Supporting Information

Cultivation at high osmotic pressure confers ubiquinone 8-independent protection of respiration on *Escherichia coli*

Laura Tempelhagen[‡], Anita Ayer^{§,¶}, Doreen E. Culham[‡], Roland Stocker^{§,¶} and Janet M Wood[‡]

From the [†]Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; [§]Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; and [¶]St Vincent's Clinical School, University of New South Wales Medicine, NSW 2050, Australia

¹Supported by an Undergraduate Student Research Award and a Postgraduate Scholarship from the Natural Sciences and Engineering Research Council of Canada.

²To whom correspondence should be addressed: Janet M. Wood, Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St., Guelph, ON N1G 1Y2 Canada; <u>jwood@uoguelph.ca</u>; Tel. (519) 824-4120

Table S1. Deletion of *ubiG* impairs ProP and LacY activity in *E. coli*.

Table S2. Osmolality response parameters of His₆-ProP in proteoliposomes.

Table S3. Oligonucleotide primers.

- Figure S1. Representative growth curves
- Figure S2. The growth of wild type E. coli and of E. coli BW25113 under osmotic stress is similarly

impaired by a *ubiG* defect.

Figure S3. Expression of *ubiG* from pLT1 does not require arabinose induction.

Figure S4. CL is not required for osmotolerance or respiratory protection.

Figure S5. TLC analysis of intracellular trehalose

Table S1Deletion of ubiG impairs ProP and LacY activity in E. coli1

	Relevant Genotype	Replicate Experiment	Osmolality Response Parameter: ProP			Osmolality Dependence: LacY	
Strain			A _{max} nmol/min/mg protein	Π _{1/2} /RT mol/kg	B mol/kg	Slope (m) (nmol/min/mg protein)/(mol/kg)	Intercept (b) nmol/min/mg protein
WC700		1	103 ± 4	0.241 ± 0.005	0.046 ± 0.005	4.7 ± 0.5	6.6 ± 1.8
WG709	ubiG	2	102 ± 3	0.236 ± 0.005	0.044 ± 0.004	9.3 ± 1.7	2.1 ± 0.5
WG1542	AubiG785::kan	1	11 ± 1	0.249 ± 0.016	0.066 ± 0.011	$\textbf{-0.3}\pm0.9$	1.1 ± 0.3
		2	16 ± 1	0.247 ± 0.012	0.080 ± 0.008	-0.8 ± 0.8	1.3 ± 0.2

¹Bacteria were cultivated, initial rates of proline or lactose uptake were measured, and data were analyzed as described in Experimental Procedures and illustrated in Figure 3.

Table S2	
Osmolality response parameters of ProP-I	His ₆ in proteoliposomes

		Osmolality Response Parameter			
Supplementary Q8	Replicate	A _{max}	Π _{1/2} /RT	В	
		nmol/min/mg protein	mol/kg	mol/kg	
None	1	893 ± 66	0.47 ± 0.02	0.09 ±0.02	
	2	860 ± 35	0.44 ± 0.01	0.07 ± 0.01	
1.0/(m/m)	1	1009 ± 73	0.47 ± 0.02	0.10 ± 0.02	
1 70 (W/W)	2	838 ± 67	0.44 ± 0.03	0.10 ± 0.02	

¹PRLs were prepared without or with Q8 supplementation, initial rates of proline uptake were measured, and data were analyzed as described in Experimental Procedures and illustrated in Figure 6.

Table S3.Oligonucleotide primers

Primer Pair	Primer Sequence (5' to 3')	Application	
80-01	GGAAGCTTCCGGGGCCAATGCTCGAGGAAATCTT	PCR: presence or absence of <i>proP</i>	
80-02	GGAAGCTTCTCCGTTAACCTGGAGGAGAGTATGC		
ProW2	GGTGATAATGCCCGGCGTCAG	PCR: presence or absence of <i>proW</i>	
ProW3	GGACCAACAGTATGTCGGCATC		
betT3	GTGGCGTCGATCAGTTGTC	PCR: presence or absence of <i>betT</i>	
betT5	CGCCATATGCAGACATGGC		
cls-For	CGCTGACCAGTGCTTTTCC	PCR: presence or absence of <i>clsA</i>	
cls-Rev	GCTGGATCGAGATTGTCGG		
otsA-1	GGCACAGGTGCAACTCAGG	DOD	
otsA-2	GCCTACGGTGAGTTAAGCG	absence of <i>otsA</i>	
otsA-3	CGC AAT TTG CGG GAG CGG		
KmF	GATCTCCTGTCATCT	PCR: presence of <i>AubiG785::kan</i>	
ubiG-rev	CAC TGT CTA GTC GGC ACG G		
ubiG-for	GCT ATC CCT CTA CTG TAT CC	PCR: presence or absence of <i>ubiG</i>	
ubiG-int	GGT GGG ATC TGG AAG GTG		
ubiG-rev	CAC TGT CTA GTC GGC ACG G		
ubiGus	GAT CCATGG ATGCCGAAAAATCG	PCR amplification of <i>ubiG</i> , adding <i>Nco</i> I and <i>Hind</i> III sites (bold).	
ubiGds	CCCAAGCTTTCACTTATTCTGCG		
pBADfor	CCA TAA GAT TAG CGG ATC CTA CC	Sequencing to verify	
pBADrev	CTG AGC CTT TCG TTT TAT TTG ATG CC	pBAD24	

Figure S1. Representative growth curves.

Escherichia coli strain WG1230 was cultivated in MOPS medium containing NaCl at the indicated concentrations, growth was monitored with a Nephelostar microplate nephelometer (BMG Labtech, Ortenberg, Germany) and growth rates were determined as described in Methods. The resulting, red regression lines yielded the growth rates shown in Figure 2 (Panel A, strain WG1230 ($ubiG^+$) without glycine betaine (GB)).

Figure S2.

Impact of a ubiG defect on the growth of wild type E. coli and E. coli BW25113.

Growth rates of *E. coli* strains belonging to the Keio collection (BW25113 ($ubiG^+$) and JW2226 ($\Delta ubiG785::kan$), circles) and those based on wild type *E. coli* (MG1655 ($ubiG^+$) and WG1533 ($\Delta ubiG785::kan$), triangles) were cultivated in M9 medium under osmotic stress, growth rates were determined and data were analyzed as described in the legend for Figure 1. Panel A: Solid symbols illustrate the growth rates of $ubiG^+$ strains (BW25113 and MG1655), while open symbols illustrate the growth rates of $\Delta ubiG785::kan$ strains (JW2226 and WG1533). The osmolalities of the media were adjusted by adding NaCl (50 mM - 500 mM). Means ± standard error of four replicate measurements from one of two replicate experiments are shown. In panel B, each growth rate is normalized with respect to the mean growth rate observed at the lowest osmolality.

Figure S3.

Expression of *ubiG* from pLT1 does not require arabinose induction.

The growth rates of *E. coli* strains MG1655 (*ubiG*⁺, black bars), WG1590 (MG1655 $\Delta ubiG785$::*kan* pBAD24, light grey bars) and WG1591 (MG1655 $\Delta ubiG785$::*kan* pLT1, dark grey bars) in NaCl-free MOPS media without or with arabinose (1.33 μ M, 13.3 μ M, and 133 μ M) and with 50 mM NaCl (the low osmolality medium, panel A) or 500 mM NaCl (the high osmolality medium, panel B) were determined and the data were analyzed as described in the legend to Figure 1.

Figure S4.

CL is not required for osmotolerance or respiratory protection

Panel A: The growth rates of *E. coli* strains W3110 (wild type, circles) and BKT12 (W3110 $\triangle clsA856::FRT \triangle clsB861::FRT \triangle clsC788::kan$, triangles) in NaCl-supplemented MOPS media of the indicated osmolalities were determined and the data were analyzed as described in the legend to Figure 1. **Panel B:** *E. coli* strain WG1610 (MG1655 pDC347) was cultivated in low osmolality MOPS medium, without (black bars) or with (grey bars) arabinose (0.1 mM), and oxygen uptake was measured in low and high osmolality MOPS media as described in the legend to Figure 4.

Figure S5

TLC analysis of intracellular trehalose

Cell extracts from *Escherichia coli* strain W3110 (wild type) grown in low (LOM) or high (HOM) osmolality NaCl-supplemented MOPS medium, and strain JP20 (W3110 $\Delta otsBA::FRT \Delta treA::FRT$ $\Delta treC::FRT \Delta treF::FRT FampH::lacI-Ptac-otsBA::FRT$) grown in LOM with or without IPTG (0.1 mM) were prepared, and the TLC was performed as described in Experimental Procedures. Triplicate measurements from one of two experiments are shown. Authentic trehalose standards (5 nmol, 10 nmol, 15 nmol, and 20 nmol) were used for the identification and quantification of trehalose. The plate origin and solvent front are indicated by the dotted and dashed line, respectively. The R_f value for trehalose was 0.41.