Supplemental Figure 1. Optimization of multiple reaction monitoring (MRM) detection on the Bruker EvoQ LC-TQ Elite Triple Quadrupole Mass Spectrometer and confirmation experiments using the Bruker Solarix 7T Fourier-transform ion cyclotron resonance (FT-ICR) ultra high-resolution mass spectrometer (UHRMS).

- A) Optimization of MRM collision-induced dissociation (CID). The most abundant MRM transitions were selected for LC-MS/MS quantitative analysis, while the second highest were selected for confirmation. In order to add an additional differentiation feature between the isomers JHB₃ and JHSB₃, an exception for this rule was in which the third most abundant MRM transition for JHB₃ (m/z 283 \rightarrow 251) was used instead of the second most abundant (m/z 283 \rightarrow 119) which was common between them.
- B) Comparison of UHRMS signals for protonated pseudomolecular ions ([M+H]⁺) with theoretical (according to molecular formulas). Internal calibration was used. Very low mass errors (<0.2 ppm) were observed for all compounds.
- C) Fragmentation spectra (CID, MS/MS) obtained by direct infusion of individual standards using the FT-ICR UHRMS.
- D) Accurate masses of protonated pseudomolecular ion ([M+H]⁺) and MS/MS fragments, with mass errors according to proposed structures.
- E) Proposed fragmentation pathways for JHs and MF based on collision-induced dissociation (CID) MS/MS experiments using UHRMS.

A: JH I

B: JH I

Ultra high resolution mass spectra of the standard obtained by direct infusion using the Solarix 7T FT-ICR MS.

Fourier-transformation cyclotron resonance (FT-ICR) ultra high-resolution MS/MS.

C: JH I

D: JH I

Table showing the MS/MS fragments of the hormone using the Solarix 7T FT-ICR MS.

UHRMS data	m/z	Formula	Δm/z (ppm)
FT-ICR MS	295.22680	[C18H30O3+H] ⁺	0.098
FT-ICR MS ² (CID on 295.2268)	277.21593	[C18H29O2+H] ⁺	-0.999
	263.20045	C17H27O2+	-0.407
	245.18993	C17H25O ⁺	-0.253
	235.20559	C16H27O ⁺	-0.221
	217.19508	C16H25+	0.014
	161.13249	C12H17+	0.081

E: JH I

Proposed fragmentation pathways according to the FT-ICR results.

Black box: parent ion Blue box: primary transition Red box: secondary transition

A: JH II

Bruker LC-TQ MRM optimization output

Multiple reaction monitoring (MRM) optimization output using the Bruker EvoQ LC-TQ Elite Triple Quadrupole Mass Spectrometer.

B: JH II

Ultra high resolution mass spectra of the standard obtained by direct infusion using the Solarix 7T FT-ICR MS.

C: JH II

Fourier-transformation cyclotron resonance (FT-ICR) ultra high-resolution MS/MS.

Table showing the MS/MS fragments of the hormone using the Solarix 7T FT-ICR MS.

UHRMS data	m/z	Formula	Δm/z (ppm)
FT-ICR MS	281.21112	[C17H28O3+H] ⁺	<0.001
FT-ICR MS ² (CID on 281.21112)	263.200557	[C17H26O2+H] ⁺	0.581
	249.184906	C ₁₆ H ₂₅ O ₂ ⁺	0.337
	231.174342	$C_{16}H_{23}O^{+}$	0.294
	221.189992	$C_{15}H_{25}O^{+}$	0.669
	203.179427	C ₁₅ H ₂₃ ⁺	0.015
	263.200557	C ₁₁ H ₁₅ ⁺	0.581

E: JH II

•

Proposed fragmentation pathways according to the FT-ICR results.

, OH

A: JHSB3

Bruker LC-TQ MRM optimization output

Multiple reaction monitoring (MRM) optimization output using the Bruker EvoQ LC-TQ Elite Triple Quadrupole Mass Spectrometer.

Ultra high resolution mass spectra of the standard obtained by direct infusion using the Solarix 7T FT-ICR MS.

C: JHSB3

Fourier-transformation cyclotron resonance (FT-ICR) ultra high-resolution MS/MS.

D: JHSB3

Table showing the MS/MS fragments of the hormone using the Solarix 7T FT-ICR MS.

UHRMS data	m/z	lon	Formula	Δm/z (ppm)
FT-ICR MS	283.19039	[M+H] ⁺	[C16H26O4+H]+	0.014
FT-ICR MS ² (CID on 283.19039)	265.17972	[M+H] ⁺ - H ₂ O	[C16H24O3+H]+	-0.381
	251.16407	[M+H] ⁺ - CH ₃ OH	C15H23O3+	-0.402
	247.16914	[M+H] ⁺ - H ₂ O - H ₂ O	[C16H22O2+H]+	-0.469
	233.15362	[M+H] ⁺ - H ₂ O - CH ₃ OH [M+H] ⁺ - CH ₃ OH - H ₂ O	C15H21O2+	0.060
	223.16914		C14H23O2+	-0.520
	215.14297	[M+H] ⁺ - H ₂ O - CH ₃ OH- CO	C15H19O+	-0.335
	205.15860	[M+H] ⁺ - H ₂ O - CH ₃ OH- CO	C14H21O+	-0.445
	187.14803		C14H19+	-0.518
	145.10110		C11H13⁺	-0.530

E: JHSB3

•

Proposed fragmentation pathways according to the FT-ICR results.

Black box: parent ion Blue box: primary transition Red box: secondary transition

A: JHB3

Multiple reaction monitoring (MRM) optimization output using the Bruker EvoQ LC-TQ Elite Triple Quadrupole Mass Spectrometer.

Instrument:	EVOQ LC-TQ Elite	m/z 251 was selected as seconda (instead of m/z 119) because it is not abundant for JHSB3	
Date:	27 Aug 2019 9:02:16		
Compound: JHB3			
Charge State: 1			
Precursor: 283.1 m/z			
CID pressure : 1.5 mTorr			
Prod	CE(V)	Intens.	Ratio(%)
233.00	-10.0	4.31e6	100.00
119.10	-22.0	1.59e6	36.96
251.00	-7.0	1.37e6	31.93
205.00	-12.0	1.06e6	24.51
265.00	-7.0	8.49e5	19.72

Ultra high resolution mass spectra of the standard obtained by direct infusion using the Solarix 7T FT-ICR MS.

UHRMS data	m/z	lon	Formula	Δm/z (ppm)
FT-ICR MS	283.19041	[M+H] ⁺	[C16H26O4+H] ⁺	0.085
FT-ICR MS ² (CID on 283.19039)	265.17983	[M+H] ⁺ - H ₂ O	[C16H24O3+H] ⁺	0.034
	251.16419	[M+H] ⁺ - CH ₃ OH	C15H23O3+	0.076
	222 15250	[M+H] ⁺ - H ₂ O - CH ₃ OH	C15H21O2+	
	233.13335	[M+H] ⁺ - CH ₃ OH - H ₂ O		-0.069
	223.1692		C14H23O2+	
				-0.251
	215.14305	[M+H] ⁺ - H ₂ O - CH ₃ OH- CO	C15H19O ⁺	0.037
	205.15868	[M+H] ⁺ - H ₂ O - CH ₃ OH- CO	C14H21O ⁺	0.050
	187,14811		C14H19 ⁺	-0.058
				-0.091

E: JHB3

Proposed fragmentation pathways according to the FT-ICR results.

m/z 187, C₁₄H₁₉

A: MF

Multiple reaction monitoring (MRM) optimization output using the Bruker EvoQ LC-TQ Elite Triple Quadrupole Mass Spectrometer.

Bruker LC-TQ MRM OPT

MF

 $251.3 \rightarrow 191.2$; 9.0 $295.2 \rightarrow 219.2$; 6.0 10.0 B: MF

Ultra high resolution mass spectra of the standard obtained by direct infusion using the Solarix 7T FT-ICR MS.

C: MF

Table showing the MS/MS fragments of the hormone using the Solarix 7T FT-ICR MS.

UHRMS data	m/z	lon	Formula	Δm/z (ppm)
FT-ICR MS	251.2006	[M+H] ⁺	[C16H26O4+H] ⁺	0.171
FT-ICR MS ² (CID on 251.2006)	219.17436	[M+H] ⁺ - H ₂ O	[C16H22O2+H] ⁺	0.082
	191.17944	[M+H] ⁺ - CH ₃ OH	C15H23O3+	0.068

o l

E: MF

٠

Proposed fragmentation pathways according to the FT-ICR results.

Black box: parent ion Blue box: primary transition Red box: secondary transition

A: JH III

Instrument			
instrument.			
Date:	10 Jan 2018 14:08:51		
Compound: JH III			
Charge State: 1			
Precursor: 267.0 m/z			
CID pressure : 1.6 mTorr			
Prod	CE(V)	Intens.	Ratio(%)
235.00	-5.0	5.84e5	100.00
147.00	-10.0	1.87e5	32.08

A: JH III-D3

Instrument:	EVOQ LC-TQ Elite			
Date:	23 Jan 2018 15:34:	21		
Compound: JH III-	-D3			
Charge State: 1				
Precursor: 270.0 r	n/z			
CID pressure : 1.5	5 mTorr			
Prod	CE(V)	Intens.	Ratio(%)	
235.20	-5.0	2.03e4	100.00	
147.20	-11.0	9.01e3	44.34	
109.20	-17.0	5.61e3	27.61	
153.20	-14.0	5.20e3	25.58	
189.20	-9.0	5.09e3	25.05	

Fragmentation of JH III (from Ramirez et al, 2016)

	Parent <i>m/z</i>	Fragment <i>m/z</i>
In-source MS/MS	267	249, 235, 217, 189, 147
	249	217, 189, 147
	235	217, 189, 147
	217	189, 147
	189	147
MS/MS ⁿ	267 -> 235	217, 207, 189
	267 -> 249	217, 189, 147
	267 -> 217	189, 147
	267 -> 189	147
FT-ICR MS/MS	267.195461 C ₁₆ H ₂₇ O ₃	249.18492 C ₁₆ H ₂₅ O ₂
		235.169298 C ₁₅ H ₂₃ O ₂
~		217.158786 C ₁₅ H ₂₁ O
		207.174417 C ₁₄ H ₂₃ O
		189.163858 C14H21
		147.116827 C ₁₁ H ₁₅

Fragmentation of JH III (from Ramirez et al, 2016)

