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SI.1 Smoothing parameter

The dynamic graphical lasso is an extended version of graphical lasso (GLasso) that
maximizes the L1-penalized log-likelihood of the time-series dataset in the model. We
assume that the observation from a time-series dataset follows a multivariate Gaussian
distribution. The non-zero entries of the corresponding precision matrix encode the
conditional dependence relationship among variables. The smoothing parameter in
the model is introduced to incorporate structural variation of the networks over time.
This variation is computed as the sum of the element-wise absolute difference of the
estimated precision matrices over two consecutive time points. In fig. S.1.1, we show
the effect of the smoothing parameter on a prior distribution of the model. The prior
distribution without a smoothing parameter leads to sparse network estimation over
time. If the prior probability along positive diagonal axis is low, then it indicates that
the estimated networks are highly variant over time.

Figure S.1.1: Effect of smoothing parameter on the prior distribution. (a) Graph
with sparsity parameter only, f(x, y) = exp(�|x| � |y|). (b) Graph with both parameters,
sparsity and smoothing, f(x, y) = exp(�|x| � |y| � |x � y|). After adding a smoothing
parameter to the model, the probability increases along the main diagonal axis, leading to
smooth estimation over time.
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SI.2 Mathematical problem formulation

Our objective function can also be given a Bayesian interpretation. By means of
the Laplace approximation of marginal likelihood, the solution to the optimization
problem is the maximum a posteriori (MAP) estimate of the posterior distribution of
the time-series dataset.

The estimated undirected networks depend on the regularization parameters, sparsity
and smoothing. The sparsity parameter enforces the networks to be sparse and the
smoothing parameter minimizes the structural variation of the networks over consec-
utive time points. Let ⇥t denote the precision matrix at time point t. We denote the
model parameters by ⇥ ⌘ (⇥1, ...,⇥T ) and the model by M ⌘ (�, ⇢). We take the
prior distribution for the model as
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Let Yt be the observation matrix at time point t of size p⇥nt, where nt is the number
of observations and p is the number of variables. If the data matrices are not already
standardized, we standardize them. Then, by denoting D = (Y1, ..., YT ), we have the
following likelihood function:
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where Yt,j is the j-th observation vector at time point t.

We could write the joint distribution as
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The objective function of the dynamic GLasso problem equals (up to a constant term)
the logarithm of the joint distribution P (D,M,⇥).
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SI.3 Derivation - Bayesian information criterion

For a given model M, model parameter ✓ and data D, the score function for model
M is derived as

S(M|D) ⇡ logP (D|b✓MAP,M) + logP (b✓MAP|M) + k
2 log

2⇡
N ,

where b✓MAP is the maximum a posteriori estimate of ✓. The terms k and N are the
dimension of the parameter space and the sample size, respectively. The function
S(M|D) is the score function derived from the posterior distribution of the model
under log form:

S(M|D) = logP (M|D) = log
P (M,D)

P (D)
= log

P (D|M)P (M)

P (D)
.

The probability P (M) is constant under the uniform model selection assumption and
the probability P (D) is constant for all D.

Hence,
S(M|D) / logP (D|M),

and
P (D|M) =

Z

✓
P (D, ✓|M)d✓ =

Z

✓
P (D|✓,M)P (✓|M)d✓.

After local approximation of the parameter posterior around b✓MAP,

logP (✓|D,M) ⇡ logP (b✓MAP|D,M) + (✓ � b✓MAP)
0 @
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where H is the Fisher information matrix.

Since
@
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We have
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Now,

P (D|M) =
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/
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✓
P (✓|D,M)d✓ since M and D are fixed.
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where k is the number of free parameters.

The quantity log |H| can be approximated by k log(N). This approximation holds
true to order O(1/N) under weak assumptions.

Taking the Laplace approximation of the marginal likelihood under log form,

logP (D|M) ⇡ logP (D|b✓MAP,M) + logP (b✓MAP|M) +
k

2
log

✓
2⇡

N

◆
.
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SI.4 Normalization constant for the prior distribution

The normalization constant of the prior distribution is denoted by c(�, ⇢, T, p). It
is a function of four variables, namely, the sparsity parameter (�), the smoothing
parameter (⇢), the number of time points (T ) and the number of nodes (p). This term
is computed by applying iterated integration for a fixed T as follows:

c(�, ⇢, T, p) =
p(p+ 1)

2
c(�, ⇢, T )

1
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where C⇤(�, ⇢, xT�1) is the integral with respect to x1, x2, . . . , xT�2. A closed-form
expression of c(�, ⇢, T ) for arbitrary T is hard to find; however it can be computed
iteratively as mentioned above. Below are some examples:

c(�, ⇢, T = 2) =
�(�+ ⇢)2

2(2�+ ⇢)

c(�, ⇢, T = 3) =
3�(�+ ⇢)2(2�+ ⇢)(�+ 2⇢)

8(6�2 + 9�⇢+ 2⇢2)

c(�, ⇢, T = 4) =
�(�+ ⇢)3(2�+ ⇢)2(�+ 2⇢)2(3�+ ⇢)

4(48�5 + 184�4⇢+ 256�3⇢2 + 161�2⇢+44�⇢4 + 4⇢5)
.
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SI.5 Algorithm - dynamic graphical lasso

In this section, we describe an algorithm to estimate precision matrices that are smooth
over time.

Algorithm 1 Dynamic Sparse Covariance Estimation using Standardized Data
INPUT: Raw datasets Dt, t = 1, . . . , T , sample size nt, t = 1, . . . , T , topology selec-

tion threshold ⌧(� 0), M = 1015,
OUTPUT: Estimated precision matrices bPt, t = 1, . . . , T
1: Standardize datasets Dt to D0

t, 8t
2: Compute empirical covariance matrices St from datasets D0

t, 8t.
3: Calculate maximum value of regularized parameters

Sparsity parameter, �⇤ = max
t,i,j,i6=j

(ntSt,ij)

Smoothing parameter, ⇢⇤ =max
t

(nt, nt�1) max
t,i,j,i6=j

(St,ij � St�1,ij)

4: Create set of regularized parameter by selecting uniformly discrete values over the
interval [⌘�⇤,�⇤] and [⌘⇢⇤, ⇢⇤], where ⌘ 2 (0, 1).

5: for all �, ⇢ do

6: Solve optimization problem

(Y1, . . . , YT ) = arg max
⇥i�0,8i
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7: Select topology from (Y1, . . . , YT ) with given threshold ⌧
8: for all i, j do

9:

�⇤
l,ij  

(
M, if |Yl,ij |  ⌧

0, else

10: end for

11: Solve optimization problem for given topology

( bX1, . . . , bXT ) = arg max
⇥i�0,8i
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12: Calculate BIC

BIC(�, ⇢) =
TX

i=1

�ni

2

h
log(det(X̂i))� Tr(SiX̂i)

i

+
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2

TX
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2
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+
TX
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
ki
2
log

ni

2⇡

�
� log(c(�, ⇢, T, p)),

where c(�, ⇢, T, p) is a constant factor of the prior distribution.
13: end for

14: Choose (�̂, ⇢̂) such that BIC(�̂, ⇢̂)  BIC(�, ⇢), 8(�, ⇢)
15: if (�̂, ⇢̂) is at border points then

16: Extend the set of parameters around border points.
17: Go to step 5
18: end if

19: Assign bXi to b⇥i, 8i
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SI.6 Algorithm implementation

We used the Matlab package YALMIP and SDPT3 solver to find the optimal solution of
our optimization problem1,2. YALMIP is a Matlab modeling language to solve convex
optimization problems. SDPT3 solver is specially designed to solve conic optimiza-
tion problems whose constraint cone is a product of semidefinite cones, second-order
cones and nonnegative orthants. It uses a predictor-corrector primal-dual infeasible
path following algorithm, with either the HKM3,4,5 or the NT6 search direction. We
have also used a recently developed solver package, SCS (Splitting Conic Solver), that
solves the convex cone problems using the alternating direction method of multipliers
(ADMM)7. The estimated precision matrices using both solvers converge to the same
optimal solution.

1 Lofberg J. YALMIP: a toolbox for modeling and optimization in MATLAB. IEEE International

Symposium, in Computer Aided Control Systems Design, 284-289 (2004)
2 Toh K.C. et al. SDPT3 - A Matlab software package for semidefinite programming. Optimization

Methods and Software, 11, 545-581 (1999)
3 Helmberg C. et al. An interior-point method for semidefinite programming. SIAM Journal on

Optimization, 6, 342-361 (1996)
4 Kojima M. et al. Interior-point methods for the monotone linear complementarity problem in

symmetric matrices. SIAM Journal on Optimization 7, 86-125 (1997)
5 Monteiro R.D.C. Primal-dual path-following algorithms for semidefinite programming. SIAM

Journal on Optimization 7, 663-678 (1997)
6 Nesterov Y.E. & Todd M.J. Self-scaled barriers and interior-point methods in convex program-

ming. Math. Oper. Res. 22, 1-42 (1997)
7 O’donoghue B. Conic optimization via operator splitting and homogeneous self-dual embedding.

Journal of Optimization Theory and Applications 169(3), 1042-1068 (2016)
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SI.7 Validation of model-selection algorithm

We applied the Bayesian information criterion (BIC) as a model score function to
estimate the sparsity and smoothing parameters. The BIC approximates the posterior
density of a model conditional on the data in negative logarithm scale. The model
with the lowest BIC score is selected.

We estimated the joint posterior density of the regularization parameters, i.e., the
sparsity and smoothing parameters, using MCMC (Markov Chain Monte Carlo) and
used it to validate the BIC score function. Therefore, we simulated a time-series
dataset with 5 variables over 3 time points. We followed the paper by Zakaria et al.8
to estimate the joint posterior density of the regularization parameters. We selected
20,000 MCMC samples after 30,000 burn-ins to obtain the joint posterior distribution.
The performance of the regularization parameters selected using BIC is illustrated in
fig. S.7.1.

Figure S.7.1: Posterior density f(�, ⇢|D) estimation using MCMC: The figure shows
the results obtained from an MCMC of length 20,000 after a burn-in period of length 30,000.
(a) log likelihood plot of the sample data, (b) trace plot for the sparsity parameter (�),
(c) trace plot for the smoothing parameter (⇢), (d) posterior distribution of the sparsity
parameter shown as histogram, (e) posterior distribution of the smoothing parameter shown
as histogram and (f) joint posterior density plot of both regularization parameters. The
red markers in sub-figures (d) and (e) show the estimated regularization parameters using
the variant of BIC score function. We verified the convergence of the Markov chain using
diagnostic approaches, such as the auto-correlation function and the potential scale reduction
factor.

8 Zakaria K.S. et al. The Bayesian covariance lasso. Statistics and its Interface 6, 243-259 (2013)
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SI.8 Algorithm - model posterior estimation using
Markov Chain Monte Carlo

This section explains the algorithm to estimate the posterior distribution of the regu-
larization parameters and the precision matrices using MCMC (Markov Chain Monte
Carlo).

Algorithm 2 Model posterior sampling scheme
INPUT: Time-series dataset D ; log-likelihood function L(�, ⇢, P1, P2, . . . , PT |D) ;

the number of variables p ; sample precision matrices P̃i, t = 1, . . . , T ; MCMC
iteration M

OUTPUT: Sampled set (�, ⇢, P1, P2, . . . , PT )
1: Compute variance for the proposal distribution of diagonal elements of precision

matrices

Vt,ii =
⇣ |P̃t|
|P̃t,ii|

⌘2
8t = 1, 2, . . . , T ; i = 1, . . . , p

where P̃t,ii is the sub-matrix from precision matrix P̃t after removing ith row and
column.

2: Compute variance for the proposal distribution of off-diagonal vectors of precision
matrices

Vt,i =
⇣ �2
Vt,ii

P̃�1
t,ii P̃t,iP̃

0
t,iP̃

�1
t,ii +

2

Vt,ii
P̃�1
t,ii

⌘�1

8t = 1, 2, . . . , T ; i = 1, . . . , p

where P̃t,i is the ith off-diagonal vector of the sample precision matrix P̃t.
3: for all Iteration = 1 to M do

4: {Sampling Sparsity Parameter}
Generate �new from gamma distribution G(�|aold, bold) with mean �old and vari-
ance V�(�old, ⇢old)

5: Calculate forward probability G(�new|aold, bold) and backward probability G(�old|anew, bnew).

6: Calculate Hastings Ratio

H� =
exp(L(�new, ⇢old, P1,old, P2,old, . . . , PT,old|D))G(�old|anew, bnew)
exp(L(�old, ⇢old, P1,old, P2,old, . . . , PT,old|D))G(�new|aold, bold)

7: if H� > U(0, 1) then

8: Accept �new as the new value of �old

9: else

10: Reject �new and keep �old as same.
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11: end if

12: {Sampling Smoothing Parameter}
Generate ⇢new from gamma distribution G(⇢|aold, bold) with mean ⇢old and vari-
ance V⇢(�old, ⇢old) where

V⇢(x, y) = V�(x, y)

13: Calculate forward probability G(⇢new|aold, bold) and backward probability G(⇢old|anew, bnew).

14: Calculate Hastings Ratio

H⇢ =
exp(L(�old, ⇢new, P1,old, P2,old, . . . , PT,old|D))G(⇢old|anew, bnew)
exp(L(�old, ⇢old, P1,old, P2,old, . . . , PT,old|D))G(⇢new|aold, bold)

15: if H⇢ > U(0, 1) then

16: Accept ⇢new as the new value of ⇢old
17: else

18: Reject ⇢new and keep ⇢old as same.
19: end if

20: for all t = 1, . . . , T and i = 1, . . . , p do

21: {Sampling Diagonal Elements of Precision Matrices}
Draw m independent samples, d1, d2, . . . , dm from the proposal distribution
N (Pt,old,ii, Vt,ii)

22: Select dj from the set (d1, d2, . . . , dm) with probability proportional to exp(L(�old, ⇢old, Pt(dj)|D)).
Denote the selected sample as d⇤.

23: Draw d⇤1, d
⇤
2, . . . , d

⇤
m�1 from N (d⇤, Vt,ii). Take d⇤m as Pt,old,ii

24: Replace Pt,old,ii by d⇤ with probability

min{1,
Pm

j=1 exp(L(�old, ⇢old, Pt(dj)|D))
Pm

j=1 exp(L(�old, ⇢old, Pt(d⇤j )|D))
}

25: {Sampling Off-diagonal Elements of Precision Matrices}
Draw m independent vectors, d1, d2, . . . , dm from the proposal distribution
N (Pt,old,i, Vt,i)

26: Select dj from the set (d1, d2, . . . , dm) with probability proportional to exp(L(�old, ⇢old, Pt(dj)|D)).
Denote the selected sample as d⇤.

27: Draw d⇤1, d
⇤
2, . . . , d

⇤
m�1 from N (d⇤, Vt,i). Take d⇤m as Pt,old,i

28: Replace Pt,old,i by d⇤ with probability

min{1,
Pm

j=1 exp(L(�old, ⇢old, Pt(dj)|D))
Pm

j=1 exp(L(�old, ⇢old, Pt(d⇤j )|D))
}

29: end for

30: end for
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SI.9 Synthetic data results

SI.9.1 Synthetic data generation

For the purpose of illustration of our method, we randomly generated a directed graph
with sparsity level 85%. The elements of the weighted adjacency matrix W correspond-
ing to the directed graph are selected uniformly over the range (�1,�0.2][[0.2, 1). The
nonzero entries Wij can be interpreted as a directed edge from Xj to Xi with weight
Wij . We transformed the weighted adjacency matrix W to the precision matrix using
the following transformation,

⇥1 = (I �W )T (I �W ), (1)

where I is the identity matrix.

We successively added randomly generated positive definite matrices to the precision
matrix in (1) to get the precision matrices at other time points. Finally, we simulated
data from these precision matrices. The synthetic networks were created by plac-
ing an edge between two nodes if the corresponding entry in the precision matrix is
nonzero. The sparsity level was set between 75% to 80%. (see Figure S.9.1 and table
S.9.1)

Time Sparsity New % of Count of % of

point level edges new vanished vanished

count edges edges edges

1 77.01% - - - -
2 79.54% (1/89) 1.12% (12/346) 3.47%
3 78.16% (17/95) 17.89% (11/340) 3.24%
4 77.01% (13/100) 13.00% (8/335) 2.39%
5 76.55% (16/102) 15.69% (14/333) 4.20%
6 75.63% (6/106) 5.66% (2/329) 0.61%

Table S.9.1: Synthetic graph summary. The table shows the sparsity levels of synthetic
undirected networks at different time points.
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Figure S.9.1: Synthetic networks. True conditional independence graphs under in-silico
study for all time points. The unconnected nodes are independent of each other conditionally
on the rest. The set of the edges that are going to vanish in the next time point are shown
in red. The set of edges in blue represents new edges.
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SI.9.2 Cross validation v/s Bayesian information criterion

The dynamic graphical lasso problem is highly dependent on the regularization pa-
rameters,i.e., sparsity and smoothing parameters. There are two different approaches
available in the statistical literature to estimate the regularization parameters - (a)
Cross validation (CV), (b) Bayesian information criterion (BIC). We implemented
both model selection schemes to estimate sparse precision matrices over time by set-
ting the smoothing parameter to zero. The precision matrices estimated by CV showed
large number of non-zero entries. BIC performed better with respect to the sparsity
of the precision matrices. The BIC score function penalizes the number of non-zero
elements in the precision matrices. Therefore, the estimated precision matrices based
on BIC were sparser (see Fig. S.9.2).

Figure S.9.2: Comparison between cross validation (CV) and Bayesian informa-
tion criterion (BIC). The figures show the absolute entries of the estimated precision
matrices in ascending order. BIC clearly yields greater sparsity compared to CV.
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Time Point Glasso (CV) Glasso (BIC)

1 159.2 ± 16.27 301.5 ± 9.49
2 173.7 ± 15.08 316.6 ± 14.2
3 176.6 ± 16.14 327.1 ± 14.09
4 175.4 ± 15.14 339.9 ± 17.61
5 168.7 ± 11.93 325.3 ± 10.55
6 174.6 ± 11.44 312.4 ± 9.023

Table S.9.2: Achieved sparsity level for CV and BIC. The table shows the number
of pairs of entries of the precision matrices that are absolutely less than 10�3. The mean
number of pairs is calculated using 20 datasets. These values clearly show that the estimated
graphs using BIC are sparser than the estimated graphs using cross validation. CV favors a
model with greater predictive power.

Figure S.9.3: Model selection using BIC. The figure plots BIC scores against the reg-
ularization parameters. BIC score approximates the maximum a posteriori (MAP) of the
model in the negative logarithmic scale. We select both parameters with the lowest BIC
score. For a particular dataset, the estimated sparsity and smoothing parameters are 8.3051
and 109.1782 respectively.
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Figure S.9.4: Comparison between GLasso and dynamic GLasso by checking the
effect of smoothing parameter. The bar plot shows the estimated structural variation
over consecutive time points. The blue and orange bars are corresponding to the models
GLasso and dynamic GLasso respectively. The mean structural variation is calculated using
20 distinct time-series datasets. Dynamic GLasso achieves lower structural variation due to
the additional regularization parameter.
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SI.9.3 Performance over noise strength

We evaluated the performance of the models for different noise (error) strengths for
simulated data. We added correlated Gaussian noise to the simulated data with varying
strength from 0 to 10. The dynamic GLasso performed better than GLasso. The model
dynamic GLasso estimates networks consistently as the strength of the noise decreases
(see the fig. S.9.5). The mean AUROC decreases with increase in the noise strength
as expected.

Figure S.9.5: Effect of the noise strength on the performance of the models:
The plot shows the performance of the model dynamic GLasso over the static model GLasso
by varying the strength of error matrix under in-silico study. The plots represent the kernel
density estimate of AUROCs calculated using 5 datasets. The performance of dynamic GLasso
inproves as the strength of noise decreases.
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SI.10 Dynamic network reconstruction using block
sparsity

The model dynamic graphical lasso maximizes the L1-penalized log-likelihood of the
time-series dataset. Two penalization terms are introduced in the objective function to
impose sparsity and smoothness on the estimated networks. The structural variation
is defined as the sum of absolute differences between the elements of two consecutive
precision matrices.

We evaluated the performance of the model after replacing the smoothing penalization
by block sparsity9. In this approach, we considered the estimated precision matrices
form a block vector of size T , where T is total number of time points. We applied
L2-norm to all block vectors to ensure smoothness over the entries of the precision
matrices. The block L2-norm penalization encourages a similar pattern of sparsity
across time. We also applied L1-norm to individual precision matrices to enforce
additional sparsity.

We could write the model with block sparsity mathematically as:

(b⇥1, . . . , b⇥T ) = arg max
⇥t�0,8t

TX

t=1

nt

2
[log(det(⇥t))� Tr(St⇥t)]

��

2

TX

t=1

||⇥t||1 �
⇢

2

pX

i,j=1

||(⇥(1,ij), . . . ,⇥(T,ij))||2 (2)

where � and ⇢ denote sparsity and smoothing parameters respectively. The total
number of time points is denoted by T . The standardized sample covariance matrix
and the sample size at time point t are denoted by St and nt respectively. The (i, j)-th
element of the precision matrix ⇥t at time point t is denoted by ⇥(t,ij).

Under in silico study, we optimized the objective function (2) with respect to the simu-
lated datasets (see section SI.9 for more on data preparation). We used ROC (Receiver
Operating Characteristic) curve and AUROC (Area Under ROC) as statistical tools
to compare predicted networks with the true ones. Figure S.10.1 and S.10.2 show that
the area under the ROC curve for the model with block sparsity is lower than the
model dynamic graphical lasso. We also compared both models separately for each
time points using mean ROC curve calculated using 20 time-series datasets (see the
fig. S.10.1). The heat map S.10.3 shows the entries of estimated partial correlations
from both models. The model dynamic GLasso achieved greater sparsity. The sample
variance of the estimted partial correlations is smaller for dynamic GLasso compared
to the model with block sparsity.

9 Eldar Y.C. et al. Block-sparsity: Coherence and efficient recovery. IEEE International Conference

on Acoustics, Speech and Signal Processing, 2885-2888 (2009)
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Figure S.10.1: Comparison of dynamic GLasso and block sparsity using ROC
curves: The ROC curves in orange and those in violet correspond to dynamic GLasso and
the model with block sparsity respectively. The mean ROC curves are estimated using 20
time-series datasets and the shaded regions correspond to respective standard deviations.
The performance of the model dynamic GLasso is better than the model with block sparsity.

Figure S.10.2: Performance evaluation between dynamic GLasso and block spar-
sity with AUROCs: The vertical bars correspond to the area under ROC (AUROC) with
respective standard deviation. Dynamic GLasso achieves not only higher AUROCs, but also
lower standard deviations.
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Figure S.10.3: Performance evaluation between dynamic GLasso and block spar-
sity using partial correlations: The figure shows the heat-map of estimated partial corre-
lation using two different penalization constraints. (a) Smoothing penalization with L1-norm,
Penalty = ⇢

PT
i=2 ||⇥i � ⇥i�1||1, (b) Smoothing penalization using block sparsity, Penalty

= ⇢
Pp

i=1

Pp
j=1 ||(⇥1,ij , . . . ,⇥T,ij)||2. The estimated partial correlation using L1-norm pe-

nalization has low structural variation over time. The model with block sparsity estimates
partial correlation with high sample variance.
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SI.11 Biological data summary

SI.11.1 Fold change

Figure S.11.1: Relative time-course protein abundance quantification. The figure
shows the abundance level of phospho-proteins relative to control (time point 0 minute) from
time-course experiments. The heat-map is divided into four groups based on inhibition con-
ditions. (a) No Inhibition, (b) PI3K Inhibition, (c) MEK Inhibition, (d) AMPK Inhibition.
All experiments were done with THP1 cell line using mass cytometry at single cell resolu-
tion. Cells were incubated with IFN� for a time course of 0, 5, 10, 15, 30 and 60 minutes.
Inhibitions of PI3K, MEK and AMPK reduce the phosphorylation level of AKT, ERK and
FAK respectively.
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SI.11.2 Results from re-constructed IFN� stimulated networks

Figure S.11.2: Heatmap of estimated partial correlation under biological study.
The figure shows the comparative study between the two statistical methods graphical lasso
and dynamic graphical lasso. The heatmap shows the estimated partial correlation of the
selected protein-pairs. We selected top 20 protein-pairs at each time point based on estimated
partial correlation. (a) Partial correlation estimated under GLasso with “no inhibition”,
(b) Partial correlation estimated under dynamic GLasso with “no inhibition”, (c) Estimated
partial correlation from PI3K inhibited dataset, (d) Estimated partial correlation from MEK
inhibited dataset, (e) Estimated partial correlation from AMPK inhibited dataset. The
estimated partial correlation with graphical lasso has high sample variance over time.
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0 minute 5 minutes

10 minutes 15 minutes

30 minutes 60 minutes

Figure S.11.3: Biological network reconstruction under control experiment. The
figure shows the reconstructed conditional independence graphs from the estimated precision
matrices for all time points using dynamic graphical lasso. We selected top 20 pairs with
high partial correlation in absolute value. The solid and dotted edges denote the conditional
dependence relationship with positive and negative partial correlation respectively. The stable
edges are denoted in black. The edges that are going to vanish in the next time point are
shown in red. The edges in blue represent new edges that did not appear in the previous time
point. The edges in sea green are the stable edges over consecutive time points.
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0 minute

5 minutes

Figure S.11.4: Estimated partial correlation matrices from the control experiment
(Part A). The figure shows the estimated partial correlations at time points for 0 and 5
minutes using dynamic GLasso. The thickness of the edges in the conditional independence
graphs are set proportionally to the strength of partial correlations.
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10 minute

15 minutes

Figure S.11.5: Estimated partial correlation matrices from the control experiment
(Part B). The figure shows the estimated partial correlations at time points for 10 and 15
minutes using dynamic GLasso. The thickness of the edges in the conditional independence
graphs are set proportionally to the strength of partial correlations.
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30 minutes

60 minutes

Figure S.11.6: Estimated partial correlation matrices from the control experiment
(Part C). The figure shows the estimated partial correlations at time points for 30 and 60
minutes using dynamic GLasso. The thickness of the edges in the conditional independence
graphs are set proportionally to the strength of partial correlations.
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PI3K inhibition MEK inhibition

AMPK inhibition

Figure S.11.7: Biological network reconstruction for inhibited experiments. The
estimated undirected networks based on dynamic GLasso are same for all time points. The
solid and dotted undirected edges indicate the relationship with positive and negative partial
correlations respectively.
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Figure S.11.8: Estimated partial correlation matrix from PI3K inhibited experi-
ment.
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Figure S.11.9: Estimated partial correlation matrix from MEK inhibited experi-
ment.
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Figure S.11.10: Estimated partial correlation matrix from AMPK inhibited ex-
periment.
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SI.11.3 Literature based validation

Table S.11.1: Literature based validation. The table shows the set of predicted edges
that are validated through Omnipath database.

No. Undirected Validated Shortest Intermediate PubMed ID

Relationship Length Protein

1 pP90RSK - pS6 MEK 1 17360704, 21233202
2 pAKT - pPLC�2 PI3K 2 SRC, EGFR 18283331, 11606584
3 pAKT - pS6 PI3K 2 S6K 15149849, 17360704
4 pAKT - pGSK3� PI3K 1 11035810, 8524413
5 pERK - pP90RSK MEK 1 12832467
6 pERK - pJNK MEK 1 15778365
7 pFAK - pNFB AMPK 2 STAT1/3, TP53, 11278462, 16481475

GSK3B
8 pFAK - pPLC�2 AMPK 2 SRC, EGFR, 17828307, 15735019,

GRB2 11606584
9 pGSK3� - pPDPK1 PI3K 1 9373175
10 pGSK3� - pP90RSK MEK 1 1137602
11 pMAPKAPK2 - pMKK4 2 p38, AKT 14499342, 7535770
12 pMAPKAPK2 - pP38 AMPK 1 14499342
13 pMAPKAPK2 - pNFB 2 ERK, p38 8846784, 15073167
14 pMKK3&6 - �-CATENIN 2 JNK, NFkB, 16498455, 22328140

SMAD7
15 pMKK4 - pJNK AMPK 1 12788955, 10715136,

8974401
16 pMKK4 - pAMPK 2 MAP3K7 9278437, 20615388
17 pMKK4 - pP38 1 12788955
18 pNFB - pP90RSK 2 ERK, GSK3B 17183360, 11584304
19 pP38 - pJNK AMPK 1 15778365
20 pPDPK1 - pP90RSK 1 10480933
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No. Undirected Validated Shortest Intermediate PubMed ID

Relationship Length Protein

21 pPDPK1 - p4EBP1 2 AKT1, S6K 12167717, 11777913
22 pS6K - pNFB 2 MDM2, MAPK1 7545671, 21035469,

15073167
23 pSRC - pFAK AMPK 1 17828307, 15735019
24 pSTAT1 - pAKT PI3K 1 15284024
25 pSTAT1 - pP38 1 17502367
26 pSTAT1 - pERK MEK 1 7569900
27 pSTAT1 - pNFB 1 16481475
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