Supplementary Information

Fig. S1. Clustal Omega alignment of the amino acid sequences of Drosophila melanogaster aquaporins (Drip and Prip) and aquaglyceroporins (Eglp2 and Eglp4). MIP proteins consist of two tandem repeats, each of which has three membrane spanning α -helices and a pore forming loop with a signature Asp-Pro-Ala (NPA) motif (in blue). Highlighted in orange are the putative phosphorylation sites; in red are the Histidine residues involved in pH and divalent cations sensitivity; in yellow are the residues involved in pore selectivity.

Fig. S2. Western blot of Malpighian tubules protein homogenates probed with Drip and Prip antibodies. Ponceau S staining and western blot of tubule protein samples of Drip and Prip antibodies. The predicted molecular mass of Drip and Prip monomer is 25.5 and 29 kDa respectively and specific bands corresponding to either monomer, and higher molecular weight bands corresponding to dimer and/or tetramer were detected (arrows).

Fig. S3. Western blot of Malpighian tubules protein homogenates probed with Eglp2 and Eglp4 antibodies. Ponceau S staining and western blot of tubule protein samples of Eglp2 and Eglp4 antibodies. The predicted molecular mass of Eglp2 and Eglp4 monomer is 28.8 and 30.9 kDa respectively and specific bands corresponding to either monomer and dimer were detected (double arrows).

Fig. S4. Impact of cell-specific down-regulation of MIPs on fluid secretion. (*A*) Effects of Drip and Prip knockdowns in stellate cells and (*B*) Eglp2 and Eglp4 knockdowns in principal cells on stimulated fluid secretion by tubules in response to Capa-1 and Kinin at 10^{-7} M. (*C*) Data are expressed as percentage increase from basal fluid secretion compared to parental controls ± SEM (n = 6-12). *P < 0.05 (Student's *t*-test).

Fig. S5. Compromising the stellate route for water flux increases survival on desiccation. (*A*) Reduced Prip levels in stellate cells (*ClC-a*-GAL4>*UAS-Prip RNAi*) alter survival of desiccated flies. Desiccation resistance was significantly higher after knockdown of *Prip* in stellate cells compared to controls (P < 0.001 against both controls; Log rank test, Mantel-Cox). Median survival time (hours) are: female (*ClC-a*>*Prip* RNAi = 42, *ClC-a*/+ = 30, *Prip* RNAi/+ = 32); and male (*ClC-a*>*Prip* RNAi = 33, *ClC-a*/+ = 27, *Prip* RNAi/+ = 25.5). (*B*) Reduced Drip levels in stellate cells have a similar effect to Prip downregulation in female flies under desiccation conditions. Female (*ClC-a*>*Drip* RNAi = 41, *ClC-a*/+ = 31, *Drip* RNAi/+ = 29); and male (*ClC-a*>*Drip* RNAi = 24.5, *ClC-a*/+ = 24, *Drip* RNAi/+ = 19). Reduced levels of Eglp2 (*C*) and Eglp4 (*D*) specifically to principal cells does not alter survival of desiccated flies. Median survival time (hours) are: Eglp2 (female (*CapaR*>*Eglp2* RNAi = 44, *CapaR*/+ = 44, *Eglp2* RNAi/+ = 44); and male (*CapaR*>*Eglp2* RNAi = 29.5, *CapaR*/+ = 30, *Eglp4* RNAi/+ = 30)); Eglp4 (female (*CapaR*>*Eglp4* RNAi = 51); and male (*CapaR*>*Eglp4* RNAi = 33, *CapaR*/+ = 31, *Eglp4* RNAi/+ = 32)).

Genes	Sequence (5'-3')			
For qRT-PCR				
Eglp2 qPCR-F	TGGACAGCATCACAACAGTTCTTG			
Eglp2 qPCR-R	ACGAATCCGAAGTTCAGGGC			
Eglp4 qPCR-F	TCGGAACGCAGTTGCTGTAAG			
Eglp4 qPCR-R	TGGTTGTTGGGAAAGAGGTCC			
Drip qPCR	TaqMan probe - Dm01792928_m1			
Prip qPCR	TaqMan probe - Dm01792933_m1			
Overexpressor fly lines				
Eglp2 ORF-F	CACCATGGCTACAACCGCAAG			
Eglp2 ORF-R	GGCGAGCTCCGCCTCCGA			
Eglp4 ORF-F	CACCATGAAGGGATCGACGCTGG			
Eglp4 ORF-R	CGACAGCTGGACGTCCTCCA			
Drip ORF-F	CACCATGGTCGAGAAAACAGAAAT			
Drip ORF-R	GAAGTCGTACGAGTCGGTCTC			
Prip ORF-F	CACCATGGGAAAATTCGAATACTCAC			
Prip ORF-R	GGCGTAGTCACGGGCTCCCTC			
Xenopus oocyte expression	1			
Eglp2 ORF-F	ATGCGGCCGCCACCATGGCTACAACCGCAAG			
Eglp2 ORF-cmyc-R	GCGGTACCTCACAGATCCTCTTCTGAGATGAGTTTTTGTTCGGC GAGCTCCGCCTCCGA			
Eglp4 ORF-F	ATGCGGCCGCCACCATGAAGGGATCGACGCTGG			
Eglp4 ORF-cmyc-R	GCGGTACCTCACAGATCCTCTTCTGAGATGAGTTTTTGTTCCG/			
	CAGCTGGACGTCCTCC			
Drip ORF-F	ATGCGGCCGCCACCATGGTCGAGAAAACAGAAAT			
Drip ORF-cmyc-R	GCGGTACCTCACAGATCCTCTTCTGAGATGAGTTTTTGTTCGAA			
Drin OPE_E				
Drin OPE anua P				
гир өкг-сшус-к	GTAGTCACGGGCTCCC			

 Table S1. Primer sequences used in this study.

cRNA \ #oocytes	P(H ₂ O)	P(urea)	P(glycerol)	P(mannitol)
H ₂ O	26	31	18	9
hAQP4	14	14	13	2
Drip	14	16	16	8
Prip	10	8	12	6
Eglp2	16	14	15	12
Eglp4	12	10	10	6
fAQP8	14	11	13	2

Table S2. The table indicates the total number of oocytes for each MIP permeability experiment.