1	Supplementary Material
2	
3 4	A general covalent binding model between cytotoxic selenocompounds and albumin revealed by mass spectrometry and X-ray absorption spectroscopy
5	
6 7	Wenyi Zheng ^{1,5} , Rui He ^{1,5} , Roberto Boada ² , Maria Angels Subirana ² , Tobias Ginman ³ , Håkan Ottosson ⁴ , Manuel Valiente ² , Ying Zhao ^{1,5,*} , Moustapha Hassan ^{1,5,*}
8 9	1. Experimental Cancer Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Huddinge 141 86, Sweden
10 11	2. Centre GTS, Department of Chemistry, Autonomous University of Barcelona, Barcelona 08193, Spain
12	3. Sprint Bioscience, Huddinge 141 86, Sweden
13	4. Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141 86, Sweden
14 15	5. ECM, Clinical Research Center and Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
16	*. Corresponding Author:
17	Moustapha Hassan, E-mail address: Moustapha.Hassan@ki.se
18	Ying Zhao, E-mail address: <u>Ying.Zhao.1@ki.se</u>
19	
20	ECM, Clinical Research Center,
21	Karolinska University Hospital, Huddinge

22 141 86 Stockholm, Sweden

	Item	CysSe ₂	MeSeA	Ebselen	p-XSC	MeSeCys	SeMet				
	Column	YMC AQ12S0	YMC AQ12805-1546WT								
	Mobile Phase	ACN/H ₂ O with 0.1% Formic Acid									
LC	Flow Rate (ml/min)	0.6	0.4	0.4	0.2	0.4	0.4				
	ACN Volume (%)	70%	70%	70%	70%	30%	20%				
	Running Time (min)	5	6	8	15	6	7				
	Spray Voltage (V)	4500	5000	5000	5000	5000	5000				
	Sheath Gas (Arb)	50	10	40	50	30	60				
	Auxiliary Gas (Arb)	5	5	5	5	15	5				
	Ion Sweep Gas (Arb)	1	2	2	2	2	2				
MS	Skimmer Offset (V)	-17	-18	-2	-15	-24	-16				
WIG	Capillary Temperature (°C)	400	297	400	375	312	400				
	Tube Lens Offset (V)	100	131	106	100	128	86				
	Collision Energy	1.2	N.A.	N.A.	N.A.	N.A.	N.A.				
	Collision Pressure (mTorr)	-13	N.A.	N.A.	N.A.	N.A.	N.A.				
	Ion of Monitor (m/z)	336.8→247.8	128.9	275.9	209.9	166.9	197.9				

Supplementary Table 1. LC-MS parameters to measure parent selenocompound. 23

Arb: Arbitrary units. N.A.: Not applicable. 24

	Item	CysSe-NEM	MeSeA-NEM	Ebselen-NEM	p-XSC-NEM			
	Column	YMC AQ12S	YMC AQ12S05-1546WT					
	Mobile Phase	ACN/H ₂ O with 0.1% Formic Acid						
LC	Flow Rate (ml/min)	0.4	0.2	0.4	0.2			
	ACN Volume (%)	20	70	70	70			
	Running Time (min)	11	15	10	20			
	Spray Voltage (V)	4500	5000	4000	5000			
	Sheath Gas (Arb*)	50	40	40	40			
	Auxiliary Gas (Arb)	5	35	5	50			
МС	Ion Sweep Gas (Arb)	1	1	2	1.5			
IVIS	Skimmer Offset (V)	-17	-6	-15	-15			
	Capillary Temperature (°C)	400	400	400	277			
	Tube Lens Offset (V)	100	80	75	186			
	Ion of Monitor (m/z)	294.9	221.9	402.9	309.9			

25 Supplementary Table 2. LC-MS parameters to measure selenol derivative.

27 Supplementary Table 3. Linear combination fitting results of X-ray absorption near

- **edge spectra.** The fitting was performed over the spectra for selenocompound-human plasma
- 29 mixture between -20 and 50 eV keeping E_0 fixed and equal to 0 eV.

SeC	Total SeC (µg/ml)	SeC (%)	SeC-HSA (%)	R-factor	Chi-square	Reduced Chi-squre
CysSe ₂	20	19.6	80.4	0.002	0.050	0.0004
MeSeA	20	0	100.0	0.029	0.093	0.0068
Ebselen	20	8.5	91.5	0.004	0.103	0.0009
p-XSC	20	0	100.0	0.005	0.164	0.0012

31 Supplementary Table 4. Stoichiometry of selenocompound versus albumin thiol. The

- 32 selenol intermediate of p-XSC has two selenol groups, but it was unclear whether both could
- 33 bind to albumin thiol at the same time.

SeC	Stoichiometry (SeC: Selenol intermediate: Albumin thiol)
CysSe ₂	1:2:2
MeSeA	1:1:1
Ebselen	1:1:1
p-XSC	1:1:1 or 1:1:2

35 **Supplementary Table 5. Summary of linearity and limit of detection.** SeC-spiked plasma

- 36 was analyzed using RECID. Linearity was evaluated by considering the detector response
- 37 (peak area) to different amounts of SeC by means of linear regression. Results were generated
- from three technical replicates. Limit of detection (LOD) was defined as signal/noise ratio
- 39 equal to 3.

SeC	Linear range	Slope	Y-Intercept	Correlation	LOD
SEC	(µg/mL)	$(Mean \pm SD)$	$(Mean \pm SD)$	coefficient	(µg/mL)
CysSe ₂	2-40	67940 ± 928.7	27250 ± 19830	0.9990	0.5
MeSeA	1-40	96420 ± 803.1	30830 ± 16560	0.9997	0.2
Ebselen	1-40	131100 ± 1941	-34530 ± 40020	0.9980	0.2

41 Supplementary Table 6. Validation of RECID. SeC-spiked plasma was processed using 42 RECID. Precision was shown as the relative standard deviation of three individual measures 43 of the analyte in multiple aliquots of the same stock solution. Accuracy was the percentage of 44 concentration calculated with calibration curve to the nominal concentration. Recovery was 45 the percentage of peak area of the analyte in plasma to that in solution. Results about accuracy

46 and recovery are shown as the mean \pm SD of three technical replicates.

	SeC	Precisi	on (%)	Accuracy	Recovery	
Туре	Level (µg/mL)	Intra-day	Inter-day	(%)	(%)	
	2	1.7	4.4	90.3 ± 1.8	88.7 ± 3.9	
CysSe ₂	10	7.7	7.3	108.9 ± 8.8	78.6 ± 4.0	
	40	5.5	3.7	101.5 ± 5.7	79.0 ± 3.8	
	1	5.6	0.9	115.3 ± 7.9	100.5 ± 0.7	
MeSeA	10	5.5	6.7	97.3 ± 5.7	86.5 ± 1.5	
	40	2.6	1.4	103.0 ± 2.6	89.9 ± 0.3	
	1	3.7	2.2	107.0 ± 2.9	79.9 ± 6.9	
Ebselen	10	0.5	0.8	107.8 ± 2.5	75.3 ± 2.7	
	40	3.4	3.8	103.2 ± 3.5	71.5 ± 2.0	

48 Supplementary Table 7. Stability of selenocompound in plasma and selenol derivative in

- 49 **processed sample.** SeC-spiked plasma was treated as indicated and then analyzed using
- 50 RECID. SeC-NEM in processed sample was treated in the same way and then subjected to
- 51 LC-MS analysis. Stability was shown as the percentage of the peak area after indicated
- 52 treatment to that from base line value. SeC concentrations were 20 μ g/mL. Results are shown
- 53 as the mean \pm SD of three technical replicates.

SaC	Sample Type	Treatment				
Sec		RT/24 hr	4 °C/24 hr	-20 °C/24 hr	Freeze-Thaw/5 Cycles	
CueSe	Spiked Plasma	98.6 ± 7.1	100.9 ± 7.9	99.6 ± 6.4	102.2 ± 0.6	
Cysse ₂	Processed	104.3 ± 0.4	99.1 ± 1.8	101.5 ± 4.6	97.1 ± 1.9	
MaSaA	Spiked Plasma	110.9 ± 2.0	108.9 ± 4.8	116.0 ± 3.2	117.3 ± 0.5	
MeseA	Processed	114.3 ± 0.3	106.7 ± 0.5	103.2 ± 1.0	104.3 ± 0.4	
Ebsolon	Spiked Plasma	110.3 ± 1.8	113.1 ± 0.5	108.2 ± 3.2	97.2 ± 2.7	
Ebseleli	Processed	106.8 ± 3.0	106.7 ± 0.3	108.7 ± 0.7	104.5 ± 0.6	

- 55 Supplementary Figure 1. Synthesis of selenol derivative. (a) Scheme for synthesis of
- selenol derivative (SeC-NEM). (b) Formulation for SeC-NEM synthesis.

58 Supplementary Figure 2. Matrix effect on the ionization of selenocystine and

- 59 **methylseleninic acid.** In the upper lane were the chromatograms of $CysSe_2$ and MeSeA
- 60 injected through LC auto-sampler. Alternatively, to assess matrix effect on analyte ionization,
- 61 CysSe₂ and MeSeA were continuously infused through MS syringe. In the same time, 2 μ L of
- 62 deproteinized extracts from plasma (middle lane) or 5% BSA (lower lane) were injected
- 63 through LC auto-sampler. The chromatograms were acquired.

- 65 Supplementary Figure 3. X-ray absorption near edge spectra. Black, red and green lines
- 66 indicate SeC, SeC-HSA and SeC-HP, respectively.

- 68 Supplementary Figure 4. Electrospray ionization-mass spectrometry spectrum of selenol
- 69 **derivative.** SeC-NEM was dissolved in ACN at appropriate concentration and directly
- 70 infused through MS syringe. The spectrum was acquired using full-scan Q1 mode (Peak
- 71 Width of 0.7).

- 73 **Supplementary Figure 5.** ¹**H-NMR spectrum of selenol derivative.** CysSe-NEM and
- 74 MeSeA-NEM were dissolved in D_2O , while Ebselen-NEM was dissolved in $CDCl_3$ for ¹H-
- 75 NMR analysis (25 °C, 400 MHz, Bruker DRX-400, Germany).

Supplementary Figure 6. Optimization of RECID. (a-c) Yield of the derivative after different 77 reaction times. TCEP and NEM amount were 1 µmol and 4 µmol, respectively. (d-f) Yield of 78 the derivative at different TCEP concentrations. NEM concentration was 4 µmol and reaction 79 time was 10 min. (g-i) Yield of the derivative at different NEM concentrations. TCEP 80 concentration was 1 µmol, and the reaction time was 10 min. (j-l) Yield of the derivative upon 81 82 changing the sequence in adding TCEP (1 µmol) and NEM (4 µmol): TCEP before NEM (1) 83 or NEM before TCEP (2). The reaction time was 10 min. In experiments related to panel a-i, NEM was added before TCEP. In all experiments, derivative yield was shown as the 84 percentage of peak area at indicated setting to that at optimal condition. Results are shown as 85 the mean \pm SD of three technical replicates. 86

88 Supplementary Figure 7. LC-MS chromatograms of SeC using RECID.

90 Supplementary Figure 8. Analysis of selenocompound in mouse and human plasma. SeC

- 91 was spiked into blank human or mouse plasma (final concentration $10 \mu g/ml$) and analyzed
- 92 using RECID. Results are shown as the mean \pm SD of three technical replicates.

