

Supplementary Information for

Large-scale contractions of Friedreich's ataxia (GAA)_n repeats occur during DNA replication

owing to their triplex-forming potential in yeast

Alexandra N. Khristich, Jillian F. Armenia, Anna A. Kolchinski, Robert M. Matera, Sergei M.

Mirkin

Corresponding author: Sergei M. Mirkin

Email: sergei.mirkin@tufts.edu

This PDF file includes:

Supplementary text Figures S1 to S10 Tables S1 to S3

Supplementary Information Text

Methods

Fluctuation tests. To compare the rates of contraction in the conditions of high and low transcription, the cells were first grown overnight in a liquid complete media with raffinose as a sugar source. Cells were then diluted and plated on YNB media, which contained glucose or galactose as a sugar source and was additionally supplemented with uracil and adenine. Colonies from the media with galactose were grown for 60 hours instead of 40 before plating the fluctuation test. The rest of the fluctuation test was identical to the protocol described above.

Cloning of the cassettes. The P_{Gall} -UR- $(GAA)_{124}$ -A3-TRP1 cassette was constructed as previously described (1). To create cassettes with other repeats, we ordered DNA fragments from GenScript which were identical to a piece of the P_{Gall} -UR- $(GAA)_{124}$ -A3-TRP1 cassette, except had other repeats in place of (GAA)_{124} repeats. The fragments were cloned into the P_{Gall} -UR- $(GAA)_{124}$ -A3-TRP1 cassette using SgrAI and NcoI or SgrDI and BglII restriction enzymes. To get the inverted cassettes, we amplified the direct cassettes with primers carrying SgrDI and BglII recognition sites in their 5'-tails and cloned back to the vector using the same enzymes, as previously described (1). All constructs were Sanger sequenced and integrated into yeast as linear fragments. Their integration was confirmed using PCR.

Yeast strain construction. All of the strains used in this study are derivatives of SMY710 (CH1585 *MATa leu2-\Delta 1 trp1-\Delta 63 ura3-52 his3-200 ade2\Delta::KanMX4 HAP1-wt) (2)*, except for Pol α mutants and their corresponding WT strain which are derivatives of CH1585 (*MATa leu2-\Delta 1 trp1-\Delta 63 ura3-52 his3-200*) (3). To construct gene knockouts, we used gene replacement with *hphMX6*, or *HIS3* as selectable markers. All knockouts were confirmed using PCR with internal primers and either external or junction primers. *Rad27* missense mutants were created via two-

step transformation protocol as previously described (4). All other missense mutants were made using a simplified CRISPR-Cas9 approach (5). To overexpress the yeast RPA, a plasmid containing the *RFA1*, *RFA2* and *RFA3* genes with their flanking sequences, the *HIS3* marker and 2-micron origin of replication cloned into the pUC57 vector was ordered from *Gene Universal*. Plasmid was transformed into yeast and the cells were grown on media lacking histidine to facilitate plasmid retention. A complete list of all yeast strains used in this study can be found in the supplemental tables.

Spot tests. Yeast cells were plated on complete media supplemented with uracil and adenine (YPDUA) with no or 0.5 mM H₂O₂. After they formed colonies, the colonies were dissolved in water and 5-fold dilutions were made. 4μ l of each dilution was spotted on YPDUA and Gal⁺Ura⁻ media.

Distributions of GAA repeat sizes. To build a distribution of repeat sizes in WT colonies without applied selection, the strains were plated to single colonies and PCR of individual colonies was performed. *Image Lab* software (*Bio-Rad*) was used to estimate the size of the repeat tracts in each sample.

To build a distribution of deleted repeats after selection, 8 to 16 colonies were randomly picked from each of the selective media. Colony PCR was performed with A2 and B2 primers. *Total Lab Count* or *Image Lab* software was used to estimate the size of the repeat tracts in each sample. If two or more colonies from the same selective plate showed an identical size of repeat deletion, that value was only accounted once.

RT-qPCR. Three independent colonies from each strain and condition were grown overnight. In the morning, the cells were diluted to an OD_{600} of 0.1 and harvested when they reached an OD_{600} of 0.5. RNA was isolated using RNeasy Kit (*Qiagen*) following the

manufacturer's instructions. Extracted RNA was treated with Turbo DNase (*ThermoFisher*) following the manufacturer's instructions. Reverse transcription was performed using SuperScript IV Reverse Transcriptase (*ThermoFisher*) following the manufacturer's instructions. Random hexamers and polyT primers were used to estimate URA3 transciption and RPA overexpression correspondingly. Next, qPCR was performed using SYBR Select Master Mix (*ThermoFisher*) on a QuantStudio 6 Flex Real-Time PCR system (*ThermoFisher*). To compare different samples to one another, mRNA levels were normalized to the amount of *ACT1* mRNA. Standard curves based on 10-fold serial dilution of gDNA were used for the quantification of the results. Two-sample *t*-test was used to estimate the significance.

Fig. S1. Distribution of contracted repeats in the inverted cassette in the absence of selection. Red line represents exponential distribution fit for the distribution of all contractions (Kolmogorov-Smirnov test, P=0.13). Purple line represents exponential distribution fit for the small-scale contractions (Kolmogorov-Smirnov test, P=0.24). The vertical bar denotes the border between small and large scale contractions as classified by *k*-means clustering analysis.

Fig. S2. Comparison of the Ura⁺ and *bona fide* contraction rates for various mutants. Error bars represent 95% confidence intervals.

Fig. S3. Colonies of WT cells bearing the $(GAA)_{124}$ repeat tract in the direct cassette were grown on YPD plates supplemented with adenine, uracil, and either 0 or 0.5mM of H₂O₂. Figure shows 5 colonies from each plate with intact repeat tracts spotted onto complete (YPD) or selective media (Gal^+Ura^-) .

Fig. S4. Effect of knocking out *TOF1* on GAA repeat contraction rates in two *rad27* mutants. Error bars represent 95% confidence intervals. Numbers on bars show fold change relative to WT.

Fig S5. Effect of knocking out *RAD5* or *YKU70* on GAA repeat contraction rates in the *rad27-4A* mutant. Error bars represent 95% confidence intervals. Numbers on bars show fold change relative to WT.

Fig S6. Levels of RPA overexpression. RPA overexpression was achieved by transforming yeast cells with a multicopy plasmid bearing three yeast RPA subunits. Total RNA was isolated from cells with (RPA overexpression) or without (control) the plasmid and reverse transcribed using a polyT primer. The amount of RPA cDNA was estimated using qPCR. The standard curve method was used to quantify transcription levels. Means of three biological replicates are shown and the error bars represent standart deviations. Fold changes in gene expression are shown above each bar.

Fig. S7. The effect of low (glucose) or high (galactose) transcription state on GAA repeat contraction rate in strains with direct versus inverted cassettes. Bars represent 95%-confidence intervals.

Fig. S8. Distribution of contraction sizes for direct versus inverted cassettes in colonies with repressed (glucose) and induced (galactose) transcription through the reporter. Each box represents median and interquartile range; whiskers show 1.5 interquartile range.

Fig. S9. *URA3* transcription level in cell cultures with direct versus inverted orientation of the cassette grown under transcription repression (glucose) or induction (galactose) measured by RT-qPCR. The standard curve method was used to quantify transcription levels. Mean values of three biological replicates are shown. Error bars represent standard deviations.

Fig. S10 The effect of mutations in genes that were reported to interact with DNA triplex on GAA repeat contraction rates in the direct (A) and inverted (B) cassettes. Error bars represent 95% confidence intervals.

Fig. S11. Distribution of contraction sizes for direct and inverted cassettes depending on repeat composition. Each box represents median and interquartile range; whiskers show 1.5 interquartile range.

Table S1. Fraction of colonies with *bona fide* contractions among Ura⁺ colonies for various mutants. Colonies of various strains were recoved from selective media after a fluctuation test and subjected to PCR analysis of the repeat tract lengh.

	# of total colonies analyzed	# of <i>bona fide</i> contractions	% of <i>bona fide</i> contractions
WT	183	167	91
rad27-G240D	119	117	98
rad27-4A	128	124	97
$msh3\Delta$	159	145	91
exo1∆	191	178	93
$rad27$ -G240D tof1 Δ	191	183	96
$pol32\Delta$ rev1 Δ	126	116	92
$rad27\Delta$	144	140	97
rad27-G67S	190	181	95

Primer name	Primer sequence	Notes
For cloning		
R-SgrDI	CGGATCCGGAGATCTCGCGTGGGGGATGATCCACTAG	
L-BglII	GACCCACGTCGACGCTAGCGGGTAATAACTGATA	
L-SgrDI	TAAGACCGTCGACGTCGCGTGGGGATGATCCACTAG	For cassette inversion (1)
R-BgIII	TGCTTAAGATCTCGCTAGCGGGTAATAACTGATA	For cassette inversion (1)
For Sanger sequencing of the c	assettes	
TRP1 PPP R	CTCTGCAAGCCGCAAACT	
URA3-RT-UnSpl-R	GAGCCCTTGCATGACAATTC	
5' UAS 100 1-R	ATCGAATTTGAGGTCTGCACT	
5'misc-F	GATGGTACGACGGTTTGTAATAGCG	
Alex-URA3-RT-Spl-F	ATCCTAGTCCTGTTGCTGCCAA	
For amplification of the cassett	es	
5'misc-F	GATGGTACGACGGTTTGTAATAGCG	
3'misc-R	AAGCACTAACGATTGCGTGATGG	
For integration of the cassettes		
A 36a-R	AGGGTCGTTGCCTTCTGGT	
A 36b-F	ACGTGTACAGTTCTCTTTACATCATC	
TrpS-F	TCGATTTCTGACTGGGTTGGAAG	
5' UAS 100 1-R	ATCGAATTTGAGGTCTGCACT	
URA3-RT-UnSpl-F	TTGACTGATCTGTAATAACCACGA	
For repeat tract amplification	Полетоннетонишиескеом	
A2	CTCGATGTGCAGAACCTGAAGCTTGATCT	
R2 R2	GCTCGAGTGCAGACCTCAAATTCGATGA	
<u>52</u>	TGCTCGATGTGCAGAACCTGAAGCTTG	
52 V 2	GCTCGAGTGCAGACCTCAAATTCGATG	
For aPCP	GETEGAGIGEAGACETEAAATTEGATG	
Ast1 E		
Act1 P		
DEA1 aDCD E		
DEA1 and P2		
DEA2 aDCD E		
DEA2 and P		
RFA2 seq R		
RFA3_seq_F		
KFAS QPCK K	V alexand with target aDNA accuracy	
For amplification of the pRCC-	-IN plasmid with target gRINA sequence	1
DNA2_H54/A_pRCCN_F		ana2_H34/A
DNA2 US47A - DCCN D		Jun 2 115 47 4
DNA2_H34/A_pRCCN_R		ana2_H34/A
Devil a DCC E		1 D A (7 A E A (9 A (CD)))
Kevi_pkCC_r		revi-D40/A-E408A (CD)
		1 DA(7A FA(9A (CD)))
Kev1_pKUU_K		rev1-D40/A-E408A (CD)
DEAL S251D DCON E		
KFAI_SSSIP_PKCCN_F		rja1-5551P
DEA1 S251D -DCCNLD		vfa 1 \$251D
MAI_55511_PROON_R		1ju1-03311
1		1

Table S2. Primers used in this project

RFA1_K45E_pRCC_F	ATAACACCAGGAAATCTGATGTTTTAGAGCTAGAAA TAGCAAGTTAAAATAAGG	rfa1-K45E
RFA1_K45E_pRCC_R	ATCAGATTTCCTGGTGTTATCGATCATTTATCTTTCA CTGCGGAG	rfa1-K45E
Pol3_D520V_pRCC_F	CATAAGCCTTAAAGGCAGGTGTTTTAGAGCTAGAAA TAGCAAGTTAAAATAAGG	pol3-D520V
Pol3_D520V_pRCC_R	ACCTGCCTTTAAGGCTTATGCGATCATTTATCTTTCA CTGCGGAG	pol3-D520V
For amplification of a template	for repair in CRISPR-Cas9 gene editing	
DNA2_H547A_mut_F	AAGACGTTCAATTCTGCAAATGCAATTTCAAGATCC CCGCGGAGAACCAAGTCTTGTCATGACTTTAGGCAA TATCGTAGCCGAGTTATTGCAAGACTC	dna2_H547A
DNA2_R	CTTCAATATCAATCACATTGGATATAGAAATTGGCT GTGTTCTTCTTGTTCCGGAA	dna2_H547A
REV1_mut_F	TACTCTCAAAAGATTGAACATATTCAATTTGATTTTA CCTATATCTATTgcagctGCTGTTTGTGTGCgtATAATCCC TGATAA	rev1-D467A-E468A (CD)
REV1 R	TGTGCAACCATTCGTTCCTTGA	rev1-D467A-E468A (CD)
RFA1_S351P_mut_F	ATTTTGAGCTAACTTCAAGGGCTGGGAAGAAATTCG ATCGTCGTGACATCACAATTGTTGACGACCCTGGCTT TTCTATCTCTGTTGGCCTATGGAATC	rfal-S351P
RFA1_R2	AGGCATATGCCTCAGGAATTTCTGGATTCGGAATCA GGG	rfa1-S351P
RFA1_K45E_F	GTACGATAATCCCACCGGTGGCGTTTATCAAGTTTAT AACACCAGGAAATCTGATGGCGCTAACAGCAACAG AGAGAATTTGATCATGATTTCCGATGG	rfa1-K45E
RFA1_R	CTGACAATAGCAGGTTCTGCAATTATCACGCGAATG ATATCACCCC	rfa1-K45E
POL3_D520V_template	AATGGCGATAGTGAAACAAGAAGAAGGATGGCCGTT TACTGTTTGAAAGTCGCATACCTGCCTTTAAGGCTTA TGGAAAAACTAATGGCGTTAGTTAAC	<i>pol3-D520V</i> (ssDNA template)
For Sanger sequencing of the m	issense mutations	
DNA2_seq_R	CCTTGAACCTCGTATGAAACGCTTC	dna2 H547A
DNA2_seq_F	GCTAACGACAACCTGTTGGTGC	dna2 H547A
REV1_F	AATGTGTAGGGTCGGCATTG	rev1-D467A-E468A (CD)
REV1_R	TGTGCAACCATTCGTTCCTTGA	rev1-D467A-E468A (CD)
RFA1 seq F2	CTCCAACCAGCTAAGCCCCA	rfa1-S351P
RFA1 seq R2	GATGAAGTTTGCGTTGCGGC	rfa1-S351P
RFA1 seq F	ACACACCACAAATACCCCATTTCC	rfa1-K45E
RFA1 seq R	CGACTGGACCAACTCAAAGTCATC	rfa1-K45E
POL3 seq F	GTGGTTTTCTAACGGCACGACT	pol3-D520V
POL3_seq_R	CATATTGGTCATCAGAGGCCTGAG	pol3-D520V
RAD27 seq F	TAACATCGCGCAAATGAAGG	
For knockout fragments amplifi	cation	•
APN1_pRS_F	ATGCCTTCGACACCTAGCTTTGTTAGATCTGCTGTCT CGAAATACAAATTTGGTGTCGGGGGCTGGCTTAA	apn1::HIS3
APN1_pRS_R	TTTGTTTAACCTCAAACTTGTCTAACTGTTCCTTACG CGATTTAGCACCTGTTTACAATTTCCTGATGCGGTA	apn1::HIS3
CHL1-pRS-F	CCAAAAAATGGACAAAAAGGAATATTCGGAGACTTT CTATCATCCTTATAAGCCCGGTGTCGGGGGCTGGCTTA A	chl1::HIS3

CHL1-pRS-R	ATCACAGTATACACGTAAACGTATTCCTTTTAGCGTG	chl1::HIS3
	AATTCAGGCTGCGCATTGGTTTACAATTTCCTGATGC	
	GGTA	
EXO1 pRS F	GAAAGGAATGGGTATCCAAGGTCTTCTTCCTCAGTT	exol. HIS3
Enor_pro_r		CA0111105
EVO1 mDS D		and LULIIS2
EAOI_PKS_K		ex01HIS5
	GIGCAGIACIIAACGIIIACAAIIICCIGAIGCGGIA	
MLH1-pAG-F	ATGTCTCTCAGAATAAAAGCACTTGATGCATCAGTG	mlh1:: HphMX4
	GTTAACAAAATTGCCAGCTGAAGCTTCGTACGC	
MLH1-pAG-R	TTAACACCTCTCAAAAACTTTGTATAGATCTGGAAG	mlh1:: HphMX4
_	GTTGGCTATTTCCACATAGGCCACTAGTGGATCTG	
MLH2 pRS F	CACATCCCATCATCTCGGTTTGAGGAACAGACGCCT	mlh2::HIS3
	TTTCATAGTTTTGGGGTGTCGGGGCTGGCTTAA	
MLH2 pRS R	TCTATTATGAAGTAATCTATTGTGCTGAGTGGTGATA	mlh?··HIS3
MLII2_pRS_R	GTGCACCCGATCAGTTTACAATTTCCTGATGCGGTA	mm211155
MLU2 pDS E		
MLH5_PK5_F		min5
MLH3_pRS_R	GCGCAATTTAAAATGCAGGCGACAAACCTTGTTCCA	mlh3::HIS3
	GGATTAAGGTTCTCGTTTACAATTTCCTGATGCGGTA	
JK230_MRE11_SP	TTAAGAGAATGCAGACAATTGACGCAAGTTGTACCT	mre11::HphMX4
	GCTCACATCCGATAAAACTCGACTCAGCTGAAGCTT	
	CGTACGC	
JK321 MRE11 ASP	TCGCGAAGGCAAGCCCTTGGTTATAAATAGGATATA	mrel1HnhMX4
	ΑΤΑΤΑΑΤΑΤΑGGGATCAAGTACAACATAGGCCACTA	
	CTCGATCTC	
	UIUUAICIU	
KMH2_F		msn2::HpnMX4
	AICIGCIGACCIAACAICAAAAICCICAGAICIGIII	
	AGCITGCCICGIC	
KMS2_R	CCAAAAGACTGATCTGAAATACCAGGCTCAACTTTG	msh2::HphMX4
	TATAACAACGTGATGTCCTCATCGATGAATTCGAGC	
	TCGTTTTCG	
JK215 MSH3 SP	GTACTTTTGAGAGCCAAAAGCAGTGCAAATAGATTT	msh3::HphMX4
	ATTTTGTTGAATCTATTAACAATACAGCTGAAGCTTC	1
	GTACGC	
IK216 MSH3 ASP	GCATAAGAAATTGCTATACCATCGTGCGTGCCAGTA	msh3··HnhMX4
JK210_W5H5_K51	CCTCTTCCCACTTCGTCTAATAATCATAGGCCACTAG	msn9ipnivi2(+
WALZ MOUL OD		
JK217_MSH6_SP	GATAAGATITITIAATIGGAGCAACTAGTTAATITIG	msh6::HphMX4
	ACAAAGCCAATTTGAACTCCAAACAGCTGAAGCTTC	
	GTACGC	
JK218_MSH6_ASP	TAAAGCATGGATGTCTTAATGATTTAAATTTCAGAA	msh6::HphMX4
	AACCATTTAATTGAGTATTCGTTTCATAGGTTACTAG	
	TGGATCTG	
JK246 MUS81 SP	ACATTGGCGTAAACAAAGTTTCAAAGGATTGATACG	mus81::HphMX4
	AACACACATTCCTAGCATGAAAGCCAGCTGAAGCTT	
	CGTACGC	
IK247 MUS91 ASD		mus 81. Hph MV4
JIX24/_WUS01_ASP		muso111pniv1A4
OGG1_F	ACTACTATTTCCAGCGGAAGAAGGCATTTGAAGCGT	ogg1::HphMX4
	CCTGATTCATAATTGCGATCGGATCCCCGGGTTAATT	
	AA	

OGG1 R	TTTGCTTCTTTGATGTGAAGATCAGACAATTCAACTT	ogg1::HphMX4
—	TCAGTTTCATTTGTTTCGCATAGGCCACTAGTGGATC	
	TG	
PMS1 F	GATGTTCATCGAATTACATCTGGACAAGTTATCACC	pms1::HphMX4
	GACTTAACAACTGCCGGATCCCCGGGTTAATTAA	F
PMS1 R	GGACAATTCCAAGGCTTATCAAGTTCACTGAGATTA	pms1::HphMX4
	TGAACGACTCTGGTCATAGGCCACTAGTGGATCTG	Prostructure
JK219 POL32 SP	ATAATATTTCACATTAACTAACAACCAGAAATAGGC	nol32HnhMX4
	TTTAGTTAACTCAATCGGTAATTACAGCTGAAGCTTC	
	GTACGC	
JK220 POL32 ASP		nol32HnhMX4
	AAGTGTTTGGAAAAAAAAGAAGACATAGGCCACTA	pouszinipinini
	GTGGATCTG	
RAD14 F	AGAGTTTGGATCTTCGTAGTGAAGGTATCGAACGTA	rad14··HphMX4
	ACGCTATGACTCCCCGGATCCCCGGGTTAATTAA	1 uu 1 7 11 piùvi23 7
RAD14 R		rad14HnhMYA
KADI+_K	TTCTAGCCCGCAGCATAGGCCACTAGTGGATCTG	ruu1411pniv124
DAD19 pDS E		nad19LIS2
KADI8_pKS_F		rua18.:11155
RADI8_pRS_R		raa18::HIS3
	AAGICCATIAATICIGITIACAATITCCIGATGCGGI	
RAD2_Hyg_Int_F		rad2::HphMX4
RAD2_Hyg_Int_R	AAGGACCGTATATATCTACTATTCCTGGATCGGTTGA	rad2::HphMX4
	CTTTGTTAACATGCAGAAACACCCTGATTCTGTGGAT	
JK272_RAD27_SP	TATACATCGATGAAAAGCGTTGACAGCATACATTGG	rad27::HphMX4
	AAGAAATAGGAAACGGACACCGGAAGAAAAAATCA	
	GCTGAAGCTTCGTACGC	
		127 II. 1 MYA
JK2/3_KAD2/_ASP		raa27::HpnMX4
	AGGACCAAAAGAAGAAGAACIGGAAAAAGAACUCUU	
		120 11102
RAD30-pRS-F		raa30::HIS3
		120 11102
RAD30-pRS-R	ATTATCAGGACGITTTAGITGCTGAAGCCATATAATT	rad30::HIS3
	GICTATTIGGAAIGITTACAAITICCIGAIGCGGIA	
RAD5del_Hyg_F	CCITACIGCIAAGCGCATIGCICACIIGAAAGIAAAT	rad5::HphMX4
	TATCTACAAAGTTACACATACGATTTAGGTGAC	
RAD5del_Hyg_R	TCTATGCTATCTTGTATGATAAATCTCATAACTTTGA	rad5::HphMX4
	CGCTGTTTGTCTGTCTGTGGATAACCGTATTAC	
RAD5_pRS_F	CCTTACTGCTAAGCGCATTGCTCACTTGAAAGTAAAT	rad5::HIS3
	TATCTACAAAGTTACATTCGGTGATGACGGTGAAA	
RAD5_pRS_R	TCTATGCTATCTTGTATGATAAATCTCATAACTTTGA	rad5::HIS3
	CGCTGTTTGTCTGGTTTACAATTTCCTGATGCGGTA	
RAD51_Hyg_Int_F	AAATGTTGGAAATGCACCACTACCGTTCTTCAACCA	rad51::HphMX4
	ATCTAGTTTAGCTATTTAGAACGCGGCTACAATTA	
RAD51_Hyg_Int_F	AAAGAGGAGAATTGAAAGTAAACCTGTGTAAATAA	rad51::HphMX4
	ATAGAGACAAGAGACCAAATACCTACCCTGATTCTG	
	TGGATAACC	
RAD52_pAG_R	GGTTTCACGCGGTACTTGATTCCCAGCCCCTTCTAGC	rad52::HphMX4
	ATATGAGGCCCCAGTTCTTTATCATCGATGAATTCGA	
	GCTCGTT	

KR52t-F	CGAATGGCGTTTTTAAGCTATTTTGCCACTGAGAATC	rad52::HphMX4
	AACAAATGCAAACAAGGAGGTTGCCAGATCTGTTTA	1
	GCTTGCCT	
RAD59 nAG F	GGTTACGTAGAGGAGAAGAGCATATTTCAGGATAAA	$rad59 \cdots HphMX4$
	CAGACAAAATAATGCAGCTGAAGCTTCGTACGC	1440911phi/124
PAD50 pAG P		nad50HphMV4
KAD39_DAO_K		1003911pn/v174
		16 11162
KAD65_HIS		raao::HIS3
	TTTTAAACGTATGAAGGAAGGTGTCGGGGCTGGCTT	
	AA	
RAD6A_HIS	TCAGTCTGCTTCGTCGTCGTCGTCGTCGTCATCATCA	rad6::HIS3
	TCATCATCGTCCATCTCCTTACGCATCTGTGCGG	
	ТА	
REV1_pRS_F	ACAGATTTTCTCAAAATAAATCGATACTGCATTTCTA	rev1::HIS3
	GGCATATCCAGCGGGTGTCGGGGCTGGCTTAA	
REV1 pRS F	GATATTACAGGTAATGTTCGCAAACTGCGTGTTTACT	rev1::HIS3
<u> </u>	GTATGCTGAAATGGTTTACAATTTCCTGATGCGGTA	
REV3 pAG F	ATGTCGAGGGAGTCGAACGACACAATACAGAGCGA	rev3…HnhMX4
	TACGGTTAGATCATCCGGATCCCCGGGTTAATTAA	
REV3 nAG R	GCGAGACATATCTGTGTCTAGATTACCAATCATTTAG	rev3HnhMX4
KEV5_pAG_K	AGATATTAATGCTGCATAGGCCACTAGTGGATCTG	
DEV/2 pDS E		10012LIS2
KEV5_PK5_F		revsniss
		2 11102
REV3_pRS_R	GCGAGACATATCTGTGTCTAGATTACCAATCATTAG	rev3::HIS3
	AGATATTAATGCTGTTTACAATTTCCTGATGCGGTA	
Ksglt-F	GGTGATCATTGGTGATACASTTTCGGATTTGTGGCTT	sgs1:: HphMX4
	TACCGTTTAGTTTGTTTTTATCAGCCAGATCTGTTTA	
	GCTTGCCT	
Ksg1h-R	CGCACCAGTGATGGCTAATGCCTTAGTGACGGTAGT	sgs1:: HphMX4
	CGCAGTAGTACTTGTCAGGTTTGAATTCGAGCTCGTT	
	TTCGACA	
JK180 SRS2 SP	TCTGCACTTTGAGTATCATTCCAATTTGATCTTTCTTC	srs2:: HphMX4
	TACCGGTACTTAGGGATAGCAACAGCTGAAGCTTCG	1
	TACGC	
JK181 SRS2 ASP	CTTTGGCACCGTGAATTGTAGATATCGTGACAAACC	srs2:: HphMX4
	CATTCTTCTCACGTTTTATTTTTGCATAGGCCACTAG	
	TGGATCTG	
STM1-nAG-F		stml ·· HnhMX4
51111-040-1	CTTTTGAACGGTGTCATAGGCCACTAGTGGATCTG	sum111pmm17.4
STM1 #AC D		atual Urah MVA
SIMI-pAG-K		sim1npnNIX4
TOF1 CD		
TOFT_SP	GIAAGICGCCICACATAIGAIAAIACCAICIAGCIIG	tof1::HphMX4
	TGGGGTTTAGTGTATCTTCAGCTGAAGCTTCGTACGC	
TOF1_ASP	TCTGTAGCTCTTATGCTTTCAATACTTGGTATGGATC	tof1::HphMX4
	CACCAAACAAGCTCGTATCATAGGCCACTAGTGGAT	
	CTG	
TOF1-pRS_F	GTAAGTCGCCTCACATATGATAATACCATCTAGCTTG	tof1::HIS3
	TGGGTTCGGTGATGACGGTGAAA	
TOF1-pRS F	TCTGTAGCTCTTATGCTTTCAATACTTGGTATGGATC	tof1::His3
	CACCGTTTACAATTTCCTGATGCGGTA	-
YKU70 SP	GCGCTCAGTCACTAATGCATTTGGCAATAGTGGAGA	vku70::HphMX4
_	ACTTAACGATCAAGTGGATCAGCTGAAGCTTCGTAC	
	GC	
YKU70 ASP	GCCTTTGGATGATTGGATCTTCTGACTTCTCCAGATT	vku70. HphMX4
	CTA & A ATTTTATTTCCCATACCCCACTACTCCAUAIT	yna/011pn///24
1		

YKU70-pRS_F	GCGCTCAGTCACTAATGCATTTGGCAATAGTGGAGA	yku70::HIS3
	ACTTAACGATCAAGTGGATTCGGTGATGACGGTGAA	
	A	
VKU70-pRS_R	GCCTTTGGATGATTGGATCTTCTGACTTCTCAGATTC	vku70··HIS3
rice /o pics_k	TAAAATTTTATTTCGGTTTACAATTTCCTGATGCGGT	yku/011155
For knockout verification	A	
A DN1 able E		ADN1
AFN1_CIIK_F		AFNI
APN1_chk_R	GGGCAACAGCATCTTGGA	APNI
APN1_int_F	TGAAAGGAGACCATCAGTTGC	APNI
APN1_int_R	ATGTATCTATGCAAACGCCGA	APN1
CHL1-upstr-F	GGCACTACTGCAACTTCAGT	CHL1
CHL1-F	CCCTCGTTCCCATCATCCTT	CHL1
CHL1-R	CGTATCAGGACAATGACGCC	CHL1
EXO1_KOcheckFwd	GTATTACGTCCAAACTAAGTTCGCG	EXO1
EXO1_KOcheckRev	GACCGCTAGCGGCTTGATTAG	EXO1
EXO1_F	CAGCGGGAGGGAAAACTGAT	EXO1
EXO1 R	CTCTGTTGGCTAGAGGTTGGTG	EXO1
MLH1-upstr-F	GTAATCGCGCTAGCATGCTA	MLH1
MLH1-F	GCGTTGATGGAAAGGTGTGT	MLH1
MLH1-R2	CAATGGCAGATAATTCGGCG	MLH1
MLH2 upstr F	CATATCCCTCATATACATGGCCC	MLH2
MLH2 dnstr R	GTGCGGTTACCATGAGTTAC	MLH2
MIH2 F	TGAACTTGGAGACGGGGGAAGAC	MIH2 MIH2
MIH2 R	CGGGTGTAGGTATCACCAGTGC	MLH2 MLH2
MIH2_K MIH3_upstr_F	TTTGCGTTTATTTGCGAGCG	MLH2 MLH3
MLH2 dnstr D		MLH2
MLH2 E		MILIIS MILII2
MLH3_R W222_MDE11_f=1		
JK232_MREI1_FWd		MREII
JK254_MREI1_int_fwd		MREII
JK255_MREI1_int_rev		MREII
MSH2_upstr_F	GCACTCCATCAAGTGAACCT	MSH2
MSH2_dnstr_R	TCGTTCGGACCTAACATCTC	MSH2
MSH2_F	CATCCCATGGATTCGGAAAG	MSH2
MSH2_R	CAGCTTCTTCACAAGGTACG	MSH2
JK222-MSH3-rev	AAGGGGCAGTCACTTAACTCAG	MSH3
MSH3_F	GATTTACCACTCCCAGAACCCA	MSH3
JK221_MSH3_fwd	GTGTTCAAATCACGGTATGTGG	MSH3
MSH6-F	GGCTCGATAGTGTTGACTCTTT	MSH6
JK223_MSH6-fwd	TGACATAATGAATGGCTTCTGG	MSH6
JK224 MSH6 rev	CCCGTTAACAATCCTAATCTGG	MSH6
JK248 MUS81 fwd	AGAGGTGGTGGTCAAATCATCC	MUS81
JK249 MUS81 rev	ACTGCCTCCAATTTTGATTGCC	MUS81
JK260 MUS81 int fwd	CACAGCAAATCTGACTGACCTC	MUS81
JK261 MUS81 int rev	TTCGAAATCACCACTACACCAC	MUS81
OGG1 chk F	CGCCTTTCTTAATGTAACGCC	OGGI
OGG1 chk R	GCTCCTTTAAAGAATATGTATCGCC	OGGI
OGG1 in chk F	GCTCTAATTTCGGGAACTTAATCAC	OGGI
OGG1 in chk R		OGGI
PMS1 chk F		PMSI
DMS1_chk_D		
DMS1 oble in E		
		1 1/1/01

PMS1 chk in R	TTAGTCGGTGTACTTGAGTTGC	PMS1
JK225 POL32 fwd	TTTCCACTACGGTGTAACTTTCC	POL32
POL32 in F	GACCACGCCAGAAGAAACAA	POL32
POL32 in R	GCTGTCGTTTCCAACAAGTC	POL32
RAD14 chk F	CGTTTGCTAAGTTGTAGGGAGA	RAD14
RAD14 chk R	GTACGAGTGACAAATGGGATATCA	RAD14
RAD14 chk in F	CCGATGACCAAGAATTTGAATCTG	RAD14
RAD14 chk in R	CTGGATGCTCCTTAGAACACTG	RAD14
RAD18 upstr F	GAGCAATGCCACATTAGAAG	RAD18
RAD18 dnstr R	GTGCACAAGCTAACAAACAG	RAD18
RAD18 F	CCACTGAGTTCCAAACCATC	RAD18
RAD18 R	GACTTCTGGAGTTCGTACCT	RAD18
RAD2 chk F	TTGATGTTTCCAGAGGATGTGA	RAD2
RAD2 F		RAD2
RAD2 R	GAGATTTAGTGGGAACGTCCTC	
IK274 RAD27 fwd	GACTAGTACCCCGCTGAATCAC	
IK275 PAD27 rev		
IK275_KAD27_Iev		
JK270_KAD27_int_fwd		
DAD20 upstr E		
RAD30_upsu_r		
RAD30_dilstr_K		RAD30
		RAD30
RAD30 R		RADSU
RAD5_del_chk_F		RADS
RAD5_del_chk_R		RADS
RAD5 in F		RADS
RAD5 in R		RADS
R511F		RADSI
		RADJI
RADSI CHK IN F		RADSI
RADSI_CRK_IN_R		RADSI
EX52_R		RAD52
RAD52 chk in F	GCCAAGAAATCIGCCGITAC	RAD52
RAD52_chk_in_R		RAD52
RAD59_upstr_F	GCAAGGGCAGATATGATAGG	RAD59
RAD59_dnstr_R	CCTTCGTTACCTTGGAATGG	RAD59
RAD59_F	TTCGACTACATACGGCACAG	RAD59
RAD59_R	GCTIGCTATTAGTCGCTGAC	RAD59
RAD6_TS	GCCGGAGTAGAAAGCTGGAA	RAD6
RAD6_TA	AAAGATACGGGTATCGGCAGTT	RAD6
RAD6_F	GGGTGTATCTGCTTCACCAT	RAD6
RAD6_R	ATCGTCCATATCATCCTCCC	RAD6
REV1_upstr_F	TACGGCAACCTTTAAGCACC	REVI
REV1_upstr_R	GAGTCGGCCATTCCAATACC	REVI
REV1_F	AATGTGTAGGGTCGGCATTG	REVI
REV1-R	TGTGCAACCATTCGTTCCTTGA	REVI
REV3_upstr_F	CGAGTGCAGTGCGTCTAGAAATAGTGT	REV3
REV3_F	GCATGCACACCCCTCATAGTAAGT	REV3
REV3_2400B	TGGCATTTGACTCTGGCAAGTTCC	REV3
AS36_SGS1	CGTGCGTTTCGAAGTGGATTG	SGS1
JK341_SGS1_int_fwd	TGCAAACTTTGTCGAACGATAC	SGS1
JK342_SGS1-int_rev	CGACAAGAGAACTAGCCATGTG	SGS1
ESrsH_F	CAGCTATCCTGATACTACTGCTT	SRS2

JK300 SRS2 int fwd	GCTTCCTCAATCACAAGGAAAG	SRS2
JK301 SRS2 int rev	TCTAGTCAGCAAACGAAAGGTG	SRS2
STM1_upstr_F	CAAATTTCTCTTCCCCCCAC	STM1
STM1 F	GCTGAAAAGGAAGCTCAAGC	STM1
STM1_R2	CAACCTTCTTAGCTTCTGGG	STM1
JK105_TOF1_fwd	TTCTGAAGACCACAGCAACG	TOF1
TOF1_in_F	CAAGCATACATCTGCAAGACACT	TOF1
TOF1_in_R	AAGTTACCATCCTATCCTGCTCA	TOF1
KU70_test_SP	TTAATTGACTCTCGGTAGCCAAGTT	YKU70
KU70_int_F	GCATGAAGATATCAGACAAGAAGC	YKU70
KU70_int_R	TGCTCGATGAACGGAACC	YKU70
Hyg-R	GACTGTCAAGGAGGGTATTC	
JK183_hygRleft_rev	ACAGTCACATCATGCCCCTG	
HIS3H_R	CCTGTGTGGACGTTAATCACTTGCGAT	
For amplification of RAD27::rad	d27-HphMX4 fragments	
RAD27_ASP	AAAAACTGGCAAAAAAAGAGAAGTATTAGATGAAA	
	AAAGTTCGTGTATACAAATATCTATGTTACATATACA	
	TAGGCCACTAGTGGATCTG	
RAD27_G240D_mut	TTGCATAATGCTTGGTTGTGACTACTGTGAAAGCATC	
	AGAGGTGTTGATCCAGTGACAGCCTTAAAATTGATA	
RAD27_R104A_R105A_K13	AGCGGTCTTCAGCTGCTGTGGAAACAGAAAAAAAA	
0A_R127A	TGGCAGAGGCAACAACAGAATTGGAAAAGATGAAG	
	CAAGAAAGAGCTTTGGTGGCTGTCTCAAA	
RAD27_G67S_mut	ACGGTGGGCAGTTGACCAATGAAGCCGGTGAAACA	
	ACGTCACACTTGATGTCCATGTTTTATAGGACACTGA	

Strain	Genotype	Notes
SMYU	<i>MATa</i> , <i>leu2-Δ1</i> , <i>trp1-Δ63</i> , <i>ura3-52</i> , <i>his3-200</i> ,	(1)
	ade2 <i>A</i> ::KanMX4, HAP1-wt, ChrIII(75594-	
	75641)::P _{Gall} -UR-(GAA) ₁₂₄ -A3-TRP1	
SMYU7/8	SMYU mre11::HphMX4	
SMYU14/16	SMYU msh3::HphMX4	
SMYU22/23	SMYU rad52::HphMX4	
SMYU28/31/32	SMYU msh6::HphMX4	
SMYU29/41	SMYU rad51::HphMX4	
SMYU30/89	SMYU msh2::HphMX4	
SMYU35/36	SMYU rad59::HphMX4	
SMYU39/40	SMYU srs2::HphMX4	
SMYU44/46	SMYU rad27::HphMX4	
SMYU42/43	SMYU tof1::HphMX4	
SMYU47/48	SMYU stm1::HphMX4	
SMYU51/52	SMYU mus81::HphMX4	
SMYU55/67	SMYU yku70::HphMX4	
SMYU60/61	SMYU rad6::HIS3	
SMYU63/64	SMYU pol32::HphMX4	
SMYU70/291	SMYU rad5::HphMX4	
SMYU71/72	SMYU rad27::rad27-4A-HphMX4	
SMYU73/73	SMYU sgs2::HphMX4	
SMYU76/77	SMYU rad18::HIS3	
SMYU81/82	SMYU71 rad5::HIS3	
SMYU83/84/85	SMYU71 yku70::HIS3	
SMYU86/87	SMYU71 tof1::HIS3	
SMYU90/93	SMYU rev3::HIS3	
SMYU95/96	SMYU chl1::HIS3	
SMYU101/102	SMYU rad27::rad27-G67S-HphMX4	
SMYU114/120	SMYU rad27::rad27-G240D-HphMX4	
SMYU116/117	SMYU mlh1:: HphMX4	
SMYU125/127	SMYU rev1::HIS3	
SMYU129/131	SMYU rad30::HIS3	
SMYU133/134	SMYU ogg1::HphMX4	
SMYU135/136	SMYU rad2::HphMX4	
SMYU137/138	SMYU rad14::HphMX4	
SMYU143/144	SMYU exo1::HIS3	
SMYU150	SMYU114 tof1::HIS3	
SMYU151	SMYU120 tof1::HIS3	
SMYU152/152	SMYU apn1::HIS3	
SMYU157/162	SMYU114 rad6::HIS3	
SMYU191/192	SMYU pol3-D520V	
SMYU195/196/197/198	SMYU rfa1-S351P	

 Table S3. Yeast strains used in this project

SMYU201/202	SMYU dna2-H547A	
SMYU204/208	SMYU63 rev1::HIS3	
SMYU220/221/222	SMYU pms1::HphMX4	
SMYU225/226	SMYU129 rev3::HphMX4	
SMYU227	SMYU131 rev3::HphMX4	
SMYU233/234	SMYU rfa1-K45E	
SMYU244/245	SMYU mlh2::HIS3	
SMYU255/256	SMYU mlh3::HIS3	
SMYU298/299	SMYU rev1-CD	
SMYUI2/4	<i>MATa</i> , <i>leu2-Δ1</i> , <i>trp1-Δ63</i> , <i>ura3-52</i> , <i>his3-200</i> ,	
	ade2A::KanMX4, HAP1-wt, ChrIII(75594-75641)::A3-	
	$(GAA)_{124}$ -UR-P _{Gall} -TRP1	
SMYUI10/11	SMYUI2 rev1::HIS3	
SMYUI15/16	SMYUI yku70::HIS3	
SMYUI22/23	SMYUI2 pol32::HphMX4	
SMYUI30/31	SMYUI2 rad52:: HphMX4	
SMYUI34/35/36	SMYUI2 chl1::HIS3	
SMYUD14/15/16	<i>MATa</i> , <i>leu2-Δ1</i> , <i>trp1-Δ63</i> , <i>ura3-52</i> , <i>his3-200</i> ,	
	ade2A::KanMX4, HAP1-wt, ChrIII(75594-	
	75641):: P_{Gall} -UR-(GAGAA) ₇₄ GA-A3-TRP1	
SMYUID13/14/15	<i>MATa</i> , <i>leu2-Δ1</i> , <i>trp1-Δ63</i> , <i>ura3-52</i> , <i>his3-200</i> ,	
	ade2A::KanMX4, HAP1-wt, ChrIII(75594-75641)::A3-	
	$(GAGAA)_{74}GA-UR-P_{Gall}-TRP1$	
SMYUD23/24/25	<i>MATa, leu2-Δ1, trp1-Δ63, ura3-52, his3-200,</i>	
	ade2∆::KanMX4, HAP1-wt, ChrIII(75594-	
	75641)::P _{Gall} -UR-(GAGAAGAAA) ₄₁ GAG-A3-TRP1	
SMYUID16/17	<i>MATa, leu2-Δ1, trp1-Δ63, ura3-52, his3-200,</i>	
	<i>ade2∆::KanMX4, HAP1-wt, ChrIII(75594-75641)::A3-</i>	
	(GAAGAAGAAA) ₄₁ GAG-UR-P _{Gal1} -TRP1	
SMYUD21/22	<i>MATa</i> , <i>leu2-Δ1</i> , <i>trp1-Δ63</i> , <i>ura3-52</i> , <i>his3-200</i> ,	
	ade2 <i>A</i> ::KanMX4, HAP1-wt, ChrIII(75594-	
	75641):: P_{Gall} -UR-(GAGAAGGAAA) ₃₇ GA-A3-TRP1	
SMYUID25/26	<i>MATa</i> , <i>leu2-Δ1</i> , <i>trp1-Δ63</i> , <i>ura3-52</i> , <i>his3-200</i> ,	
	ade2A::KanMX4, HAP1-wt, ChrIII(75594-75641)::A3-	
	(GAAGAAGGAAA)37GA-UR-P _{Gall} -TRP1	
SMYUD4/5/6	<i>MATa</i> , <i>leu2-Δ1</i> , <i>trp1-Δ63</i> , <i>ura3-52</i> , <i>his3-200</i> ,	
	ade2A::KanMX4, HAP1-wt, ChrIII(75594-	
	75641):: P_{Gall} -UR-(GAAGAA) ₆₄ -A3-TRP1	
SMYUID1/2	MATa, $leu2-\Delta I$, $trp1-\Delta 63$, $ura3-52$, $his3-200$,	
	ade2A::KanMX4, HAP1-wt, ChrIII(/5594-/5641)::A3-	
	$(GAAGAA)_{64}-UK-P_{Gall}-IKPI$	
SMY P1/3	$MA1a, leu2-\Delta I, trp1-\Delta 03, ura3-52, his3-200,$	
CMXD4/7	$\frac{Cnr111(/3594-/3041)::P_{Gall}-UK-GAA_{124}-A3-1KP1}{MAT_{T_{12}}}$	(2)
SIVI Y P4/ /	$MA1a, Ieu2-\Delta I, Irp1-\Delta 05, ura3-52, his3-200, poll-V969E Chall(75504,75641) D = UD (CA4) = 42$	(3)
	$1808F, ChrIII(/3394-/3041)::P_{Gall}-UK-(GAA)_{124}-A3-$	
	IKEI	1

SMYP7/15	<i>MATa, leu2-</i> Δ1, trp1-Δ63, ura3-52, his3-200, pol1- Y869A, ChrIII(75594-75641)::P _{Gal1} -UR-(GAA) ₁₂₄ -A3- TRP1	(3)
SMYPI9	<i>MATa, leu2-Δ1, trp1-Δ63, ura3-52, his3-200,</i> <i>ChrIII(75594-75641)::A3-(GAA)</i> ₁₂₄ <i>-UR-P</i> _{<i>Gal1-TRP1</i>}	
SMYPI4/5/6	<i>MATa, leu2-</i> Δ1, trp1-Δ63, ura3-52, his3-200, pol1- Y869A, ChrIII(75594-75641)::A3-(GAA) ₁₂₄ -UR-P _{Gal1} - TRP1	(3)

Supplemental references

- 1. A. J. Neil, M. U. Liang, A. N. Khristich, K. A. Shah, S. M. Mirkin, RNA-DNA hybrids promote the expansion of Friedreich's ataxia (GAA)n repeats via break-induced replication. *Nucleic Acids Res* **46**, 3487-3497 (2018).
- 2. A. Y. Aksenova *et al.*, Genome rearrangements caused by interstitial telomeric sequences in yeast. *Proc Natl Acad Sci U S A* **110**, 19866-19871 (2013).
- 3. K. A. Shah *et al.*, Role of DNA polymerases in repeat-mediated genome instability. *Cell Rep* **2**, 1088-1095 (2012).
- 4. S. E. Tsutakawa *et al.*, Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability. *Nat Commun* **8**, 15855 (2017).
- 5. W. C. Generoso, M. Gottardi, M. Oreb, E. Boles, Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae. *J Microbiol Methods* **127**, 203-205 (2016).