Supplementary information for

Bioderivatization as a concept for renewable production of chemicals that are toxic or poorly soluble in the liquid phase

Pachara Sattayawat, Ian Sofian Yunus, and Patrik R. Jones

Patrik R. Jones Email: p.jones@imperial.ac.uk

This PDF file includes:

Materials and Methods Figures S1 to S18 Tables S1 to S12 SI references

SI Materials and Methods

Construction of *E. coli* **strains for 1-octanol and octyl acetate production**

To obtain Strain No. 3 to 5 in Table S1, *E. coli* strain C43 (DE3) was transformed with plasmid pET-TPC3 harboring *tes3, sfp*, and *car* genes. Plasmid pACYC-petF-fpr plasmid was used as a template to amplify the *cat* gene. The strawberry alcohol acetyltransferase gene (*saat*) from *Fragaria x ananassa* (UniProtKB: Q9FVF1) and the alcohol O-acetyltransferase gene (*atf1*) from *Saccharomyces cerevisiae* (UniProtKB: P40353) were chemically synthesized from Integrated DNA Technologies (IDT) and codon optimized for *E. coli*. The *saat* and *atf1* genes were individually stored in a blunt-ended pJET1.2 plasmid (Thermo Fisher Scientific), resulting in pJET-SAAT and pJET-ATF1 plasmids, respectively. Next, pCDF-GFP plasmid harboring T7 promoter was constructed as described in Table S7. The *cat, saat,* and *atf1* genes were then sub-cloned into pCDF-GFP plasmid using *Bsa*I restriction site which was introduced by PCR using the oligonucleotide primers listed in Table S4. The resulting plasmid was transformed into the *E. coli* C43 (DE3) strain carrying the pET-TPC3 plasmid, generating Strain No. 3 to 5 in Table S1.

Next, BASIC method was used to construct plasmids in Strain No. 7 to 15 in Table S1. First, plasmid pET-PA1lacO-1-GFP and pCDF-PA1lacO-1-GFP harboring PA1lacO-1 promoter were constructed as shown in Table S6 No. 1 and 2, respectively. Next, the *tes3* and *sfp-car* genes were amplified from plasmid pET-TPC3 using primers listed in Table S4 and cloned into a blunt-ended plasmid pJET1.2 (Thermo Fisher Scientific). Other genes encoding thieosterases: '*CpFatB1, 'CaFatB3,'CpFatB1-4,* and '*CaFatB3-5* genes were chemically synthesized as gBlocks from Integrated DNA Technologies (IDT) and cloned into pJET1.2 blunt. The resulting plasmids were used to create plasmids used in Strain No. 7 to 15 in Table S1. The linkers and plasmids used for BASIC method are listed in Table S6 No. 3 to 9. The amino acid sequence of 'CpFatB1, 'CaFatB3, 'CpFatB1-4, and 'CaFatB3-5 and their wild types are shown in Fig. S1.

Construction of *E. coli* **strains for octyl glucoside production**

To obtain Strain No. 16-22 in Table S1, *E. coli* strain BW25113 was transformed with pET- 'CaFatB3-5-Sfp-CAR. The glycosyltransferase (GT) from *Actinidia deliciosa* (*AdGT4*), *Vitis vinifera* (*VvGT1*), *Medicago truncatula* (*MtGT1*), *Arabidopsis thaliana* (*AtGT1*) and Medicago truncatula (MtH2) and the gene encoding sucrose synthase from *Arabidopsis thaliana* (*AtSUS1*) were chemically synthesized as gBlocks from Integrated DNA Technologies (IDT) and codon-optimized for *E. coli*. The UniProtKB ID for all the genes used in this study is listed in Table S3. All gBlocks were cloned into bluntended pJET1.2 plasmid (Thermo Fisher Scientific). The resulting plasmids are listed in Table S8 and used for Biopart Assembly Standard for Idempotent Cloning (BASIC) method in Table S6. All the linkers (Table S5) and plasmids used to create CloDF13-based plasmids harboring the glycosyltransferase and sucrose synthase under the PA1lacO1 promoter are provided in Table S6. The resulting plasmid was then transformed into *E. coli* BW25113 strain carrying pET-'CaFatB3-5-Sfp-CAR plasmid.

Construction of cyanobacterial strains for 1-octanol and octyl acetate production

To create strain 6803-D*aas*-PnrsB-Sfp-CAR, a suicide plasmid targeting phaA and phaB sites (encoded by *slr1993* and *slr1994*) was first constructed. All the genetic parts used for this plasmid construction are listed in Table S9. Next, the plasmids carrying the upstream (pIY453) and downstream (pIY454) genetic parts were assembled using the linkers shown in Table S10. Next, the suicide plasmid (pIY475) carrying a *gfp* dropout gene were created as shown in Table S11. Next, the *sfp* and *car* genes were then amplified using primers listed in Table S9 and sub-cloned into pJET1.2 blunt plasmid to give plasmid pIY485. Finally, the *sfp* and *car* genes were cloned into plasmid pIY475 using the linkers shown in Table S12. The expression of Sfp and CAR were under controlled of a nickel-inducible promoter PnrsB. Plasmid pIY706 (pMB1-Amp-phaAup-PnrsB-Sfp-CAR-termB15-Sp-phaBdown) was then naturally transformed into 6803- Δ aas strain. In brief, 6803- Δ aas strain was inoculated in 25 ml of BG11-Co liquid medium at 30°C with continuous illumination at 60 μ mol photons/m².s and 1% (v/v) CO₂ in the Algaetron AG 230 (Photon Systems Instruments). When the OD730 reached 0.3-0.4, the cells were harvested and resuspended in 500 µL fresh BG11-Co medium. One hundred microliters of concentrated liquid culture were mixed with four to seven micrograms of plasmid pIY706 and incubated at at 60 umol photons/m².s and 1% (v/v) CO₂ for 12-16 h prior to plating on BG11-Co agar containing 20 µg/ml spectinomycin. The plate was then incubated at 30° C with continuous illumination at 60 µmol photons/ m^2 .s for 1-2 weeks or until the colonies appeared. To promote segregations, individual colonies were restreaked on BG11-Co containing 50 μ g/ml spectinomycin and 100 μ g/ml spectinomycin. A fully segregated mutant was confirmed by PCR using primers IY293 (5'- GGCAAAGCTTTATTTGCCAATGCG-3') and IY292 (5'-CCGATGACACTAATCTCAAGGCGG-3') and used in the subsequent experiments.

Next, to obtain strain 6803- \triangle aas-PnrsB-Sfp-CAR-Pcoa-'CpFatB1-4 and 6803- \triangle aas-PnrsB-Sfp-CAR-Pcoa-'CpFatB1-4-SAAT, plasmid pIY849 (Table S6 No. 10, pRSF1010-Ery-Pcoa-'CpFatB1-4) and pIY887 (Table S6 No. 11, pRSF1010-Ery-Pcoa-'CpFatB1-4-SAAT) were individually transformed into 6803-D*aas*-PnrsB-Sfp-CAR strain by triparental conjugation. In brief, plasmid pIY849 and pIY887 was first transformed individually into *E. coli* cargo HB101 strain carrying pRL623 plasmid (1). Next, one hundred microliters or the cargo strain carrying both pRL623 and pIY849 or pIY887, conjugal strain carrying plasmid pRL443 (1) and the 6803- \triangle aas-PnrsB-Sfp-CAR strain were mixed and incubated for 2 h (30oC, 60 µmol photons/m2.s). Prior to mixing, all strains were washed with LB medium (for *E. coli*) or BG11-Co medium (for cyanobacteria) to remove all the antibiotics. After 2 h of incubation, the mixed culture was then plated on BG11-Co agar plates without antibiotic and incubated for two days (30°C, 60 μ mol photons/m².s). After 2 days of incubation, biomass was scraped from the agar plates and transferred onto a new agar plate containing 20 µg/ml erythromycin. Individual colonies were restreaked onto a new agar plate containing 20 μ g/ml erythromycin, 10 μ g/ml spectinomycin, and 10 μ g/ml kanamycin and incubated in the Algaetron AG 230 for 4-7 days before it was used for subsequent experiments. Empty plasmid pIY606 was also used as control to obtain strain 6803- \triangle aas-PnrsB-Sfp-CAR-Pcoa-empty.

All plasmids used in this study are listed in Table S8.

Preparation of BG11-Co liquid medium

The standard 1X BG11-Co liquid medium was prepared by mixing 10 ml 100X BG11-Co, 1 ml 1000X ferric ammonium citrate, 1 ml 1000X Na2CO3, and 1 ml 1000X K2HPO4 in 1 L of ultrapure water (PURELAB flex 2). The concentrated BG11-Co stock solution (100X BG11-Co) containing 149.6 g NaNO3, 7.49 g MgSO4.7H2O, 3.6 g CaCl2.2H2O, 0.89 g Na-citrate.2H2O, 1.12 ml 0.25 M NaEDTA pH 8.0, and 100 ml 1000X trace mineral solution in 1 L ultrapure water was prepared. The 1000X trace mineral solution was made by dissolving 2.86 g H3BO3, 1.81 g MnCl2.4H2O, 0.22 g ZnSO4.7H2O, 0.39 g Na2MoO4.2H2O, and 0.079 g CuSO4.5H2O in 1 L ultrapure water and stored at 4°C until being used. The 1000X ferric ammonium citrate, 1000X Na₂CO₃, and 1000X K₂HPO₄ solutions were prepared by dissolving 0.6 g ferric ammonium citrate, 2 g Na₂CO₃, and 3.05 g K₂HPO₄ in 100 ml ultrapure water, respectively. The 1 L standard 1X BG11-Co solution in a 1-L Duran bottle was sterilized by autoclaving.

Fig. S1. Amino acid sequence alignments of CpFatB1_wild type, 'CpFatB1, 'CpFatB1-4, CaFatB3_ wild type, 'CaFatB3 and 'CaFatB3-5

Fig. S2. Toxicity of externally added octyl acetate or 1-octanol to *Synechocystis* **sp. PCC 6803.** Twenty-five millilitre of *Synechocystis* sp. PCC 6803 lacking acyl-ACP synthetase was cultivated in a 100-ml Erlenmeyer flask with a starting OD730 0.2 at 30°C, 180 rpm (60 µmol photons/m2.s, 1% CO2) in AlgaeTron AG 230 (Photon Systems Instruments). On day 2 onwards, 25 mg/L 1-octanol or octyl acetate was added exogenously every 24 h to the liquid culture in the (A) absence of 10% (v/v) hexadecane solvent overlay and in the (B) presence of 10% (v/v) hexadecane solvent overlay . OD₇₃₀ was monitored every 24 h.

Fig. S3. Individual data points from (A) Fig 2 (B) Fig 3E (C) Fig 4C (D) Fig 4D (E) Fig 4E (F) Fig 4F (G) Fig 5E (H) Fig 5F (I) Fig 7A.

Fig. S4. Average growth curves of *E. coli* **C43 (DE3) cultivated in M9 media with varying concentrations of (A) 1-octanol (0 – 50 mM), (B) octyl acetate (0 – 50 mM), and (C) octyl glucoside (0 – 100 mM).** All cells were cultivated in 96-well microtiter plates at 37°C, and 432 rpm. Data are the average ± standard deviation from 3 replicates.

Fig. S5. Toxicity of octyl acetate. Specific growth rates of *E. coli* C43 (DE3) cultivated in M9 minimal media with 2% (w/v) glucose at different concentrations (50-200 mM) of octyl acetate added at the beginning of the cultivation. The specific growth rate was calculated using slopes from average growth curves and only considered data in the range of 1-4 h. Data are the average ± standard deviation from 3 replicates.

Fig. S6. Localization of 1-octanol and octyl acetate from mock experiments. GC-MS chromatograms obtained from hexadecane overlay (overlay) and M9 liquid medium (aqueous phase) when spiked with 1 mM of (A) 1-octanol and (B) octyl acetate after 24 h incubation. Percent recovery of (C) 1-octanol and (D) octyl acetate from hexadecane overlay (overlay) and M9 liquid medium (aqueous phase) when spiked with 500 mg/L of 1-octanol (3.84 mM) or octyl acetate (2.9 mM). The mock experiment used 25 ml M9 liquid media (with 2% (w/v) glucose) overlaid with 10% (v/v) hexadecane. Flasks were incubated at 30°C, 150 rpm for 24 h or 48 h. The M9 liquid medium was extracted with 10% (v/v) hexadecane prior to GC-MS analysis. Data were obtained from four independent replicates.

Fig. S7. 1-octanol production with different *E. coli* **strain backgrounds.** *E. coli* BW25113 and C43 (DE3) harboring pET-PA1lacO-1-TPC3 were cultivated in M9 minimal media with 2% (w/v) glucose. Cultures were induced with 0.5 mM IPTG and overlaid with 10% (v/v) hexadecane overlay for 48 h. Data are the average from 3 biological replicates.

Fig. S8. Growth of *E. coli* **strains harboring different thioesterases.** Average growth of (A) Strain No. 10 ('CpFatB1-4) and (B) 11 ('CaFatB3-5) (Table S1) when cultivated in M9 media with 2% (w/v) glucose overlaid with 10% (v/v) hexadecane overlay with different IPTG used to induce the cultures (0.02, 0.05, 0.2 and 0.5 mM). Data are the average ± standard deviation from 3 replicates.

Fig. S9. Growth of octyl acetate and 1-octanol producing strains in the presence of solvent overlay. *E. coli* Strains no. 12 ('CpFatB1-4-Sfp-CAR), 14 ('CpFatB1-4-Sfp-CAR + ATF1), 13 ('CaFatB3- 5-Sfp-CAR) and, 15 ('CaFatB3-5-Sfp-CAR + ATF1) (Table S1) were cultivated in M9 minimal media with 2% (w/v) glucose and 10% (v/v) hexadecane overlay. Different concentrations of IPTG were used to induce the cultures (A) 0.05, (B) 0.2 and, (C) 0.5 mM.

Fig. S10. Glucose consumption by octyl acetate and 1-octanol producing strains in the presence of solvent overlay. *E. coli* Strain No. 12 ('CpFatB1-4-Sfp-CAR), 14 ('CpFatB1-4-Sfp-CAR + ATF1), 13 ('CaFatB3-5-Sfp-CAR) and, 15 ('CaFatB3-5-Sfp-CAR + ATF1) (Table S1) were cultivated in M9 minimal media with 2% (w/v) glucose and 10% (v/v) hexadecane overlay. Different concentrations of IPTG were used to induce the cultures (A) 0.05, (B) 0.2 and, (C) 0.5 mM.

Fig. S11. Growth of 1-octanol, octyl acetate and octyl glucoside producing strains in a 24-well plate. (A) *E. coli* Strain No. 12 ('CpFatB1-4-Sfp-CAR), 14 ('CpFatB1-4-Sfp-CAR + ATF1), 13 ('CaFatB3- 5-Sfp-CAR) and 15 ('CaFatB3-5-Sfp-CAR + ATF1) (Table S1) were studied in the presence of 10% (v/v) hexadecane. *E. coli* Strains No. 13 ('CaFatB3-5-Sfp-CAR), 19 ('CaFatB3-5-Sfp-CAR + MtH2) and 22 ('CaFatB3-5-Sfp-CAR + MtH2 + AtSUS1) (Table S1) were studied in the (B) presence and (C) absence of 10% (v/v) hexadecane and 15 mM sucrose. All strains were cultivated in M9 minimal media with 2% (w/v) glucose in 24-well microtiter plate at 30°C and 432 rpm. IPTG was used to induce the strains at (A) 0.2 mM and (B), (C) 0.5 mM and (A), (B) solvent overlay was applied at the beginning of the incubation. Data are the average ± standard deviation from 4 replicates.

Fig. S12. Comparison of 1-octanol and octyl acetate production titers. *E. coli* BW25113 strains 'CpFatB1-4-Sfp-CAR and 'CpFatB1-4-Sfp-CAR + ATF1 were sampled at (A) 24 h, (B) 48 h, (C) 72 h. Similarly, strains 'CaFatB3-5-Sfp-CAR and 'CaFatB3-5-Sfp-CAR + ATF1 were sampled at (D) 24 h, (E) 48 h and (F) 72 h. All strains were cultivated in M9 minimal media with 2% (w/v) glucose and 10% (v/v) hexadecane overlay. Different concentrations of IPTG were used to induce the cultures (0.02, 0.2 and, 0.5mM). ** indicates significant difference between 2 treatments (p≤0.01). Data are the mean from 3 biological replicates

Fig. S13. The octyl acetate : 1-octanol titer ratio between the octyl acetate and 1-octanol producing strains. *E. coli* strains (A) 'CpFatB1-4-Sfp-CAR and 'CpFatB1-4-Sfp-CAR + ATF1 and (B) 'CaFatB3-5-Sfp-CAR and 'CaFatB3-5-Sfp-CAR + ATF1 were cultivated in M9 minimal media with 2% (w/v) glucose and 10% (v/v) hexadecane overlay. Different concentrations of IPTG were used to induce the cultures (0.05, 0.2 and 0.5 mM).

Fig. S14. The octyl acetate : 1-octanol yield ratio between the octyl acetate and 1-octanol producing strains . *E. coli* strains (A) 'CpFatB1-4-Sfp-CAR and 'CpFatB1-4-Sfp-CAR + ATF1 and (B) 'CaFatB3-5-Sfp-CAR and 'CaFatB3-5-Sfp-CAR + ATF1 were cultivated in M9 minimal media with 2% (w/v) glucose and 10% (v/v) hexadecane overlay. Different concentrations of IPTG were used to induce the cultures (0.05, 0.2 and 0.5 mM).

Fig. S15. Liquid phase partitioning of 1-octanol and octyl acetate accumulating in cultures with the engineered strains. (A) Titer and (B) yield of 1-octanol and octyl acetate obtained from Strains 'CaFatB3-5-Sfp-CAR and 'CaFatB3-5-Sfp-CAR + ATF1 (Table S1). The strains were cultivated in M9 media with 2% (w/v) glucose induced with 0.5 mM, overlaid with 10% (v/v) hexadecane, and incubated for 48 h. 1-Octanol or octyl acetate obtained from the M9 liquid medium was extracted with 10% (v/v) hexadecane prior to GC-MS analysis. Data were obtained from three biological replicates.

Fig. S16. Localization of octyl glucoside in the absence of solvent overlay. *E. coli* BW25113 strains 'CaFatB3-5-Sfp-CAR and 'CaFatB3-5-Sfp-CAR + MtH2 were cultivated in M9 media with 2% (w/v) glucose with 0.5 mM IPTG. The cultures were harvested at centrifuged (17,000 x g, 10 min) to separate culture media and cells. The supernatant was analysed with HPLC. The cell fraction was suspended and lyzed with glass beads (Sigma Aldrich) at 30 hertz for 6 min on Tissuelyser II (QIAGEN). After that, the liquid fraction was analysed with HPLC.

Fig. **S17. Comparison of** *in vivo* **1-octanol and octyl glucoside production from** *E. coli* **BW25113 (titers).** *E. coli* strains 'CaFatB3-5-Sfp-CAR, 'CaFatB3-5-Sfp-CAR + AtSUS1, 'CaFatB3-5-Sfp-CAR + MtH2 and 'CaFatB3-5-Sfp-CAR + MtH2 + AtSUS1 were cultivated in M9 media with 10% (v/v) hexadecane, 2% (w/v) glucose and 15 mM sucrose, and sampled at (A) 24 h (B) 48 h. The asterisk indicates a significant difference by the Student's t-test (**, P≤0.01;***, P≤0.005). All data are shown as the average from 3 biological replicates and circles represent data from independent biological replicates.

Fig. S18. Growth of octyl glucoside and 1-octanol producing strains in the presence of solvent overlay. *E. coli* strains 'CaFatB3-5-Sfp-CAR, 'CaFatB3-5-Sfp-CAR + MtH2, 'CaFatB3-5-Sfp-CAR + AtSUS1, and 'CaFatB3-5-Sfp-CAR + MtH2 + AtSUS1 were cultivated in M9 minimal media with 2% (w/v) glucose, 0.5 mM and 10% (v/v) hexadecane overlay.

Strain	E. coli	ColE1 plasmids	CloDF13 plasmids
No.	strain		
$\mathbf{1}$	C43(DE3)	Pr ₇₇ : empty	Pr ₇₇ : empty
$\overline{2}$	C43(DE3)	P_{T7} : tes3, sfp, car	P_{T7} : empty
3	C43(DE3)	P_{T7} : tes3, sfp, car	P_{T7} : cat
4	C43(DE3)	Pr7: tes3, sfp, car	$PT7:$ saat
5	C43(DE3)	$Pr7: tes3, sfp, car$	$Pr:$ atf1
6	C43(DE3)	PA _{1lacO-1} : tes3, sfp, car	
7	BW25113	P _{A1lacO-1} : tes3, sfp, car	
8	BW25113	P _{A1lacO-1} : 'CpFatB1, sfp, car	
9	BW25113	P _{A1lacO-1} : 'CaFatB3, sfp, car	
10	BW25113	P _{A1lacO-1} : 'CpFatB1-4, sfp, car	
11	BW25113	PA _{1lacO-1} : 'CaFatB3-5, sfp, car	
12	BW25113	P _{A1lacO-1} : 'CpFatB1-4, sfp, car	P _{A1lacO-1} : empty
13	BW25113	PA _{1lacO-1} : 'CaFatB3-5, sfp, car	PA _{1lacO-1} : empty
14	BW25113	P _{A1lacO-1} : 'CpFatB1-4, sfp, car	$P_{A1lacO-1}$: atf1
15	BW25113	P _{A1lacO-1} : 'CaFatB3-5, sfp, car	PA _{1lacO-1} : atf1
16	BW25113	P _{A1lacO-1} : 'CaFatB3-5, sfp, car	$P_{A11a}O-1$: $AdGT4$
17	BW25113	P _{A1lacO-1} : 'CaFatB3-5, sfp, car	$P_{A1 a}O-1$: AtGT1
18	BW25113	PA _{1lacO-1} : 'CaFatB3-5, sfp, car	PA1lacO-1: MtG1
19	BW25113	P _{A1lacO-1} : 'CaFatB3-5, sfp, car	$P_{A1lacO-1}$: MtH2
20	BW25113	PA _{1lacO-1} : 'CaFatB3-5, sfp, car	PA1lacO-1: VVGT1
21	BW25113	P _{A1lacO-1} : 'CaFatB3-5, sfp, car	P _{A1lacO-1} : AtSUS1
22	BW25113	P _{A1lacO-1} : 'CaFatB3-5, sfp, car	PA1lacO-1: MtH2, AtSus1

Table S1. List of *E. coli* strains used in this study

Strain No.	Cyanobacterial strain	RSF1010-based plasmid
	$6803 - \Lambda$ aas	
2	6803-∆aas-PnrsB-Sfp-CAR	
3	6803-∆aas-PnrsB-Sfp-CAR-Pcoa-'CpFatB1-4	Pcoa: 'CpFatB1-4
4	6803-∆aas-PnrsB-Sfp-CAR-Pcoa-'CpFatB1-	Pcoa: 'CpFatB1-4, saat
	4-SAAT	

Table S2. List of *Synechocystis* sp. PCC 6803 strains used in this study

Gene	Source organism	UniProtKB	Reference
tes3	Anaerococcus tetradius	C ₂ C _{IR4}	(Akhtar et al., 2015)
sfp	Bacillus subtilis	P39135	(Akhtar et al., 2015)
car	Mycobacterium marinum	B ₂ HN ₆₉	(Akhtar et al., 2015)
cat	Escherichia coli	P62577	(Röttig and Steinbüchela, 2013)
saat	Fragaria ananassa cv.	Q9FVF1	(Aharoni et al., 2000)
	Elsanta		
atf1	Saccharomyces cerevisiae	P40353	(Verstrepen et al., 2003)
CpFatB1	Cuphea palustris	Q39554	(Dehesh et al., 1996)
(wild type)			
CaFatB ₃	Cuphea avigera pulcherrima	V9MHU7	(Tjellstrom et al., 2013)
(wild type)			
CpFatB1-4	Cuphea palustris		(Hernandez Lozada et al., 2018)
'CaFatB3-5	Cuphea avigera pulcherrima		This work
AdGT4	Actinidia deliciosa	A0A077EMP8	(Yauk et al., 2014)
VvGT1	Vitis vinifera	P51094	(Christopher M. Ford et al., 1998)
AtGT1	Arabadopsis thaliana	Q9M156	(Lim et al., 2002)
MtG1	Medicago truncatula	Q5IFH7	(Shao et al., 2005)
MtH ₂	Medicago truncatula	A6XNC5	(Li et al., 2007)
AtSUS1	Arabidopsis thaliana	P49040	(Zheng et al., 2011)

Table S3. Source organisms of overexpressed genes in this study

If the genes were from foreign organisms, codon optimization was carried out prior to synthesis in order to overexpress in bacteria.

Gene	Template	Primer sequence $(5' - 3')$
cat	pACYC-	Forward: TCTGGTGGGTCTCTGTCCatggagaaaaaaatcactggatataccaccg
	petF-fpr ^a	Reverse: CGATAGGTCTCCCGAGCCttacgccccgccctgc
saat	pJET-	Forward: TCTGGTGGGTCTCTGTCCATG
	SAAT	Reverse: CGATAGGTCTCCCGAGCC
atf1	pJET-	Forward: TCTGGTGGGTCTCTGTCCATG
	ATF1	Reverse: CGATAGGTCTCCCGAGCC
gfp	pJET-	Forward: GGCCATGGTCTGGTGGGTCTCTGTCC
	GFP	Reverse: GGCCTAGGCGATAGGTCTCCCGAGCC
tes3	pET-	Forward:
	TPC ₃	TCTGGTGGTCTCTCTGTCCATGAAATTTAAAAAAAATTTAAAATTGGGCG
		GATGCACG
		Reverse:
		CGATAGGTCTCCCGAGCCTTACACGTTAGTTTTAATTTTCCCCAAACAGT
		AGTCC
sfp-car	pET-	Forward:
	TPC3	TCTGGTGGGTCTCTGTCCATGAAGATCTACGGCATATACATGGACC
		Reverse: CGATAGGTCTCCCGAGCCgtggcagcagcctagggaattcttacagc

Table S4. List of templates and primers used for gene(s) amplification

aKallio et al., 2014, *Nature communications*

Name	Prefix linker					
	Linker sequence (5' to 3')	Adapter sequence (5' to				
		3')				
1MP	GGACAGAGACCCACCAGATAATAGTGTTTCCACGAAGTG	TCTGGTGGGT/iMe-				
		dC/TCT				
2MP	GGACGATTCCGAAGTTACACCAGATTGGACTGTTATTAC	AACTTCGGAATC				
1P	GGACTAGTTCAATAAATACCCTCTGACTGTCTCGGAG	TTTATTGAACTA				
2P	GGACAGGTAATAAGAACTACACGACTGGATACTGACT	TTCTTATTACCT				
3P	GGACTCTGTAATAACAATACCGATAAAGCAACGAGTG	TGTTATTACAGA				
LRBS1-	GGACTATTTCTCCTCTTTTTACAACTGATACTTACCTGA	AAAGAGGAGAAATA				
3P						
LRBS2-	GGACTATTTCTCCTCTTTTTTCTGCTACCCTTATCTCAG	AAAGAGGAGAAATA				
3P						
Name	Suffix linker					
	Linker sequence (5' to 3')	Adapter sequence (5' to				
		3')				
1MS	CTCGGGTAAGAACTCGCACTTCGTGGAAACACTATTA	CGAGTTCTTACC				
2MS	nTATCGGTAATAACAGTCCAATCTGGTGT	CGATAGGT/iMe-dC/TCC				
1S	CTCGTTACTTACGACACTCCGAGACAGTCAGAGGGTA	TGTCGTAAGTAA				
2S	CTCGATCGGTGTGAAAAGTCAGTATCCAGTCGTGTAG	TTTCACACCGAT				
3S	CTCGATCACGGCACTACACTCGTTGCTTTATCGGTAT	TAGTGCCGTGAT				
LRBS1-	CTCGTTGAACACCGTCTCAGGTAAGTATCAGTTGTAA	GACGGTGTTCAA				
XS						
LRBS2-	CTCGTGTTACTATTGGCTGAGATAAGGGTAGCAGAAA	CCAATAGTAACA				

Table S5. DNA linkers used to generate plasmid constructs by BASIC assembly

Table S6. Plasmids used for construct preparation in this study.

Plasmid used	Ligated fragment		Relevant information	
	Plasmid backbone Insert			
pCDF-CAT	pCDF-GFP (Bsal)	Cat (Bsal)	A plasmid encoding CAT protein	
pCDF-SAAT	pCDF-GFP (Bsal)	Saat (Bsal)	A plasmid encoding SAAT protein	
pCDF-ATF1	pCDF-GFP (Bsal)	Atf1 (Bsal)	A plasmid encoding ATF1 protein	
pCDF-empty	pCDF-GFP (Bsal)		A negative control plasmid	
pET-empty	pET-TPC3 (Ncol and Avril)		A negative control plasmid	

Table S7. Summary of plasmid construction via traditional restriction cloning

The GFP encoding gene was amplified from pJET-GFP using oligonucleotides with NcoI and AvrII cutting sites for the construction of pCDF-GFP plasmid backbone. The amplified GFP was then cloned into pCDF-Ahr_{his} by replacing Ahr_{his} with *GFP*. *cat* was amplified from pACYC-petF-fpr with BsaI prefix and suffix, while SAAT and ATF1 were order as a gblock from IDT technology. All 3 genes were cloned into pCDF-GFP backbone. To construct empty plasmids, pET-TPC4 was digested with NcoI and AvrII and pCDF-GFP was digested with BsaI. Both backbones were recirculated using Quick Blunting™ and Quick Ligation™ Kits from NEB after restriction digestion.

Plasmid Name	Genotype	Reference
pET-TPC3	ColE1; CmR; PT7: tes3, sfp, car	(Akhtar et al., 2015)
pCDF-P _{T7} -empty	CloDF13; SpecR; PT7:	This work
pET-P _{T7} -empty	ColE1; CmR; P _{T7} :	This work
pCDF-P _{T7} -CAT	CloDF13; SpecR; P _{T7} : cat	This work
pCDF-P _{T7} -SAAT	CloDF13; SpecR; PT7: saat	This work
pCDF-P _{T7} -ATF1	CloDF13; SpecR; PT7: atf1	This work
pET-PA1lacO-1-TPC3	ColE1; KanR; PA1lacO-1: tes3, sfp, car	This work
pET-PA1lacO-1-'CpFatB1-Sfp-	ColE1; KanR; PA1lacO-1: 'CpFatB1-3,	This work
CAR	sfp, car	
pET-PA1lacO-1-'CaFatB3-Sfp-	ColE1; KanR; PA1lacO-1: 'CaFatB3,	This work
CAR	sfp, car	
pET-PA1lacO-1-'CpFatB1-4-Sfp-	ColE1; KanR; PA1lacO-1: 'CpFatB1-4,	This work
CAR	sfp, car	
pET- PA1lacO-1-'CaFatB3-5-Sfp-	ColE1; KanR; PA1lacO-1: 'CaFatB3-5,	This work
CAR	sfp, car	
pCDF-PA1lacO-1-empty	CloDF13; SpecR; PA1lacO-1:	This work
pCDF-PA1lacO-1-ATF1	CloDF13; SpecR; PA1lacO-1: atf1	This work
pRSF1010-Ery-Pcoa-'CpFatB1-4	RSF1010; EryR; Pcoa: 'CpFatB1-4	This work
pRSF1010-Ery-Pcoa-'CpFatB1-4-	RSF1010; EryR; Pcoa: 'CpFatB1-4, saat	This work
SAAT		
pCDF-PA1lacO-1-AdGT4	CloDF13; SpecR; PA1lacO-1: AdGT4	This work
pCDF-PA1lacO-1-AtGT1	CloDF13; SpecR; PA1lacO-1: AtGT1	This work
pCDF-PA1lacO-1-MtG1	CloDF13; SpecR; PA1lacO-1: MtG1	This work
pCDF-PA1lacO-1-MtH2	CloDF13; SpecR; PA1lacO-1: MtH2	This work
pCDF-PA1lacO-1-VvGT1	CloDF13; SpecR; PA1lacO-1: VvGT1	This work
pCDF-PA1lacO-1-AtSUS1	CloDF13; SpecR; PA1lacO-1: AtSUS1	This work
pCDF- PA1lacO-1-MtH2-AtSUS1	CloDF13; SpecR; PA1lacO-1: MtH2,	This work
	AtSUS1	

Table S8. Plasmids used for production in this study

Table S9. List of DNA templates and primers used to generate genetic parts for the construction of the suicide plasmid targeting phaAB site

^a*Synechocystis* sp. PCC 6803 wild-type strain

bAkhtar et al., *Metabolic Engineering Communications*, 2015

Prefix Linker	Plasmid	Genetic part	Suffix Linker	Plasmid generated	Relevant Information
1MP	plY442	phaAB UHR	1S		pIY453 is the plasmid carrying the upstream genetic parts for
1P	plY171	PnrsB	2MS	plY453	the construction of suicide
2MP	plY99	$ColE1-KanR$	1M _S		vector targeting phaAB site
1MP	plY67	TermB15	1S		plY454 is the plasmid carrying
1P	plY98	Sp ^R	2S	plY454	the downstream genetic parts
2P	plY443	phaAB DHR	2MS		for the construction of suicide vector targeting phaAB site
2MP	plY99	$CoIE1-KanR$	1MS		

Table S10. List of genetic parts and linkers used to construct plasmid pIY453 and pIY454

Table S11. Linkers and genetic parts used to construct the suicide vector backbone pIY475 carrying a *gfp* **dropout gene**

Prefix Linker	Plasmid	Selectable Marker	Suffix Linker	Plasmid generated	Relevant Information
LRBS1- 4P	plY485	Amp^R	1S	plY706	pIY706 is a suicide vector carrying sfp and
1P	plY475	GFP, Kan ^R , Amp ^R	LRBS1- 4S		car genes targeting phaAB site.

Table S12. Linkers and genetic parts used to construct the suicide vector carrying *sfp* **and** *car* **genes targeting** *pha***AB site**

References

1. J. Elhai, A. Vepritskiy, A. M. Muro-Pastor, E. Flores, C. P. Wolk, Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. *J. Bacteriol.* **179**, 1998–2005 (1997).