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In this Supplementary Material, we provide numerical results for the two hole-pocket

model and other additional details to support the main claims in our paper.

Supplementary Note 1. 2-pocket model

We begin by discussing results for the two hole-pocket model (centered around Γ) with

a pairing ansatz of the form ∆j(k) = ∆ja(k) + ∆j, where ∆ja(k) (∆j) is the anisotropic

(isotropic) component on hole pocket j = 1, 2. We vary the isotropic components on the

second hole pocket for a fixed inter-pocket pairing ∆0. Supplementary Fig. 1 shows a plot of

CV (a) and CV /T (b) as a function of temperature for different values of the singlet isotropic

component of the gap on the second band ∆2. We have chosen the TRSB component (δ)

for each curve to be non-zero and equal to the inter-band pairing order parameter which is

set to ∆0 = 0.3. The anisotropic, singlet pairing component on both the bands (∆1a,∆2a) is

Supplementary Figure 1. Temperature dependence of the specific heat CV (left) and CV
T (right) as

a function of the isotropic gap parameter on the second band ∆2. The inter-band gap parameter is

chosen to be ∆0 = 0.3 and the time-reversal broken component δ = ∆0 for each panel. The singlet

anisotropic gap components on the first (second) band is fixed at ∆1a = 0.1 (∆2a = 0.3), and the

isotropic gap on the first band ∆1 = 0.6.
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Supplementary Figure 2. Fermi surfaces for different values of the isotropic gap on the second band,

∆2, at zero temperature. Above ∆2 = 0.4 , the Fermi surface is fully gapped. The inter-band gap

parameter is chosen to be ∆0 = 0.3 and the time-reversal broken component δ = ∆0 for each

panel. The singlet anisotropic gap components on the first (second) band is fixed at ∆1a = 0.1

(∆2a = 0.3), and the isotropic gap on the first band ∆1 = 0.6 . Note the C2 symmetry of the

nodes, consistent with ARPES.
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Inter-orbital TRSB Spin triplet Z2

N N N 0

N Y N 0

Y N N 0

Y Y N 0

N Y Y 0

Y Y Y 1, if ∆0 > ∆i(k)

N N Y Undefined

Y N Y 0

Supplementary Table I. Supplementary Table summarizing the various possible gap combinations

and their Z2 invariants.

chosen to be 0.1 and 0.3 respectively. All the CV curves show a superconducting jump at Tc

and go to zero at zero temperature. However, the exponent of the temperature dependence

varies drastically with ∆2. This is shown in Supplementary Fig. 1 (b) where CV /T saturates

at zero temperatures for ∆2 ≤ 0.4 ≡ ∆2c and goes to zero above ∆2c. This low temperature

behavior can be understood from the corresponding zero energy contours shown in Supple-

mentary Fig. 2 for T close to zero and different ∆2. Above the critical value of the isotropic

gap ∆2c, the FS is fully gapped, while a Bogoliubov surface exists in two dimensions for ∆2

equal to or below ∆2c. Close to ∆2c, the Bogoliubov surface shrinks continuously to a point.

The low-energy Bogoliubov excitations for ∆2 ≤ ∆2c give rise to the residual specific heat

at low temperatures, and the thermodynamic properties of the system resemble that of a

normal metal.

Supplementary Note 2. Summary table

Supplementary Table I summarizes the various possible gap combinations and their respec-

tive Z2 invariants. “Y” (“N”) represents whether the corresponding pairing combination is

present (absent) in the model Hamiltonian. In each case, one can determine the Pfaffian of
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the CP symmetric Hamiltonian and determine its Z2 invariant depending on whether there

is a sign change. The ultranodal superconductor with Bogoliubov surfaces exists only in

the presence of a non-zero interorbital pairing along with TRSB and higher spin-angular

momentum pairing (e.g. triplet). As mentioned in the main text, there are two equivalent

physical systems which yields the same Pfaffian and hence low-energy excitation spectrum.

While the first pairing Hamiltonian is described in the main text, the second contains an

interband, TRSB spin-triplet-orbital-singlet, and a TRS spin-singlet-orbital-triplet compo-

nent. In second quantized notation, it takes the form

Ĥ∆ = δ
∑
k,i 6=j

(
c†ki↑c

†
−kj↓ + c†ki↓c

†
−kj↑

)
+ h.c.− (i↔ j)

+ ∆0

∑
k,i 6=j

(
c†ki↑c

†
−kj↓ − c

†
ki↓c

†
−kj↑

)
+ h.c.+ (i↔ j)

+
∑
k,i

∆i(k)
(
c†ki↑c

†
−ki↓ − c

†
ki↓c

†
−ki↑

)
+ h.c. (1)

It is easy to check that the above pairing Hamiltonian, along with the kinetic part Ĥ0, has

the same Pfaffian presented in the main text for the two-pocket model.

Supplementary Note 3. Conventional d-wave order parameter

The real system FeSe1−xSx discussed in the main text exhibits quite small Fermi sur-

faces at the Γ point as expected from its smooth connection to the nematic FeSe material.

Given that the s and d wave instabilities are found to be competing in Fe-based systems in

general when calculated using a spin-fluctuation driven mechanism, it is possible that the

systems undergoes a transition towards a d wave state as a function of sulfur doping. There

are several reasons to believe that this could happen in principle. First, upon lowering of

the nematic order, the coupling between the s-wave instability and the d-wave instability

decreases until it eventually vanishes at the nematic phase transition at x ∼ 0.23. In conse-

quence, the relative competition of the leading and subleading superconducting instability

increases. Additionally, the FeSe1−xSx system tends to be less correlated. Considering that

the dxy orbital as the orbital with the strongest correlations should achieve significant coher-

ence upon reducing correlations, it is expected that (π, π) fluctuations are getting relatively
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Supplementary Figure 3. Superconducting order parameter on the Fermi surface as obtained from

modified spin-fluctuation pairing calculations1 for a model of FeSe1−xSx, U = 0.54, J = U/6.

enhanced and the corresponding d-wave channel can become the leading superconducting

instability. In fact, it is possible to achieve such a situation from a microscopic calcula-

tion using a spin-fluctuation pairing calculation with reasonable choices of the quasiparticle

weights according the trends just outlined. For this, we have adopted a two dimensional

version of electronic structure for FeSe from Ref. 2 by ignoring the hoppings in z direction

and removing the orbital order term as expected beyond the nematic transition in the

FeSe1−xSx system. Following the trends imposed by reduced correlations3, we choose as

quasiparticle weights
√
Zl = [0.69804, 0.98827, 0.83894, 0.83894, 0.83072] and find a leading

d-wave instability as shown in Supplementary Fig. 3. Indeed, the Γ centered Fermi surfaces

exhibit a small kF and thus the d-wave order parameter with a nodal point at k = 0 is small

in magnitude on these Fermi surface parts, providing a significant density of low energy
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Supplementary Figure 4. Density of states as calculated from the d-wave superconducting order

parameter in the model for FeSe1−xSx showing low energy excitations in the dxz and dyz orbital

components that give rise to the states at the Fermi surface around the Γ point.

excitations in the superconducting state. This situation is very similar to the one discussed

in the main text (parameter set A), and yields a V-shaped density of states at low energies,

see Supplementary Fig. 4. A corresponding calculation of the entropy as a function of

temperature by imposing a superconducting order parameter ∆(k, T ) = ∆̃(T )g(k), where

g(k) is the gap symmetry function as shown in Supplementary Fig. 3 and ∆̃(T ) simply

follows the temperature dependence of a mean field superconducting order parameter, yields

significant contributions to the specific heat at low temperatures, see Supplementary Fig.

5. However, the quasiparticle dispersion has only nodal points (in two dimensions) and

therefore yields a linear behavior of CV /T vs. T , and can never achieve a finite value for

T → 0 in the clean case, unlike the situation of a Bogoliubov Fermi surface as discussed in
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Supplementary Figure 5. Specific heat CV /T for the d-wave superconducting state exhibiting a

linear dependence at low temperatures, but no finite value at T → 0. The superconducting state

curve does not appear to reflect the excess quasiparticle density on the small hole pockets that was

anticipated by the authors of Ref. 4.

the main text. In summary, such a proposed d-wave state with small Fermi surface pockets

in a realistic model for the band structure cannot account for the experimental observations

of a finite CV /T .

Supplementary Note 4. Symmetry operators for n bands

For an n−band model, with respect to the basis chosen in the main text where the or-

bitals/bands transform trivially under time reversal, the corresponding unitary matrices for
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CPT symmetries take the form UP = π0⊗ In⊗σ0, UT = π0⊗ In⊗ iσy and UC = πx⊗ In⊗σ0.

Here In is an n× n unit matrix.

We now provide explicit forms of the matrix operators appearing in the main text for

the two pocket case. 0̂n means a n× n matrix of zeroes.

H(k)=



ε1(k)I2 0̂2 i∆1(k)σy ∆0I2 + δσz

0̂2 ε2(k)I2 −∆0I2 − δσz i∆2(k)σy

−i∆1(k)σy −∆0I2 − δσz −ε1(k)I2 0̂2

∆0I2 + δσz −i∆2(k)σy 0̂2 −ε2(k)I2


(2)

C =

0̂4 I4

I4 0̂4

 (3)

T =


iσy 0̂2 0̂2 0̂2

0̂2 iσy 0̂2 0̂2

0̂2 0̂2 iσy 0̂2

0̂2 0̂2 0̂2 iσy

 (4)

Finally the parity operator is simply an identity matrix P = I8.

Supplementary Note 5. Stability of the Bogoliubov Fermi Surface

As stated in the main text, theories with pure interpocket pairs are thought to be generally

unstable as they can exhibit negative superfluid density5. In this section, we present a

calculation to confirm that the presence of intrapocket pairs stabilizes the system. More

specifically, we show a situation where stable Bogoliubov Fermi surfaces exists. In other

words, we demonstrate that the quasiparticle spectrum can remain gapless in the topolog-

ical phase while the superfluid density is positive. We only present a short summary of

our conclusions; the broader question in which circumstances a negative superfluid density

occurs, is interesting on its own, and will be addressed in more detail in future work.

We begin with the paramagnetic current operator for a two band system

jP (q) = −e
∑
k,i,s

1

mi

(k +
q

2
)c†kisck+qis (5)
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Supplementary Figure 6. Superfluid density as a function of δ = ∆0 when m1 = −m2. The

triangles mark the values of δ for which the quasiparticle dispersions are plotted in Supplementary

Fig. 7. A Bogoliubov Fermi Surface exists with a positive superfluid density for in the range of

interband pairings that is shaded gray, including δ = 2meV (green triangle) and δ = 10meV (red

triangle).

which can be written as

jP (q) = −e
2

∑
k

(k +
q

2
)ψ†k

 1
m1

1
m2

ψk+q, (6)

= −e
2

∑
k

(k +
q

2
)ψ†kMψk+q, (7)

where ψ†k =
(
c†k,1,s, c

†
k,2,s

)
is the vector electron annihilation operator and we introduced the

matrix of inverse masses M = diag(1/m1, 1/m2) The time-ordered current-current correla-
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tion function is then

−i〈T jPi (q, τ)jPj (−q, 0)〉 =i
(e

2

)2∑
k,k′

(k +
q

2
)i(k

′ +
q

2
)jTr[MG(k + q, τ)MG(k,−τ)]δk,k′ ,

(8)

where G(k, τ) is the quasiparticle Green function. With this definition, the current response

kernel is defined by

Ji(q, ω) = − c

4π
Kij(q, ω)Aj(q, ω), (9)

K = KP +Kdia, (10)

where Ai(q, ω) is the vector potential, KP and Kdia are the paramagnetic and diamagnetic
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Supplementary Figure 7. Plots of the quasiparticle band energies Ei(k) for different values of

∆0 = δ. (a) δ = 0, (b) δ = 1meV, (c) δ = 2 meV, (d) δ = 10meV. A Bogoliubov Fermi Surface

exists with a positive superfluid density for δ = 2meV and δ = 10meV.
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responses, respectively. The diamagnetic kernel is given as usual for parabolic bands as

Kdia =
4πe2

c2

∑
α

nα
|mα|

, (11)

where nα is the density of electrons (holes) in electronlike (holelike) band α in the normal

state, and the paramagnetic kernel is

KP
ij (q→ 0, ω = 0) =

πe2

c2

∑
k

kikj
1

β

∑
νn

Tr[MG(k, iνn)MG(k, iνn)]. (12)

The normalized superfluid density ρs is then defined as 1 + KP (q→0,ω=0,δ=∆0)
Kdia(δ=∆0=0)

. Here it can

be shown that for δ 6= 0, the diamagnetic response is approximately a constant provided

the interband pairing is small compared to the Fermi energy. In the limit of δ,∆0 → 0,

the superfluid density reduces to that of a conventional superconductor. A plot of ρs as a

function of interband pairing ∆0 = δ is shown in Supplementary Fig. 6 for the case of two

band masses with opposite sign m2 = −m1. The triangles on the curve mark values of the

inter-band pairing for which the quasiparticle dispersions are shown to observe the presence

of Bogoliubov Fermi surfaces. These dispersions are plotted in the panels of Supplementary

Fig. 7. For the yellow triangle, there is no Bogoliubov surface as the quasiparticle spectrum

is fully gapped. However, for a range of inter-band pairings including the green (δ = 2meV)

and red (δ = 10meV) triangles, the superfluid density is positive and at the same time a

Bogoliubov surface exists. Hence this shows that there is a region of parameter space where,

for a non-zero value of the intra-pocket gap, the Bogoliubov surface is stable. For simple

harmonic gap functions, the region of stability of the topological phase is enhanced by the

creation of strong anisotropy in the intraband gap function, as considered in the main text.
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