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Fig. S1. Multiple sequence alignment of PD-1H orthologs. Similar residues are colored red,
and invariant residues have red backgrounds. Conserved histidines are marked with an asterisk.
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Fig. S2. Size-exclusion chromatography (SEC) and SDS-PAGE analysis of glycosylated and
deglycosylated PD-1H-His. Left: purified PD-1H-His was analyzed by SEC before (black
trace) and after (purple dotted trace) deglycosylation with Endoglycosidase Hf. Absorbance at
280nm was normalized so that 100% represents maximum absorbance. Molecular weight
standard elution volumes are plotted above. Right: SDS-PAGE analysis of purified PD-1H-His
before and after digestion with Endoglycosidase Hf.



Fig. S3. Electron density map quality. 2Fo—Fc electron density maps (blue mesh) are
contoured at 1.0c. Left: N-acetylglucosamine residue attached to Asnl7. Center: o helix between
C" and D B strands. Right: E B strand.
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Fig. S4. Structural alignment of similar proteins from the structural comparison server
DALI. TCR Va domains (blue, PDB ID 2f53; green, PDB ID 4ww1), CTLA-4 (orange, PDB ID
3osk) and PD-1H (red) are largely similar, except for the additional C-terminal B-strand and the
unique CC' loop of PD-1H.
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Fig. S5. Size-exclusion chromatography (SEC) analysis of PD-1H-hFc variants.
Purified PD-1H-hFc variants were compared by SEC. Absorbance at 280nm was normalized so
that 100% represents maximum absorbance.
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Fig. S6. Replicates from additional PBMC donors used for in vitro experiments.

(A) T cell proliferation after activation with a-CD3 in the presence of control higG, wildtype PD-
1H (WT-hFc), or mutant PD-1H where either all three histidine clusters were mutated to alanine
(HA123-hFc) or the CC' loop was deleted (ACC'-hFc). (B) Cytometric bead array staining of
IFN-y in supernatants from T cells activated in the presence of control or PD-1H protein variants.
(O) Similar experiment as (4) but with histidine clusters (in different colors) mutated
individually. Representative results of at least three independent experiments were shown.
Statistical analyses were carried out with two-tailed Student’s t-test, and all error bars reflect
SEM.
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Fig. S7. T cell inhibition by PD-1H in the presence of antagonistic antibody MIH65. T cell
proliferation after activation with a-CD3 on plates coated with control higG, wildtype PD-1H
(WT-hFc), or mutant PD-1H where either all three histidine clusters were mutated to alanine
(HA123-hFc) and in the presence of either antagonistic antibody MIH65 or isotype control
mouse IgG (mIgG). Statistical analyses were carried out with two-tailed Student’s t-test, and all

error bars reflect SEM.
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Fig. S8. Multiple sequence alignment of CD28 family members. Extracellular domains and
transmembrane regions as annotated in UniProt were aligned using Clustal Omega(1) and
processed with ESPript(2). Similar residues are colored red, and invariant residues have red
backgrounds. Transmembrane (yellow background) residues are based on sequence annotation
from UniProt(3). Stalk regions (blue background) for CD28, CTLA-4, and PD-1 are based on
crystal structures (PDB IDs lyjd, 3osk, and 3rrq, respectively), and for ICOS based on homology
modeling on CTLA-4 using 3osk as a template with the SWISS-MODEL server(4). The novel H
B strand of PD-1H (red arrow) is located in a region that corresponds to where the stalk or
transmembrane region would be in other CD28 family members.
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Fig. S9. T cell inhibition by PD-1H glycosylation variants. T cell proliferation after activation
with 0-CD3 on plates coated with control hlgG, wildtype PD-1H (WT-hFc), PD-1H in which
glycans were arrested in high-mannose form by addition of 20 uM swainsonine during protein
expression (WThigh-manose_hE¢) or PD-1H in which glycans were removed by enzymatic
processing of WThigh-mannose_hE¢ by Endoglycosidase Hf (WTdeghveosylated_hEe)  Statistical analyses
were carried out with two-tailed Student’s t-test, and all error bars reflect SEM.
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