## **Supporting Information**

## Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane

Baowen Zhou<sup>a,b,1</sup>, Pengfei Ou<sup>c,1</sup>, Nick Pant<sup>a</sup>, Shaobo Cheng<sup>d</sup>, Srinivas Vanka<sup>a,b</sup>, Sheng Chu<sup>b</sup>, Roksana

Tonny Rashid<sup>b</sup>, Gianluigi Botton<sup>d</sup>, Jun Song<sup>c,2</sup>, and Zetian Mi<sup>a,b,2</sup>

- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A0E9, Canada
- c. Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A0C5, Canada
- d. Department of Materials Science and Engineering, Canadian Centre for Electron Microscopy, McMaster University, Hamilton, ON L8S4M1, Canada
- 1. B.Z. and P.O. contributed equally to this work.
- 2. To whom correspondence may be addressed. Email: jun.song2@mcgill.ca or ztmi@umich.edu.

## Contents

Table S1 and S2

Fig. S1-25

**Table S1.** The bond length and bond angle of  $CO_2$  adsorbed on Cu(111) and  $Fe_3O_6H_6/Cu(111)$  compared to its isolated gas-phase (please also refer to Supplementary Figure 1).

| Species (*CO <sub>2</sub> )                            | CO1(Å) | C-O2(Å) | O-C-O(°) |
|--------------------------------------------------------|--------|---------|----------|
| Gas phase                                              | 1.18   | 1.18    | 180.00   |
| Fe <sub>3</sub> O <sub>6</sub> H <sub>6</sub> /Cu(111) | 1.25   | 1.28    | 126.05   |
| Cu(111)                                                | 1.18   | 1.18    | 179.67   |

**Table S2.** Contributions to the adsorbate free energy from the zero-point energy correction, enthalpic temperature correction, entropy, and the total free energy correction, respectively. The assumed fugacity for each non-adsorbed species are also included.

| Species              | Fugacity | ZPE  | $\int C_{\rm p} dT$ | -TS   |
|----------------------|----------|------|---------------------|-------|
|                      | (Pa)     | (eV) | (eV)                | (eV)  |
| *COOH                | -        | 0.62 | 0.10                | -0.18 |
| *CO                  | -        | 0.19 | 0.08                | -0.16 |
| *CHO                 | -        | 0.44 | 0.09                | -0.19 |
| *CH <sub>2</sub> O   | -        | 0.76 | 0.09                | -0.19 |
| *CH <sub>3</sub> O   | -        | 1.11 | 0.10                | -0.18 |
| *O                   | -        | 0.07 | 0.03                | -0.04 |
| *OH                  | -        | 0.36 | 0.05                | -0.08 |
| *H                   | -        | 0.16 | 0.01                | -0.01 |
| H <sub>2</sub> (ref) | 101325   | 0.27 | 0.09                | -0.43 |
| CH <sub>4</sub>      | 20467    | 1.20 | 0.10                | -0.61 |
| H <sub>2</sub> O     | 3534     | 0.58 | 0.10                | -0.66 |
| $CO_2$               | 101325   | 0.31 | 0.10                | -0.66 |



Fig. S1. The gas-phase  $CO_2$  (a) and its optimized configuration of adsorption on Cu(111) and  $FeO_3O_6H_6/Cu(111)$ .



Fig. S2. CO2 adsorption capacity of GaN NWs/Si, Cu/GaN NWs/Si, and CuFe@GaN NWs/Si.



**Fig. S3.** Schematic illustration of synthesizing CuFe@GaN NWs/Si through molecular beam epitaxy of GaN nanowires and co-electrodeposition of Cu and Fe.



Fig. S4. Top-view SEM images of GaN NWs/Si and CuFe@GaN NWs/Si.



**Fig. S5.** TEM image of bare GaN nanowire. The inset is the high magnification image of GaN nanowire in the yellow box.



Fig. S6. X-ray photoelectron spectrum survey of CuFe@GaN NWs/Si.



Fig. S7. X-ray diffraction spectra of n<sup>+</sup>-p silicon, GaN NWs/Si, and CuFe@GaN NWs/Si.



Fig. S8. Photoluminescence spectroscopy of GaN NWs/Si, Cu/GaN NWs/Si, and CuFe@GaN NWs/Si.



**Fig. S9.** Influence of the incident light intensity on the *J-V* curves of CuFe@GaN NWs/Si in CO<sub>2</sub>-purged 0.5 M KHCO<sub>3</sub> aqueous solution.



**Fig. S10.** *J-V* curves of CuFe@GaN NWs/Si in argon-(blue) and CO<sub>2</sub>-(red) purged 0.5M KHCO<sub>3</sub> aqueous solution under one-sun illumination.



Fig. S11. XPS of Cu 2p of Cu/GaN NWs/Si (Cu 2p  $_{3/2}$  = 932.9 eV) and CuFe@GaN NWs/Si (Cu 2p  $_{3/2}$  = 933.2 eV).



Fig. S12. STEM-HAADF image and the corresponding elemental distribution mappings of CuFe@GaN NWs/Si with Fe/Cu ratio of 4.5/1. The loading density of CuFe catalyst is ~ $0.033 \mu$ mol cm<sup>-2</sup> measured by ICP-AES.



**Fig. S13.** STEM-HAADF image and the corresponding elemental distribution mappings of CuFe@GaN NWs/Si with Fe/Cu ratio of 12.9/1. The loading density of CuFe catalyst is ~0.075 μmol cm<sup>-2</sup> measured by ICP-AES.



Fig. S14. *J-V* curves of  $Cu_xFe_y@GaN NWs/Si$  with different ratios of Cu to Fe in CO<sub>2</sub>-purged 0.5 M KHCO<sub>3</sub> aqueous solution under standard one-sun illumination.



Fig. S15. Faradaic efficiencies of  $Cu_xFe_y@GaN NWs/Si$  with different ratios of Cu to Fe at -1.2 V under simulated solar irradiation.



**Fig. S16.** Calculated free energy diagrams for CO<sub>2</sub>RR on (a) Cu(111), (b) Fe<sub>3</sub>O<sub>3</sub>H<sub>3</sub>/Cu(111), (c) Fe<sub>3</sub>O<sub>6</sub>H<sub>6</sub>/Cu(111), and (d) Fe<sub>6</sub>O<sub>7</sub>H<sub>7</sub>/Cu(111) with and without solvation corrections, respectively. The red and black solid lines represent the free energy pathways for CO<sub>2</sub>RR with and without solvation corrections. The values in the subfigures indicate the energy barriers for the rate-limiting step of CO<sub>2</sub>RR with solvation corrections for various possible FeO<sub>3</sub>/Cu model catalysts. On the Fe<sub>3</sub>O<sub>3</sub>H<sub>3</sub>/Cu(111), the rate-limiting step remains to be the protonation of \*CO to \*CHO with a free energy barrier of 0.68 eV. Surprisingly, the \*CHO intermediate is significantly enhanced on Fe<sub>6</sub>O<sub>7</sub>H<sub>7</sub>/Cu(111), changing the rate-limiting step to the first step of CO<sub>2</sub> activation to form \*COOH intermediate with a ultralow limiting potential of 0.29 V as compared to 0.85 V on Cu(111).



Fig. S17. Calculated free energy diagrams for  $CO_2RR$  on  $Cu_2O(111)$  and  $Fe_3O_6H_6/Cu_2O(111)$  under zero (a) and applied electrode potentials (b), respectively.



**Fig. S18.** Calculated free energy diagrams for  $CO_2RR$  on (a)  $Cu_2O(111)$ , (b)  $Fe_3O_3H_3/Cu_2O(111)$ , (c)  $Fe_3O_6H_6/Cu_2O(111)$ , and (d)  $Fe_6O_7H_7/Cu_2O(111)$ , respectively. The red and black solid lines represent the free energy pathways for  $CO_2RR$  with and without solvation corrections. The values in the subfigures indicate the energy barriers for the potential-limiting step of  $CO_2RR$  with and without solvation corrections for different Fe:O atomic ratios.



Fig. S19. SEM images of Si (a) and CuFe/Si (b).



**Fig. S20.** Optical properties measurement of n<sup>+</sup>-p Si junction, GaN NWs/Si, and CuFe@GaN NWs/Si based on UV-Vis relative differential reflectance spectroscopy.



Fig. S21. Energy bandgap diagram of CuFe@GaN NWs/Si for PEC CO2RR toward CH4.



**Fig. S22.** Electrochemical impedance spectroscopy of n<sup>+</sup>-p Si junction, CuFe/Si, and CuFe@GaN NWs/Si in CO<sub>2</sub>-purged 0.5 M KHCO<sub>3</sub> aqueous solution under simulated solar light.

| 240000         | 17.10                    |
|----------------|--------------------------|
| 220000         | 17.10                    |
| 200000-        |                          |
| 180000-        |                          |
| 160000-        |                          |
| 140000         |                          |
| 120000         |                          |
| 100000         |                          |
| 80000-         |                          |
| 60000          |                          |
| 40000          |                          |
| 20000-         |                          |
| 0-<br>m/z> 16. | 50 16.75 17.00 17.25 17. |

**Fig. S23.** Isotopic <sup>13</sup>CO<sub>2</sub> labeled experiments. GC-MS spectra of the product obtained from <sup>13</sup>C-labeled bicarbonate aqueous solution (0.5mol/L) under <sup>13</sup>CO<sub>2</sub> atmosphere.



**Fig. S24.** Stability measurement of CuFe@GaN NWs/Si at -1.2 V under 1-sun illumination in CO<sub>2</sub>-purged 0.5 M KHCO<sub>3</sub> aqueous solution. The right y axis is the Faradaic efficiency of methane.



**Fig. S25.** SEM images of CuFe@GaN NWs/Si before (a) and after (b) 10 hours reactions at -1.2 V in CO<sub>2</sub>-purged 0.5 M KHCO<sub>3</sub> aqueous solution under standard one-sun irradiation.