Supporting materials for

Slow sand filtration of raw wastewater using biochar as an alternative filtration media

Korbinian Kaetzl^{*}, Manfred Lübken, Edith Nettmann, Stefan Krimmler and Marc Wichern

Institute of Urban Water Management and Environmental Engineering, Fakultät für Bau- und Umweltingenieurwissenschaften, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.

Figure S1. Grain size distribution of sand (a) and biochar (b).

Figure S2. Mean *E. coli* concentration and removal over filter depth for sand (a) and biochar (b) filters (n = 3). 70 cm marks represent filter effluent and error bars represent standard deviation. Vertical grey dashed-dotted line represents mean *E. coli* removal rate over experimental time (n = 23) with 95 % confidence interval (grey area). Solid black line represents mean influent concentration and black dashed line the mean effluent concentration of *E. coli*.

Figure S3. Boxplots of mean log_{10} removal of *E. coli* through sand and biochar filtration and influent concentration (a). Whiskers represent 1.5 interquartile range and mean values are presented as black squares. Letters indicate a significant difference of the mean (p < 0.05) after post-hoc analysis. Mean removal rates of *E. coli* over experimental time for sand (circles) and biochar (black triangle) over experimental time (b). Error bars represent standard deviations.

Parameter	Unit	Sand	Biochar
Max. diameter (d _{max})	mm	1.8	> 5.6
Effective diameter (d ₁₀)	mm	0.86	0.58
d ₆₀	mm	1.26	1.81
Uniformity coefficient (U)		1.47	3.12
Porosity	%	40	59
HRT _{min} *	h	12	14.8
HRT _{max} **	h	27.6	30.4
Bulk density	g cm ⁻³	1.53	0.12
Specific surface area (BET)	m² g ⁻¹	< 0.01	500
Specific surface area (BET)	m² m ⁻³	< 1.53 · 10 ⁴	6.13·10 ⁷
Surface area (BET) per filter bed	m²	< 18	72,000

Table S1. Properties of used filter materials. Specific surface area of sand was calculated according to Wichern et al.¹

*with a minimum headwater level of 30 cm

**with a maximum headwater level of 102 cm

Parameter	Unit	Biochar
Ash	%	1.4
С	%	80.0
Ν	%	0.5
0	%	8.1
Н	%	1.3
H/C	Molar ratio	0.19
0/C	Molar ratio	0.08
Ρ	mg∙kg ⁻¹	2,686
AI	mg∙kg⁻¹	654
Fe	mg∙kg⁻¹	745
К		17,978
Mg	mg∙kg⁻¹	2,350
Na	mg∙kg⁻¹	886

Table S2. Chemical characteristics of biochar, which was used in AnBF.

Parameter	Unit	Sand
Na ₂ O	% w∙w ⁻¹	0.09
MgO	% w∙w ⁻¹	0.02
Al ₂ O ₃	% w∙w ⁻¹	1.3
SiO ₂	% w∙w ⁻¹	97.6
K ₂ O	% w∙w ⁻¹	0.87
CaO	% w∙w ⁻¹	0.02
TiO ₂	% w∙w ⁻¹	0.024
Fe ₂ O ₃	% w∙w ⁻¹	0.067
P ₂ O ₅	% w∙w ⁻¹	< 0.01

Table S3. Chemical characteristics of sand, which was used in AnBF.

Table S4. cLSM settings

Parameters	Settings
Extinction (Alexa Eluor 488: EPS)	488 nm
Emission (Alova Eluar 499, EDS)	400 EE0 pm
	490 - 550 1111
Extinction (SYTO60; total cell count)	633 nm
Emission (SYTO60; total cell count)	640 – 700 nm
z-stack slice distance	2 µm
Picture area	465 x 465 μm
Scanner speed	200 hz
Picture resolution	1024 x 1024 pixel
Voxel size	0.455 x 0.455 x 2.0 μm

Figure S4. Scanning electron images of sand (a) and biochar (b) filter material after 70 days at 10 ± 2.5 cm.

Figure S5. Scanning electron images of sand (a) and biochar (b) filter material after 70 days at 30 ± 2.5 cm.

Figure S6. Results from cLSM microscope analysis of sand (n = 31) and biochar (n = 25) particles. Average stack volume (a) of scans, total bacteria/EPS ration (b), Volume of total bacteria (c) and Volume of EPS- Glycoprotein (d).

Figure S7a. Correlation analysis for effluent concentrations of biochar filters for Tubidity [FNU]; COD, TOC, P_{tot} and NH_4 -N [mg·L⁻¹] and *E. coli* [log₁₀MPN·100mL⁻¹] over time.

Figure S7c. Correlation analysis for normalized $(C \cdot C_0^{-1})$ concentrations of biochar filters, using influent (C_0) and effluent concentrations (C) of parameters over time.

Figure S7e. Correlation analysis for removal efficiency of biochar filters for Tubidity [FNU]; COD, TOC, P_{tot} and NH₄-N [mg·L⁻¹] and *E. coli* [log₁₀MPN·100mL⁻¹] over time.

Figure S7b. Correlation analysis for effluent concentrations of sand filters for Tubidity [FNU]; COD, TOC, P_{tot} and NH₄-N [mg·L⁻¹] and *E. coli* [log₁₀MPN·100mL⁻¹] over time.

Figure 7d. Correlation analysis for normalized ($C \cdot C_0^{-1}$) concentrations of sand filters, using influent (C_0) and effluent concentrations (C) of parameters over time.

Figure S7f. Correlation analysis for removal efficiency of sand filters for Tubidity [FNU]; COD, TOC, P_{tot} and NH₄-N [mg·L⁻¹] and *E. coli* [log₁₀MPN·100mL⁻¹] over time.

Figure S7. Correlation analysis between selected parameters over experimental time (n=12), for biochar (7a, 7c, 7e) and sand (7b, 7d, 7f) filter, using linear regression. The Pearson correlation coefficient between the individual parameters is represented as "R" with the corresponding *p*-value.

References

1. Wichern, M., Lindenblatt, C., Lübken, M. & Horn, H. Experimental results and mathematical modelling of an autotrophic and heterotrophic biofilm in a sand filter treating landfill leachate and municipal wastewater. *Water Res.* **42**, 3899–3909 (2008).