on an Illumina HiSeq 2500 using the sequencing parameters described
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in the DropSeq protocol. Readswere aligned to themm10mouse genome using Bowtie2 (Langmead et al., 2009) and taggedwith the

gene name of the overlapped exon. Gene readswere counted by uniqueUMIs per cell and a digital expressionmatrix was created. All

animal procedures were performed and approved according to the Department of Laboratory Animal Medicine and the University

Committee on Animal Resources at Cincinnati Children’s Hospital Medical Center.

METHOD DETAILS

Algorithm Description
Data Input

DoubletDecon accepts simple-tab-delimited cell cluster and marker gene result text files produced from the Iterative Clustering and

GuideGene Selection (ICGS) and Seurat workflows, as well as other tools when properly reformatted (Olsson et al., 2016; Satija et al.,

2015). The software ICGS is a component of the easy-to-use AltAnalyze toolkit (http://www.altanalyze.org) (Emig et al., 2010). ICGS

has been previously demonstrated to have excellent sensitivity to detect rare and transitional populations not identified by other ap-

proaches from scRNA-Seq data (Churko et al., 2017; Hay et al., 2018; Hulin et al., 2019; Lu et al., 2018; Magella et al., 2018; Meyer

et al., 2016; Olsson et al., 2016; Yanez et al., 2017). The outputs of ICGS that are used as inputs for DoubletDecon are: 1) the clustered

expression file containing only the selected discriminating genes and ordered cells, with cell cluster and gene cluster labels, 2) the

groups file containing all cells with labels for cell cluster, and optionally 3) the full expression matrix containing all cells and all genes

(with optional filtering for minimum number of expressed genes). The first two should be in tab-delimited text format, which is stan-

dard from ICGS, or the location and file name for these same files, while the full expressionmatrixmust be location and file name only.

Cells typically excluded as low expression outliers should be removed prior to analyses.

DoubletDecon can also accept files generated from the Seurat analysis pipeline through the built-in function Seurat_Pre_Process().

This function takes as input: 1) the normalized expression matrix or counts file that can be generated through Seurat’s NormalizeData

function, 2) the top discriminating (marker) gene list from Seurat’s top_n function, with n selected by the user, and 3) cluster identities

from the final Seurat object, which is accessed using @ident for the object. These inputs are transformed into the three ICGS-format

files that can be used as input for DoubletDecon.

While ICGS and Seurat are directly supported, example input files are located in the GitHub repository associated with this project

and similar inputs can be created with clustering and feature selection information from a wide variety of supervised and unsuper-

vised methods. Please note, standard quality control methods for each scRNA-Seq platform as recommended by the manufacturer

should be followed.

Processing and Optional Cell-Cycle Removal

Processing of the input data includes label standardization and optional cell-cycle gene removal. Cell-cycle removal may enable the

software to better identify similar cell clusters if such gene expression profiles are present in the input dataset. All cell or gene cluster

names are converted to numeric identifiers in ascending order. It should be noted that this does not change the original data but does

change the cluster labels used for the outputs of DoubletDecon. If gene clusters are provided (versus simply using the top 1,000 var-

iably expressed genes, for example) and cell-cycle gene removal is indicated, each gene cluster is examined separately for enrich-

ment of KEGG cell-cycle gene sets using clusterProfiler package. If significant enrichment is discovered Benjamini-Hochberg

adjusted p % 0.05), these genes are removed from all downstream analyses. Cell-cycle removal requires the input of species and

an internet connection.

Cluster Merging

Prior to the creation of synthetic doublets, DoubletDecon attempts to join transcriptionally similar cell clusters. This step is necessary

to maintain distinct cell references for subsequent deconvolution steps and can be visually evaluated and optimized in the software

from the cluster merge plots and visualized heatmaps (see below). Related clusters can result from various biological and technical

factors, including transcriptionally similar but distinct cell populations, patient/donor differences, or cells with few genes expressed.

DoubletDecon measures similarity between cell clusters using Pearson correlation of either centroids (default) or medoids of the cell

clusters. Medoids would be advisable only in cases where the frequency of doublets significantly contributes to the average gene

expression profile in the cluster.

This process can be explained by the following method. Let {C1, C2,., CK} represent the cell clusters after processing the input

data. Let {qi i = 1:k} denote the centroids or medoids, of the cell clusters based on the supplied marker genes. Let rij be the Pearson

correlation between qi and qj. A binary correlation matrix B is derived from {rij }, with Bij = 1 if rij a rT and 0 otherwise, where

rT = mean
�
rij
�
+ r0 3 sd

�
rij
�
ci; j

The correlation scaling parameter r’ (rho prime) is user-defined, with a default value of 1. Lower values of r’will result in more clusters

being combined and higher values of r’will retain more of the original clusters. The binary correlation matrix B is output as a heatmap

to aid visual assessment. Additionally, the Shiny application enables the user to input all other parameters to generate a list of cluster

merging heatmaps and associated valid r’ values for easier selection of this parameter. If high cluster similarity is detected, i.e., at

least one rij is a rT, Markov clustering with the mcl() function from the R package ‘MCL’ is used to define new clusters so that the

similarity between clusters is minimized (Figure 1D). This clustering method finds the optimal number of cell clusters in the binary
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correlation heatmap to represent the dataset based on overlapping similarities. By using this approach, DoubletDecon is able to

effectively handle datasets with ambiguous clustering, which can result from too many cell clusters in the input dataset. Let {A1,

A2,..., An} represent the cell clusters after the (possible) Markov clustering and {ai i = 1:n} the corresponding centroids (medoids).

These serve as reference clusters and centroids in subsequent steps.

The purpose of the next two steps in DoubletDecon is to determine if the gene expression profile of a cell is more similar to cells

from an individual cell-population or synthetic doublets from two distinct cell-populations.

Synthetic Doublet Generation

Sets of synthetic doublets are generated for each of the n-choose-2 unique pairwise combination of clusters in {Ai; i = 1:n}, with cells

randomly sampled within each cluster and the resulting gene expression averaged. For this reason, results from DoubletDecon are

expected to vary slightly from run to run, based on the selection of reference cells. An option is provided to create synthetic doublets

with either a 50%/50% contribution from two individual cells (default) or a weighted average for 30%/70% and 70%/30% synthetic

doublets, with the former option referred to as ‘‘50-50’’ throughout the paper and the latter as ‘‘30-70.’’ If this option is chosen, a total

of 3 x n-choose-2 synthetic doublet sets will be created. The number of synthetic doublets created per set is user-defined (default =

100). We recommend selecting the number of synthetic doublets per cluster set based on both the number of cells in the dataset and

the heterogeneity within the clusters. There should be enough synthetic cells created to represent the diversity of gene expression

profiles within each cluster for best doublet identification. For datasets larger than 1000 cells, a rough estimate of the ideal number of

synthetic doublets would be 10%of the total cell number. Let {Di; i = 1:m} denote the clusters of synthetic doublets and {di; i = 1:m} the

corresponding centroids (or medoids).

Remove Step

The ‘‘Remove’’ step of DoubletDecon uses deconvolution with the R package ‘DeconRNASeq’ and function DeconRNASeq()(Gong

and Szustakowski, 2013) to estimate the relative plausibility of a cell’s membership to each of the reference clusters

{Ai; i = 1:n}(default parameters). Gong et al. proposed the use of quadratic programming to find the optimal solution to the non-nega-

tive least-squares constraint problem in microarray data, then refined the method to account for the added variation and bias in

mRNA-seq data. DeconRNASeq performs deconvolution on each cell expression profile, using the reference cluster centroids

{ai i = 1:n} as the references for the deconvolution. The result, which we term a Deconvolution Cell Profile (DCP), is a vector of length

n containing the percentage estimates of the contribution of each reference cell-state (cluster centroid) for queried cell (sums to

100%) (example in Figure 1C). While it seems logical that a doublet will consist of a perfect 50% contribution from each cell within

the droplet, this is not always the case due to differing levels of transcriptional activity between cells and drop-out, particularly in data-

sets of low sequence depth. Each synthetic doublet profile in {di; i = 1:m} also undergoes deconvolution with {ai i = 1:n} as the ref-

erences. Finally, the DCP of each cell in the dataset is compared to: 1) the centroid DCP for cells in each cluster in {Ai; i = 1:n} and 2)

the average DCP of each of the synthetic doublet cluster, using Pearson correlation for more than 2 clusters (Euclidean when the

number of clusters = 2). If a cell’s DCP ismost strongly correlated or has the smallest distance to a synthetic doublet DCP, it is labeled

as a putative doublet, with results of the ‘‘Remove’’ step provided in the ‘‘DRS_doublet_table’’ output file and the deconvolution es-

timates for each real cell given in the ‘‘DRS_results’’ output file.

The purpose of the next two steps in DoubletDecon is to determine if any of the putative doublet cells have sufficiently unique gene

expression to warrant their reclassification to non-doublets.

Recluster Step

Cells that are labeled as putative doublets in the ‘‘Remove’’ step are reorganized into new doublet clusters in DoubletDecon’s

‘‘Recluster’’ step, while also being removed from their original clusters. This is done by grouping together cells which have a similar

DCP. Specifically, putative doublets that share the same two highest predicted contributing clusters are grouped together. In the final

groups and expression files, the DCP group labels indicate the two highest correlated DeconRNASeq reference cell-types, alpha-

betically sorted (e.g., cluster-1 j cluster-2). If the option to include synthetic profile references with 30-70 was selected, there

will be three possible group suffixes for each pair of original clusters: ‘‘even’’ for 50%/50%, ‘‘one’’ for 70%/30%, and ‘‘two’’ for

30%/70%, which allows for more granular recovery of non-doublet cells in the next step. We denote the doublet clusters formed

in this step by {Zj; j = 1:k}.

Rescue Step

In the ‘‘Rescue’’ step of DoubletDecon, unique gene expression present in doublet clusters is identified based on gene-by-gene com-

parisons. Let {A*i; i = 1:n} denote the reference cell clusters after removal of any putative doublets. For each doublet cluster Zj, a com-

posite dataset {Zj, A*i; i = 1:n} is created and a 1-way ANOVA (factor is cluster identifier) is conducted for each gene. The p value

corresponding to the n degree of freedom overall test for cluster differences and the p values for pairwise comparisons with Zj (Tukey

post hoc adjustment) are captured. If 1) the p value for the overall test is % 0.05, 2) Zj is significantly different from each cluster in

{A*i; i = 1:n} on the basis of the n Tukey-adjusted p values each being % 0.05, and 3) Zj has higher mean expression of the gene

than each cluster in {A*i; i = 1:n}, then the doublet cluster Zj is said to uniquely express that gene. This procedure is repeated for

each doublet cluster Zj j = 1:k.

If a doublet cluster Zj has fewer than U unique genes identified through this process, all cells in the cluster are flagged as doublets

and are written to the ‘‘Final_doublets_groups’’ and ‘‘Final_doublet_exp’’ files. If, on the other hand, a doublet cluster Zj has R U

unique genes, the cells initially clustered as doublets (e.g., B cell j NK-cell) with a minimum number of unique genes expressed rela-

tive to the original clusters are re-assigned as singlets and reincorporated into the non-doublet expression matrix. The value of U is
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user defined, with the default value of 4, which was chosen as it performed well in both the gold-standard Demuxlet peripheral blood

mononuclear cell (PBMC) dataset (GEO: GSE96583) and in an evaluated mouse dataset of verified non-doublets (GEO: GSE70245).

When choosing to run DoubletDecon without the ‘‘Rescue’’ step, the final doublets are defined as those putative doublets identified

through deconvolution.

The ‘‘Rescue’’ step can also quickly and efficiently evaluate all genes in the expression dataset, versus only the ‘‘marker’’ genes, for

unique gene expression regardless of the number of cells included in the input data file (suggestedminimum number of unique genes

for use with the full gene list is 30, which was guided by the verified mouse non-doublet evaluation dataset). Both ANOVA and Tukey

post hoc tests are performed on 1,000 gene subsets, making it possible to process any file, regardless of the original size, within the

memory constraints of themachine onwhich it’s operating. Additionally, both of the above statistical tests werewritten to only require

the total sums (TS) and sum of squares (TSS) for each cell cluster. Tukey tests were performed by comparing every doublet cluster to

all original clusters using this aggregation technique to quickly calculate the means and total cells per cluster needed for the whole

gene block at once. Testing was performed on amachine with 8GB of RAM and 4 cores, each processing a block of 1,000 genes (i.e.,

rows) for 12,000 cells (i.e., all columns) in parallel. The traditional approachwould run out of memory or take > 24h to run, but using the

approach above, DoubletDecon is able to perform the ‘‘Rescue’’ step on a test file of�750MB containing an 22,0003 12,000, matrix

and 120 cell clusters in 2.7 minutes.

Outputs and Visualization

The intermediate and final results fromDoubletDecon are optionally visualized via heatmap within the R console to help the user eval-

uate the exclusion of visually distinct doublet gene expression signatures. Tabular outputs of DoubletDecon include the cleaned and

processed original expression and groups files, as well as separate groups and expression files for the final doublets and non-dou-

blets. The results of the ‘‘Remove’’ and ‘‘Rescue’’ steps are also saved, as well as the deconvolution values for the synthetic doublets

to assist with quality control. When running the user-interface of DoubletDecon (via Shiny), the tabular output and graphs from the

command-line version are provided in an interactive environment within the application as well as saved to the given directory. Addi-

tional outputs of the Shiny application include interactive and downloadable heatmaps for initial, intermediate, and final steps of

DoubletDecon, UMAP representation of original clustering with doublet overlays, and graphical displays of doublet proportion within

cell clusters.

Parameter Tuning and Potential Limitations
A key determinant of the performance of DoubletDecon to detect doublets is the selection of optimal parameters. Varying these pa-

rameters can be evaluated in the DoubletDecon graphical user interface to visually assess predicted doublet cell exclusion. Notably,

different datasets have different caveats requiring parameter tuning to optimize doublet removal. The following recommendations are

intended to guide the user in the selection of optimal parameters for applying DoubletDecon.

Assumptions of the Approach

While this tool performs well in diverse tested datasets, it is important to note that it relies on a number of assumptions whichmay not

hold true in all cases. First, the program assumes doublets can be identified bymodeling the combination of two cell-type or cell-state

expression profiles that are frequently observed in the analyzed dataset. This assumption is not true for homotypic doublets,

extremely similar cell states, or when doublet cells are uniquely captured in an experiment without distinct contributing clusters.

The latter can occur in rare cases when insufficient dissociation prevents isolation of a pure population of cells or where flow cytom-

etry is used to select cells with a specific surface marker. Furthermore, although we demonstrate that transitional and mixed lineage

progenitors in mouse bone marrow are defined by unique gene expression, allowing their ‘‘rescue’’ by DoubletDecon, this assump-

tion may not hold in all situations. An additional caveat of our approach is the requirement of previously identified cell clusters. While,

such unsupervised results could be problematic if clustering predictions are ambiguous or if cellular trajectories exist as a continuum

rather than as discrete cell states, we note most all datasets have clearly defined cell populations. The use of varying synthetic pro-

portions is among one of the most important variables in the detection of doublets with our approach (50/50 versus 30/70+50/50).

Indeed, varying such proportions is important in the analysis of different dataset types, where the user may wish to conservatively

remove possible doublets (e.g., global unsupervised clustering) or carefully ensure all such possible doublets are removed at the

cost of some singlets (e.g., focused cell-type heterogeneity analyses). Interestingly, false positive doublet predictions were associ-

ated with cells which had lower sequencing depth, suggesting that poor quality cells are more likely to be considered multiplets due

to weaker similarity to reference cell cluster centroids. Finally, DoubletDecon relies on the modeling of synthetic doublets from tran-

scriptionally distinct cell populations, which often requires that clusters are merged, using the r’ parameter. If clusters with highly

similar transcriptomes are not merged, over-calling of doublets can occur, whereas over-joining of clusters can under-call doublets

by combining distinct cell-states (see below). Importantly, if distinct doublet clusters are present, the program may not effectively

identify these cells unless they are merged with similar larger clusters. Although defined ground-state truths do not exist for most

datasets, as shown in the analysis of over-loaded scRNA-Seq, the reanalysis after doublet removal can be used to verify the removal

of confounding doublets within a datasets (Figure 5).

Doublet Visualization

Users can interactively adjust software parameters and evaluate the success of doublet removal empirically through the graphical

user interface and associated programmatic outputs (Figure S1). Likely doublets can be visually observed within a dataset in multiple

ways, including visual inspection of presumed population-specific marker genes (heatmap, UMAP/PCA projection), 2) cells oriented
Cell Reports 29, 1718–1727.e1–e8, November 5, 2019 e4



between clusters via low-dimensional visualization (UMAP/PCA visualization), or 3) the appearance of obvious cell-state hybrid

expression profiles within a heatmap. DoubletDecon contains interactive options to determine if likely doublets are removed and

adjust parameters to further monitor their exclusion or inclusion. The primary parameters to adjust in DoubletDecon are: 1) the merg-

ing of similar clusters (r’) for synthetic doublet creation, 2) choice of centroid or medoid for reference cluster comparison and 3)

choice of 50/50 versus 30/70+50/50 synthetic doublets. Coupled with secondary unsupervised analyses (see Figure 5), users can

effectively monitor the impact of doublet exclusion on datasets in which cell-types can be discerned. Note, different datasets will

be subject to different variances that are likely to impact parameter selection and different parameters should be tuned accordingly.

Expression Clustering

DoubletDecon critically depends on the supplied unsupervised or supervised clustering results and basic quality control filtering (see

STAR Methods, Data Input). First, we recommend applying standard quality control metrics, such as removal of cellular barcodes

with few genes expressed (< 200 or 500, depending on the experiment and cell-type), log normalization, scaling, regression of arti-

facts and exclusion of cells with highmitochondrial content to eliminate unwanted confounding variables that impact clustering. If the

user does not account for these effects, artifacts can drive the clustering or result in poor cluster homogeneity, negatively impacting

doublet detection and overall interpretability. DoubletDecon provides the option to calculate reference expression profiles as cen-

troids or medoids (centroids by default). While the choice of centroids or medoids does not typically impact doublet detection (Fig-

ure 4C), in cases were visible doublets are retained in the resulting doublet excluded heatmap, users should try the medoid option as

an alternative. In such cases, the use of medoids is recommended only for datasets in which the frequency of the majority of marker

genes reported is greater 50% and for data in which greater than 200 genes are expressed for cell populations. In general, including

poor quality cellular barcodeswill hinder doublet detection in the ‘‘Remove’’ step and rescue fewer singlets in the ‘‘Rescue’’ step, due

to a lack of consistent population-specific expression. The use of centroids may not be optimal when the frequency of doublets is

very high (> 25%) within a reference cluster(s), as these can result in averaged hybrid expression profiles.

Cluster Merging

The resolution of clustering performed can impact the stability of doublets predicted as shown in Figure 5D. When the resolution of

clustering is high or a single cell type is analyzed, multiple similar gene-expression defined clusters will be produced (i.e., same cell

lineage). If DoubletDecon is not parameterized tomerge transcriptionally similar clusters, the programwill attempt to create synthetic

doublets between similar cell populations. Such synthetic doublets have an increased probability to look like singlets and can results

in over-prediction of doublets. To deal with redundant clusters, DoubletDecon includes a cluster merging parameter called rho prime

(r’), which varies the threshold for cluster merging prior to synthetic doublet creation. Rho prime values typically range from 0.5 to 1.5

with the default = 1 (STARMethods, ClusterMerging). Lower values of r’will result inmore clusters being combined and higher values

of r’ will retain more of the original clusters. When r’ is high (e.g., 1.5), no clusters from the input cluster file should be merged,

whereas the maximum number of similar clusters will be joined lower r’ values (e.g., 0.5). The impact of inappropriately joining clus-

ters will be a loss of transcriptional heterogeneity and loss of sensitivity to detect doublets from those distinct cell populations. Like-

wise, retaining transcriptionally similar clusters can result in decreased specificity. Similar problems can arise if independent

observed doublet clusters (frequently occurring doublet cells that are identified as a distinct doublet cell cluster by ICGS or Seurat),

are present and not effected merged in DoubletDecon with adjacent cluster(s). If not joined, such doublet clusters can reduce spec-

ificity, as synthetic doublets will be mapped to this presumably valid cell population and annotated as singlets. Where clusters are

highly distinct, apply lower r’ values to prevent unnecessary merging of clusters. Hence, each set of clustering results used by the

user should be individually examined using the Markov clustering results to select an optimized r’ and visually assessed in the full

marker heatmap (Figures S1A and S1B). The user can select such a threshold in two ways: 1) by visually inspecting the original

gene expression heatmap from ICGS or Seurat and 2) noting which clusters appear to be similar using the Markov clustering heat-

map, which shows a binarized pairwise correlation plot of the gene expression centroids or medoids from each cell cluster at the

selected r’. To assist with the selection of the r’ parameter, the DoubletDecon user-interface contains a ‘‘Cluster Similarity Viewer’’

that shows each validMarkov clustering heatmap (Figure S1B), along the spectrum of nearly all clustersmerged to no clustermerged,

with the associated r’ value. To use this option:

1. Run the DoubletDecon graphical user interface from the Shiny app (see GitHub repository).

2. Input remaining parameters and files as required.

3. Enter higher or lower value r’ value (r’): ‘‘Input rhop value’’ option.

4. Select ‘‘Test for rho-prime values’’

5. When the calculations are complete, the binarized pairwise correlation heatmaps will be displayed in the ‘Cluster Similarity

Viewer’ tab.

6. Restart the DoubletDecon UI application and run the full workflow with the selected r’.

Synthetic Doublet Weighting

An important additional consideration for parameter tuning of DoubletDecon is the selection of either conservative (50/50 contribu-

tion of different cell-types) or relaxed (30/70 + 50/50 + 70/30) synthetic doublets. As noted in theMethods, DoubletDecon attempts to

identify heterotypic doublets based on their Deconvolution Cell Profile (DCP) similarity to synthetic doublet DCPs and real cell DCPs.

When doing so, synthetic doublets can be derived that are an equal mix of cells from two clusters (biased toward specificity) or a

weighted mix, including 30%/70% and 70%/30% averages in addition to an equal mix (biased toward sensitivity). In general, the
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use of 50/50 doublets is recommended when the user aims to maximize specificity over sensitivity, as this option will decrease the

number of doublets predicted by restricting the diversity of possible doublets to those with an equal contribution of two transcrip-

tomes. The use of 30/70 doublets will increase sensitivity at the cost of specificity, resulting in increased false-positive doublet calls

(Figure 4C). For example, if a large number of doublets are empirically observed in a dataset (e.g., overloading of 10x Chromium port,

poor tissue dissociation), the default option of 30/70 is most appropriate. Alternatively, if few cells have been captured and no clear

doublet populations are observed, a more conservative (50/50) option is recommended to decrease the removal of spurious dou-

blets, as illustrated in the example datasets shown.

Cell Cycle Exclusion

Standard unsupervised clustering methods (e.g., Seurat, ICGS) include the option to exclude predominant cell-cycle effects. When

no cell cycle effects are evident in the unsupervised clustering results, this option is not needed. We recommend excluding such ef-

fects prior to analysis with DeconDecon, as cell cycle gene clusters can divide a cell population into two or more clusters that repre-

sent a single-cell type rather than doublets. As noted in the cluster merging recommendations, clusters can bemerged when they are

highly similar by decreasing the r’ value. To maximize the merging of similar clusters, the cell cycle exclusion option can be set to

TRUE (removeCC = TRUE) but is set to FALSE by default. When removeCC = TRUE, the software will remove cell cycle gene asso-

ciated clusters through a gene set enrichment analysis procedure (Methods, Processing and Optional Cell-Cycle Removal), which

will increase similarity of clusters for cluster-merging. A possible negative consequence of using this option will be the removal of

cell populations almost entirely conflated with cell-cycle, such erythroblasts. Hence, this option is important to apply if cell cycle ef-

fects are evident in the unsupervised clustering results in order to merge redundant clusters. Application of this parameter can be

monitored using the visualization options in the graphical user interface (Figure S1E).

Additional Considerations

Additional parameters of DoubletDecon include: 1) the selection of how many synthetics cells to generate for each cluster combina-

tion (default = 100), 2) whether to include the full expression datasets (default = FALSE) and 3) number of unique marker genes to

‘‘rescue’’ initial predicted clusters (default = 4 genes). While these three parameters are discussed in detailed in the above sections,

we would note that all evaluations have been tested using the default parameters for these specific options and varying these pa-

rameters should not significantly impact overall results but may impact a small set of cells of interest. While including the full expres-

sion dataset for an analysis will increase runtime (depending on the size), using the full dataset can improve detection ‘‘rescue’’ of

initial predicted doublets, especially in datasets with transitional states, by accounting for all genes not just those in the input marker

file. Notably, doublet predictions will slightly vary from run-to-run, due to random synthetic doublet generation, so multiple runs may

be required to determine consensus.

Evaluation Dataset Processing Parameters
The following datasets were selected for evaluation within DoubletDecon relative to established positive (known doublets) and/or

negatives (known singlets). Associated doublet prediction, input data files and associated results can be obtained at https://

www.synapse.org/#!Synapse:syn18460092.

Mouse-Human Mixed Dataset

Counts matrices of human and murine genes were obtained from 10X Genomics (https://support.10xgenomics.com/

single-cell-gene-expression/datasets/2.1.0/hgmm_12k). This data matrix consists of cell profiles for 6,164 human, 5,915 mouse,

and 741 human-mouse doublets, with consistent human gene symbols assigned to all genes, as previously described (Wolock

et al., 2019).

Melanoma Biopsy Cells for Synthetic Doublet Creation

4,645 cells from a previously described scRNA-Seq dataset of 19 melanoma tumors using the SMART-Seq2 protocol were analyzed

with ICGS (AltAnalyze software version 2.1.2) to predominant identify cell populations (GEO: GSE72056) (Tirosh et al., 2016). Obvious

doublet cell groups within clusters were manually removed (TreeView) prior to synthetic doublet generation, leaving 4,320 cells for

improved evaluation of synthetic doublets. To derive synthetic doublets for testing, the same synthetic creation pipeline used in Dou-

bletDecon was used to create random doublets between distinct cell populations. Ten separate times, synthetic doublets were

generated (n = 10% of total cells) for every pair of clusters, using the 30%–70% weighted doublets. To incorporate these synthetic

cluster doublets into the dataset, we used the k-nearest neighbor scRNA-Seq alignment tool, cellHarmony (DePasquale et al., 2019).

Transitional Cell-States in Bone Marrow Progenitor Singlets

A dataset comprised of 383 hematopoietic bone marrow progenitor cells with high-confidence assigned cell-types and singlet-

restricted profiles (validated via microfluidics cell capture imaging) was obtained from the GEO database along with the published

ICGS unsupervised clustering results (GEO: GSE70245).

Cell Hashing Datasets

A large dataset of peripheral blood mononuclear cells (PBMC) hashed with unique cellular barcodes and isolated using 10x Chro-

mium technology (10x Genomics) was acquired from GEO (GEO: GSE108313) (Stoeckius et al., 2018). The authors describe the

run as ‘‘super-loaded’’ with an expected yield of 20,000 singlets and 5,000 multiplets, i.e., an overall multiplet rate of 20%. The

cell doublets were identified from the cell hashing counts data in which cells from each donor were assigned a distinct hashtag oligo

(HTO). A cell barcode with two or more HTOs having > 20% of the total hashtag reads was considered a doublet. For the purpose of
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conducting primary analyses, 8,402 cellular barcodes with > 300 genes expressed (expressed defined as counts-per-ten-thousand

R 1) were retained. This primary dataset includes 1,869 doublets for a rate of 22.2%, consistent with the authors’ expectation.

Demuxlet Datasets

A dataset containing 14,619 cells single human PBMCs isolated using a 10x Chromium instrument (10x Genomics) and sequenced

using Illumina HiSeq2500 Rapid Mode with approximately 25,000 reads per cell was acquired from GEO (GEO: GSE96583) (Kang

et al., 2018). The authors report an estimated doublet rate of 10.9% based on their demultiplexing procedure and note that it is

consistent with the expected rate (10x technology and number of loaded cells). Following the observation that this reported rate likely

estimates only the heterotypic rate (McGinnis et al., 2019; Wolock et al., 2019), we also employ an 8/7 multiplicative adjustment to

arrive at an estimated overall doublet rate of 12.5%. Additionally, cell classifications of doublets and singlets were provided by the

original authors, derived using Demuxlet (GEO: GSE96583). The classification for the barcodes in the dataset is as follows: 13,030

singlets, 1,565 doublets (10.7%) and 24 ambiguous. The same 300 expressed gene threshold could not be applied to the Demuxlet

dataset due to too few barcodes meeting this filtering criterion. Hence, we lowered this threshold to 150 expressed genes per cell for

this dataset before processing in ICGS for unsupervised cluster identification (6,525 barcodes, 1,426 doublets, 21.9% doublet rate).

The 24 barcodes with the ‘‘AMB’’ determination were not in the primary 6,525 barcode dataset. Additional comparative analyses

among doublet-removal tools were run on the set of 14,619 barcodes–the tools applied to the full set but calculation of sensitivity and

specificity excluding the 24 ambiguous barcodes (Table S1).

Mouse Heart Overloaded Dataset

A new scRNA-Seq dataset was generated from amouse heart injurymodel (transverse aortic constriction) and profiled using droplet-

based scRNA-Seq according to the protocol from Macosko et al. (see experimental details below) (Macosko et al., 2015). The

capture was overloaded to target over 15,000 cells to identify doublets and normal cell heterogeneity in large well-defined cell pop-

ulations (e.g., Endothelial). The count matrix (13,140 cells) was filtered to cells having a minimum of 200 genes expressed and

400 UMIs. Standard Seurat processing was conducted, including log-normalization, regressing out nUMI, mitochondrial proportion

and cell cycle indicators (proportion of histone and Seurat G2/M transcripts), and scaling (Butler et al., 2018). PCA was conducted on

the top 20% of Seurat-determined highly-variable genes. Clusters of cells were determined using the Seurat FindClusters function

with 10 PCs and resolution = 0.15; a total of 8 clusters were identified and cell type of eachwas determined using previously identified

marker genes (Seurat FindMarkers function). Results were displayed using TSNEPlot and FeaturePlot functions. The dataset

and associated metadata were deposited into the open-access Synapse data sharing platform (https://www.synapse.org/#!

Synapse:syn18459941).

Evaluation Parameters
DoubletDecon

ICGS was run using AltAnalyze version 2.1.2 from input read counts or normalized count matrices using the software default option-

s(Olsson et al., 2016). For DoubletDecon, the ICGS primary output files (DataPlots/MarkerFinder or ICGS directories) were used in

their native form while Seurat input files were created by applying the Seurat_Pre_Process function to the Seurat normalized expres-

sion data (converted to log2), reduced to the top 50 seurat-identified marker genes for each cluster. For all analyses, relevant param-

eters were set to PMF = TRUE, useFull = FALSE, only50 = FALSE (30-70), min_uniq = 3 or 4 (suggested value for useFull = FALSE),

num_doubs = 100, and centroids = TRUE. Additionally, in the mouse Bone Marrow progenitor data, the parameters were also set to

useFull = TRUE (along with the suggested value of min_uniq = 30) and only50 = TRUE (50-50) for testing, as indicated in the manu-

script when applicable. The correlation scaling parameter r’ (rho prime) values varied by dataset due to differing degrees of cluster

similarity. Selection of values was guided by the Cluster Similarity Viewer in the Shiny version of DoubletDecon and are as follows:

Cell Hashing = 1.2, Demuxlet = 1.2, Mouse/Human = 1.5 (nomerging with only 2 clusters), Transitional Singlets = 1.2, Heart = 1.5, and

Melanoma Synthetics = 1.3.

DoubletFinder

DoubletFinder version 2.0.1 was downloaded from https://github.com/chris-mcginnis-ucsf/DoubletFinder onMay 13, 2019 and was

run in the RStudio (version 1.1.447) environment for R (version 3.5.2) on a MacBook (High Sierra OS); functions for Suerat version 3

were used.We created Seurat (version 3.0.0) objects from count matrices following the example code provided on the DoubletFinder

website, including log normalization, scaling, regressing out nCount_RNA, and PCA and tSNE dimension reduction.

Scrublet

Scrublet version 0.2 was downloaded from https://github.com/swolock/scrublet on May 3, 2019 and installed and run as a python

3.6.3 program on a linux computing cluster. Count matrices and gene lists were prepared and inputted following following the

vignette provided on the Scrublet website.

DoubletFinder Runs on the Cell Hashing Datasets

Ten runs of DoubletFinder were conducted on each dataset, with a new seed set prior to each call. In all runs, the artificial doublet

proportion pN was set to 0.25 (per authors’ recommendation) and the neighborhood size parameter pK was determined using the

bcvm workflow as presented in the online vignette. Following McGinnis et al. (2019), we retained 10 PCs and set the variable

gene expression and dispersion thresholds at 0.025 and 0.65 respectively to select 2000 variable genes. A Seurat analysis identified

8 cell clusters in each dataset, with resulting estimated homotypic doublet proportions of 0.328 and 0.254 in the filtered dataset

(8,402 barcodes) and 11,980 barcodes datasets, respectively. The doublet rate was set to 0.20 for the primary analyses (Table 1).
e7 Cell Reports 29, 1718–1727.e1–e8, November 5, 2019

https://www.synapse.org/#!Synapse:syn18459941
https://www.synapse.org/#!Synapse:syn18459941
https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/swolock/scrublet


DoubletFinder Runs on the Demuxlet Datasets

Ten runs of DoubletFinder were conducted on each dataset, with a new seed set prior to each call. In all runs, pN was set to 0.25 and

pKwas determined using the bcvmworkflow. Following McGinnis et al. (2019), we retained 10 PCs and set the variable gene expres-

sion and dispersion thresholds at 0.05 and 0.85 respectively to select 2000 variable genes. Consistent with the authors’ report, a

Seurat analysis identified 8 cell clusters in each dataset, with resulting estimated homotypic doublet proportions of 0.244 and

0.260 in the filtered dataset (6,525 barcodes) and 14,619 barcodes datasets, respectively. The doublet rate was set to 0.125 for

the primary analyses (Table 1) and ranged from 0.10 to 0.219 for alternative dataset filtering options (Table S1).

Scrublet Runs on the Cell Hashing Datasets

Ten runs of Scrublet were conducted on each dataset. Following the online vignette (https://github.com/swolock/scrublet/blob/

master/examples/scrublet_basics.ipynb), the following values were used for pre-processing: min_counts = 2, min_cells = 3,

min_gene_variability_pctl = 85 and n_prin_comps = 30. Following Wolock et al. (2019), we set the parameters k = 50 and r = 5.

For the primary analysis of the filtered dataset (8,402 barcodes), the doublet rate rho-hat was set to 0.20 and the mean-centering

and variance normalization options produced a bimodal synthetic doublet score distribution and a common value of theta = 0.37

suitably separated the two distributions across all runs.

Scrublet Runs on the Demuxlet Datasets

Ten runs of Scrublet were conducted on each dataset. Following Wolock et al. (2019), we set the parameters min_counts = 2,

min_cells = 3, min_gene_variability_pctl = 75, n_prin_comps = 25, k = 50 and r = 5. For the primary analysis of the filtered dataset

(6,525 barcodes), the doublet rate rho-hat was set to 0.125 and the mean-centering and variance normalization options produced

a bimodal synthetic doublet score distribution for all runs. Automatic estimation of the theta parameter by Scrublet was found to

be reasonable based on visual inspection of all runs. For the supplemental analyses (Table S1), rho-hat was varied between 0.10

and 0.219 and the z-score and log data transformations were both run. If upon review of the synthetic doublet score histograms it

was found that the automatic determination of theta was reasonable, performance was calculated on the basis of the predicted dou-

blets. If however the automatic determination of theta did not perform well (typically an estimated theta in the extreme right tail of the

distribution and/or lack of bimodality of the distribution), a consensus value of theta was determined based on inspection of all 10

histograms in a set of runs.

QUANTIFICATION AND STATISTICAL ANALYSIS

For datasets in which there is knowledge of true doublet and singlet cells (Synthetic, Mouse-Human, Cell Hashing, and Demuxlet),

measurements for the performance of DoubletDecon, Scrublet and DoubletFinder are reported in terms of sensitivity and specificity.

Sensitivity is calculated as the number of true doublets called by the doublet detection tool divided by the total number of known

doublets. Specificity is calculated as the number of true singlets called as such by the doublet detection tool divided by the total num-

ber of known singlets in the dataset. For the Fluidigm hematopoietic progenitor dataset, with microscopy validated singlets, only

specificity has been calculated. The ANOVA in the ‘‘Rescue’’ step is considered significant with a p value for the overall test %

0.05 and with all Tukey post hoc adjusted pairwise p values % 0.05.

DATA AND CODE AVAILABILITY

Melanoma (GEO: GSE72056), Bone Marrow Progenitor (GEO: GSE70245), Cell Hashing (GEO: GSE108313), and Demuxlet (GEO:

GSE96583) data files were downloaded from the Gene Expression Omnibus. Mouse-Human hybrid data was downloaded from

the 10x Genomics Website (https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k). Mouse

heart cell data were generated at Cincinnati Children’s Hospital Medical Center and deposited at Synapse (https://www.synapse.

org/#!Synapse:syn18459941) and Gene Expression Omnibus. The accession number for the Mouse heart cell data reported in

this paper is GEO: GSE128934. Accession information for the datasets used within this manuscript can be found in the Key Re-

sources Table. DoubletDecon is provide as both a command-line R package and as a Shiny application for interactive analysis

and data visualization (RStudio and desktop application for Mac). DoubletDecon is available from https://github.com/

EDePasquale/DoubletDecon with a vignette on its use and optional user-defined parameters (requires R version 3.5.0 or later).

The Shiny application can optionally produce the function calls to reproduce the same functions on the command-line.
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Tool Cell Count ρ' (rank) Minimum Unique Sensitivity 
(Std. Dev.) 

Specificity 
(Std. Dev.) 

DoubletDecon 6,525 1.0 (1) 4† 42.66% (1.84%) 84.82% (1.47%) 
DoubletDecon 6,525 1.0 (1) 5 44.73% (1.01%) 83.70% (1.07%) 
DoubletDecon 6,525 1.0 (1) 6 45.40% (0.60%) 83.18% (0.38%) 
DoubletDecon 6,525 1.0 (1) 10 45.52% (0.60%) 82.17% (0.52%) 
DoubletDecon 6,525 1.1 (2) 4† 56.89% (1.45%) 80.98% (0.84%) 
DoubletDecon 6,525 1.1 (2) 5 60.27% (0.58%) 79.98% (0.67%) 
DoubletDecon 6,525 1.1 (2) 6 60.83% (0.90%) 79.31% (0.59%) 
DoubletDecon 6,525 1.1 (2) 10 62.92% (0.59%) 77.49% (0.46%) 
DoubletDecon 6,525 1.2 (3) 4† 57.45% (1.16%) 81.17% (0.59%) 
DoubletDecon 6,525 1.2 (3) 5 60.39% (0.72%) 79.44% (0.66%) 
DoubletDecon 6,525 1.2 (3) 6 60.46% (0.84%) 79.49% (0.57%) 
DoubletDecon 6,525 1.2 (3) 10 62.24% (0.70%) 77.85% (0.81%) 
DoubletDecon 14,619 1.1 (1) 4† 51.52% (3.10%) 83.58% (1.68%) 
DoubletDecon 14,619 1.1 (1) 5 54.63% (2.20%) 82.09% (0.93%) 
DoubletDecon 14,619 1.1 (1) 6 57.76% (1.02%) 80.98% (0.70%) 
DoubletDecon 14,619 1.1 (1) 10 59.32% (0.33%) 79.80% (0.58%) 
DoubletDecon 14,619 1.15 (2) 4† 51.11% (2.21%) 83.48% (0.88%) 
DoubletDecon 14,619 1.15 (2) 5 55.37% (1.72%) 81.65% (1.15%) 
DoubletDecon 14,619 1.15 (2) 6 57.40% (1.50%) 80.87% (0.91%) 
DoubletDecon 14,619 1.15 (2) 10 59.35% (0.60%) 79.89% (0.52%) 
DoubletDecon 14,619 1.2 (3) 4† 59.40% (1.95%) 78.02% (1.35%) 
DoubletDecon 14,619 1.2 (3) 5 61.49% (1.93%) 76.61% (1.30%) 
DoubletDecon 14,619 1.2 (3) 6 63.60% (1.27%) 75.41% (0.92%) 
DoubletDecon 14,619 1.2 (3) 10 65.63% (0.60%) 73.92% (0.72%) 

Tool Cell Count Rate Homotypic 
Adjusted 

Sensitivity 
(Std. Dev.) 

Specificity 
(Std. Dev.) 

DoubletFinder 6,525 10% - 22.27% (3.05%) 93.44% (0.85%) 
DoubletFinder 6,525 10% 7.6% 17.70% (2.62%) 95.28% (0.73%) 
DoubletFinder 6,525 10.7% - 23.44% (3.21%) 92.88% (0.89%) 
DoubletFinder 6,525 10.7% 8.1% 18.84% (2.64%) 94.91% (0.73%) 
DoubletFinder 6,525 12.5% (loading)† - 26.44% (3.82%) 91.40% (1.07%) 
DoubletFinder 6,525 12.5% (loading)† 9.5% 21.31% (2.75%) 93.87% (0.76%) 
DoubletFinder 6,525 15% - 30.54% (3.99%) 89.35% (1.12%) 
DoubletFinder 6,525 15% 11.3% 24.51% (3.11%) 92.34% (0.88%) 
DoubletFinder 6,525 21.9% (true) - 39.89% (5.17%) 83.12% (1.44%) 
DoubletFinder 6,525 21.9% (true) 16.6% 32.87% (3.93%) 88.02% (1.09%) 
DoubletFinder 14,619 10% - 62.57% (1.69%) 96.30% (0.19%) 
DoubletFinder 14,619 10% 7.6% 48.75% (1.17%) 97.56% (0.14%) 
DoubletFinder 14,619 10.7% (true) - 65.37% (1.72%) 95.85% (0.21%) 
DoubletFinder 14,619 10.7% (true) 8.1% 51.94% (1.37%) 97.36% (0.17%) 
DoubletFinder 14,619 12.5% (loading)† - 72.14% (2.01%) 94.65% (0.25%) 
DoubletFinder 14,619 12.5% (loading)† 9.5% 58.87% (1.58%) 96.70% (0.19%) 
DoubletFinder 14,619 15% - 78.71% (2.38%) 92.62% (0.30%) 
DoubletFinder 14,619 15% 11.3% 66.81% (1.68%) 95.55% (0.20%) 
DoubletFinder 14,619 21.9% - 87.14% (1.69%) 85.96% (0.24%) 
DoubletFinder 14,619 21.9% 16.6% 80.93% (2.15%) 91.55% (0.25%) 



Tool Cell Count Rate Normalization 
(theta) 

Sensitivity 
(Std. Dev.) 

Specificity 
(Std. Dev.) 

Scrublet 6,525 10% Z-score (man. 0.23)† 25.67% (0.59%) 95.66% (0.13%) 
Scrublet 6,525 10% Log (man. 0.30) 17.15% (0.38%) 97.82% (0.08%) 
Scrublet 6,525 10.7% Z-score (man. 0.25)† 25.63% (0.38%) 95.72% (0.11%) 
Scrublet 6,525 10.7% Log (man. 0.30) 18.20% (0.37%) 97.60% (0.11%) 
Scrublet 6,525 12.5% (loading)† Z-score (auto.)† 31.00% (2.32%) 93.94% (1.04%) 
Scrublet 6,525 12.5% (loading)† Log (man. 0.30) 21.24% (0.41%) 96.92% (0.06%) 
Scrublet 6,525 15% Z-score (auto.)† 27.61% (2.77%) 95.12% (0.84%) 
Scrublet 6,525 15% Log (man. 0.33) 23.11% (0.35%) 96.54% (0.07%) 
Scrublet 6,525 21.9% (true) Z-score (auto.)† 32.03% (1.52%) 93.54% (0.68%) 
Scrublet 6,525 21.9% (true) Log (man. 0.42) 24.05% (0.54%) 96.33% (0.07%) 
Scrublet 14,619 10% Z-score (auto)† 59.86% (1.11%) 94.68% (0.28%) 
Scrublet 14,619 10% Log (auto) 84.92% (0.29%) 92.51% (0.17%) 
Scrublet 14,619 10.7% (true) Z-score (auto)† 58.32% (0.92%) 95.12% (0.20%) 
Scrublet 14,619 10.7% (true) Log (auto) 85.57% (0.42%) 91.91% (0.26%) 
Scrublet 14,619 12.5% (loading)† Z-score (auto)† 59.61% (2.48%) 94.78% (0.74%) 
Scrublet 14,619 12.5% (loading)† Log (auto) 87.02% (0.48%) 90.61% (0.41%) 
Scrublet 14,619 15% Z-score (auto)† 62.38% (4.88%) 93.62% (2.00%) 
Scrublet 14,619 15% Log (auto) 87.29% (1.17%) 90.04% (1.27%) 
Scrublet 14,619 21.9% Z-score (man. 0.42)† 67.81% (0.39%) 91.49% (0.28%) 
Scrublet 14,619 21.9% Log (auto) 88.92% (0.76%) 87.56% (1.48%) 

 
Table S1. Relative performance of doublet removal tools, Related to Table 1. Each indicated tool was applied ten 
times to the Demuxlet dataset with the indicated number of cells with different cell-gene expression filtering options. ρ': 
cluster merging parameter for reference dataset, high rank indicating option with the least cluster merging; minimum 
unique: number of uniquely expressed genes in a doublet cluster necessary for cluster to be “Rescued”; rate: putative 
doublet rate supplied to tool; homotypic adj: adjustment applied to reduce rate to account for (undetectable) homotypic 
doublets; normalization: count data either z-score or log transformed; theta: doublet score threshold for classifying a cell 
as a doublet, user-specified value or auto(matic) determination by tool. †=default value specified in original manuscript or 
online documentation (when applicable). See STAR METHODS for additional details. 
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Figure S1. Interactive analysis, visualization and parameter tuning in the DoubletDecon graphical user interface, 
Related to the STAR Methods. Example usage of DoubletDecon is shown via the Shiny app for a PBMC dataset with 
cells from 8 separate donors with doublets detected by Demuxlet (Kang et al., 2018). A) Loading of input files from 
either ICGS or Seurat (left) and doublet detection parameters (parameters). The indicated tabs shown in the interface can 
be selected to adjust parameters or interactively view the data. B) Visualization of cluster similarity (centroid) to select 
the proper cluster merging threshold (ρ' values) to combine similar clusters prior to synthetic doublet creation (left). 
Here, a ρ' value 1.2-1.3 results in equivalent merging of clusters. The gene expression of markers for the original clusters 
are shown (right), with clusters re-labelled from x1-x11 (11 clusters). C) Visualization of the final predicted doublets 
(following “Rescue”), in a UMAP plot without (left) or with (right) indicated ICGS clusters. Predicted doublets typically 
will exist at the boundaries between clusters or at the cluster peripheries. D) Stacked bar charts of the number (left) and 
percentage (right) of cells in each cell cluster predicted to be doublets at the end of the end of the program, those that 
were initially predicted to be doublets but then rescued and singlets. E) Displayed interactive heatmap for the input 
scRNA-Seq cluster results prior to doublet removal (left) and after doublet removal for predicted singlets (middle) and 
predicted doublets (right).
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Figure S2. Detection of synthetic heterotypic doublets in human melanoma scRNA-Seq, Related to the STAR 
Methods. The analysis schema is shown for the evaluation of DoubletDecon on synthetic (A) heterotypic or (B) homo-
typic doublets of varying complexity (created with a 50/50 mix only). The same workflow used in DoubletDecon to 
produce synthetic doublets for doublet determination was applied in the creation of doublets for testing. Ten separately 
generated sets of synthetic doublets resulted in a sensitivity and specificity estimates (representative example shown in 
the displayed confusion matrix). UMAP plots derived from the ICGS clustering results shown for all annotated cell 
clusters (left), in silico derived synthetic doublets (middle) and DoubletDecon predicted doublets via deconvolution 
analysis (right). Labels for each cell population were independently derived through ICGS using its default cellular 
biomarker gene database via GO-Elite gene-set enrichment analysis.
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Figure S3. Common doublet cell population predictions in overloaded scRNA-Seq from mouse heart failure, 
Related to Figure 5. A) t-SNE visualization of the predominant cell populations identified by Seurat of ~13,000 heart 
cells collected via Drop-Seq. (Bottom) Labels for each cell population were independently derived through ICGS using 
its built-in cellular biomarker database gene-set enrichment analysis (GO-Elite function). Projected predicted doublets 
are shown for the three evaluated algorithms on projected into the t-SNE plot. B) Overlaps in doublet predictions for 
the three methods, indicating distinct overlapping subsets by all three algorithms. The parameters for Scrublet and 
DoubletDecon were according to the authors’ recommendations or optimized for stability across runs.
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