

Figure S1. Phylogenic analysis of *csf1r* paralogues in vertebrates. Phylogenetic relationships between zebrafish *csf1ra* and *csf1rb* paralogs and vertebrate orthologs. Amino acid divergence based on maximum likelihood algorithm (500 replicates; \geq 70 bootstrap shown as unique branch). In support of homology assessments, synteny between *csf1ra* and *csf1rb* was analyzed across multiple vertebrate species. Data supports *csf1rb* being an ohnologue of *csf1ra*, stemming from a teleost whole genome duplication of a common homologue.

Figure S2. Generation of mutants in *csf1r* **paralogues in the zebrafish.** (**A**) Clustering of zebrafish *csf1r* genes with closely related receptor tyrosine kinases supports paralogous relationship between *csf1ra* and *csf1rb*. (**B-C**) Schematic of the gene and protein structure of *csf1r* genes indicating the position and consequence of the mutation. (**B**) The *csf1ra*^{mh5} allele of *csf1ra* is a G>T substitution at bp 1466 of the coding sequence predicted to result in a premature termination of the protein (E454X). **C**) The *csf1rb*^{mh108} mutant zebrafish allele is a combination of an 8bp insertion and a 4bp deletion within exon 3 due to targeted editing of the *csf1rb* locus by CRISPR/Cas9. This change is predicted to cause a frameshift at amino acid 160 leading to a premature termination of the Csf1rb protein at amino acid 233 (P160L;fs73X). The *csf1rb*^{mh112} mutant allele is a 13bp deletion within exon 3 resulting in a frameshift and premature termination of the Csf1rb protein at amino acid 161 (D159A;fs2X).

Figure S4. FACS isolation of osteoclasts and osteoblasts from adult zebrafish. (A, C) $sp7^+$ and $ctsk^+$ cells were isolated from adult Tg[sp7:EGFP] and Tg[ctsk:DsRed] fish, respectively, and identified by their expression of EGFP (A) and DsRed (C). (E) $EGFP^+$ and $DsRed^+$ cells were sorted and analyzed regarding their expression of sp7 and ctsk. (B, D) Cells were gated and analyzed for Hoechst 33342 expression. A Hoechst 33342 histogram was plotted and $sp7:EGFP^+$ cells were used to set the gating strategy for identification of mononucleated cells (B). Osteoblasts are traditionally mononucleated cells, so the small population that falls inside the multinucleated gate is due to higher DNA content during cell division. By applying the same gates to the $ctsk:DsRed^+$ cells we identified the multinucleated cell population (D). (F) The percentage of mononucleated and multinucleated cells was quantified for both fish lines.

Figure S5. Pattern of osteoclast distribution on juvenile and adult vertebrae. (A-C)

Representative fluorescent photomicrographs of the spine of individual csf1r mutants and wildtype siblings at 2wpf carrying the osteoclast reporter Tg[ctsk:DsRed] and counterstained with calcein (cyan). (**D-F**) At 4 months of age, spines of wt and individual csf1r mutants exhibit a wide range of $ctsk:DsRed^+$ cell numbers. Shown here are representative fluorescent photomicrographs of spines with high and low number of cells.

Figure S6. Tooth development and expression of osteoclast markers.

(A) MicroCT of the teeth bearing fifth ceratobranchial of the adult zebrafish. Tooth labeled 1V-5V in order of position. More medial teeth, 4M or 1D and 2D are not noted. (B) Diagram of timing of tooth formation and pattern of replacement (after (Huysseune and Witten, 2006)). Changes in color indicate sequential teeth replaced in a series. (C) Whole mount TRAP staining of ceratobranchial 5 of an adult zebrafish showing presence of active osteoclasts covering the extent of the arch. (D-F) Representative pictures of ceratobranchial 5 from Tg[ctsk:DsRed]transgenic adult fish, marking osteoclasts surrounding the dentition; (F) overlay of *ctsk*-marked cells (E) and mineralized tissue labeled with calcein (D).

Figure S7. Multispecies alignment of *csf1ra* conserved non-coding element.

Yellow, conserved core regions common to all fishes; other colors are specific to the different teleost lineages. Sites of FOXO and CREB/AP1 binding site shown.

Species	gene	Accession number
Danio rerio	csf1ra	NP_571747
	csf1rb	F1QPE2
	pdgfrα	F1QNY7
	pdgfrβ	A0A0G2L2B8
	kita	Q8JFR5
	kitb	B8A5K6
Oryzias latipes	csf1ra	H2LJC3
	csflrb	H2MBW3
Takifugu rubripes	csflra	H2SUK2
	csf1rb	I6L6X5
Astyanax mexicanus	csf1ra	W5LCP3
	csf1rb	W5KLJ6
Oreochromis niloticus	csf1ra	I3K5N3
	csf1rb	I3KMS8
Poecilia reticulata	<i>csf1ra</i>	XP_008400061.1
	csf1rb	XP_017158513.1
Sinocyclocheilus grahami	csf1ra	XP_016131860
	csf1rb	XP_016102236
Sinocyclocheilus rhinocerous	csf1ra	XP_016426425
	csflrb	XP_016377545
Sinocyclocheilus anshuiensis	csf1ra	XP_016344784
	csflrb	XP_016361100
Clupea harengus	csf1ra	XP_012687948
	csflrb	XP_012669788
Pygocentrus nattereri	csflra	XP_017559280
	csf1rb	XP_017575061
Ctenopharyngodon idellus	csf1ra	AKM12662
Esox lucius	csf1ra	XP_010895130
	csflrb	XP_01901945
Salmo salar	csf1ra	XP_014067972
	csf1ra	XP_014055375
	csflrb	XP_013985018
	csflrb	XP_014051429
Cyprinodon variegatus	csflra	XP_015246436
	csf1rb	XP_015257023
Latimeria chalumnae	csf1r	M3XGP0
Xenopus tropicalis	csflr	F6Z3F8
Mus musculus	csflr	P09581
Homo sapiens	csflr	NP_001275634

Table S1- Accession numbers of protein sequences used in the phylogenetic analysis.

Species		Accession number
Danio	rerio	ENSDARG00000102986
	aesculapii	D.Parichy (unpublished)
	erythromicron	
	margaritatus	
	nigrofasciatus	
	choprae	
	abolineatus	
Takifugu r	ubripes	ENSTRUG0000006553
Tetraodon nigroviridis		ENSTNIG00000014226
Oreochromis niloticus		ENSONIG0000013065
Gasteroste	us aculeatus	ENSGACG00000018007
Oryzias la	tipes	ENSORLG0000004849
Poecilia fo	prmosa	ENSPFOG0000003496
Xiphophor	us maculatus	ENSXMAG0000008588
Astyanax mexicanus		ENSAMXG00000017088

Table S2- Accession numbers of *csf1ra* genomic sequences used to retrieve CNE sequences.