Table S1. List of bacterial strains used in this study.

Name	Description/genotype	Marker	Reference
Strains			
<i>M. abscessus</i> Smooth (S)	<i>M. abscessus sensu stricto</i> , strain CIP104536 ^T , S morphotype	-	Laboratoire de Référence des Mycobactéries
M. abscessus Rough (R)	<i>M. abscessus sensu stricto,</i> strain CIP104536 ^T , R morphotype	_	Laboratoire de Référence des Mycobactéries
M. massiliense (R)	<i>M. abscessus massiliense</i> , strain CIP108297 ^T , R morphotype	_	Laboratoire de Référence des Mycobactéries
M. bolletii (S)	<i>M. abscessus bolletii</i> , strain CIP108541 ^T , S morphotype	-	Laboratoire de Référence des Mycobactéries
M. abscessus S 1298 (S)	<i>M. abscessus sensu stricto,</i> clinical isolate from a cystic fibrosis (CF) patient, S morphotype	-	(1)
M. abscessus S 2069 (S)	<i>M. abscessus sensu stricto,</i> clinical isolate from a non-CF patient, S morphotype	-	(1)
M. abscessus R 2648 (R)	M. abscessus sensu stricto, clinical isolate from a CF patient, R morphotype	-	(1)
M. abscessus R 3022 (R)	<i>M. abscessus sensu stricto,</i> clinical isolate from a non-CF patient, R morphotype	-	(1)
M. abscessus S - Δerm(41)	<i>erm(41)</i> unmarked deletion mutant in the S variant <i>of</i> CIP104536 ^T	-	This study
<i>E. coli</i> XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB laclqZ∆M15 Tn10 (Tetr)].	Tet	Stratagene

Primers	5' to 3' sequence			
Cloning in nMV261 lac7 derivatives				
Pres Fow				
P ₁₂₃ Rev				
P ₉₂ FOW	GGTATA <u>TCTAGA</u> ATGGCGACCGGGGCCTTCTTCGTG (Xbal)			
P ₆₁ FOW	GGTATA <u>TCTAGA</u> GAAACCAGTIGCATGCCCCGATAT (Xbal)			
P ₃₈ Fow	<u>CTAGA</u> TCTTTGGAGCATGGGCATATTCATGATGGTGCTGCGTC <u>G</u> (<u>Xbal)</u>			
P ₃₈ Rev	<u>GATCC</u> GACGCAGCACCATCATGAATATGCCCATGCTCCAAAGA <u>T</u> (BamHI)			
P _{Mut(B7)} Fow	CTAGAGGGGGCAGTTGCATGCCCCGATATCTTTGGAGCATGGGC			
	ATATTCATGATGGTGCTGCGTC <u>G</u> (Xbal)			
P _{Mut(B7)} Rev	GATCCGACGCAGCACCATCATGAATATGCCCATGCTCCAAAGATA			
	TCGGGGCATGCAACTG CCCC CT (BamHI)			
P _{Mut(-35)} Fow	CTAGAGAAACCAG CCATGC GCCCCGATATCTTTGGAGCATGGGCA			
	TATTCATGATGGTGCTGCGTCG (Xbal)			
P _{Mut(-35)} Rev	GATCCGACGCAGCACCATCATGAATATGCCCATGCTCCAAAGATA			
	TCGGGGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			
P _{Mut(B7/-35)} Fow	CTAGAG GGGG CAG CCATGC GCCCCGATATCTTTGGAGCATGGGC			
	ATATTCATGATGGTGCTGCGTCG (Xbal)			
P _{Mut(B7/-35)} Rev	GATCCGACGCAGCACCATCATGAATATGCCCATGCTCCAAAGATA			
	TCGGGGC GCATGG CTG CCCC C <u>T</u> (BamHI)			
Cloning in pMV361-ApraR				
361- <i>whiB7</i> Fow	ACTTCGCAATGATGACCGTTGAAGTGGAG			
361-whiB7 Rev	CTAAGCGTAATCTGGAACATCGTATGGGTATGCCGCGGCGGTGTC			
	GGCGTC			
Cloning in pMV261 P ₁₂₃ tdTomato				
261-td <i>Tomato</i> Fow	GAGAGAGGATCCGTGAGCAAGGGCGAGGAG (BamHI)			
261-td <i>Tomato</i> Rev	GAGAGAAAGCTTCTACTTGTACAGCTCGTC (HindIII)			
Cloning in pUX1-katG				
erm(41)KO U F	GAGAGACAATTGCGCGATCTGCAGCCGTATATC (Mfel)			
erm(41)KO U B				
erm(41)KO D E	TGGTGCTGCGTCGTGTCCGGCCAACGGGTGCTGGTGATCAGGCG			
	GCGCTGA			
erm(41)KO D R	GAGAGA <u>GCTAGC</u> TGCACCAGAACGGCGCGT (Xbal)			
Sequencing				
pMV5' Ext	CGCCCGGCCAGCGTAAGTAGC			
lacZ intern Rev	GATACAGCGCGTCGTGATTA			
<i>erm(41)</i> Fow	ACGCCGAGGCCGAGCGCCGTCACA			
erm(41) Rev	CGCAGTATCGTTTCTCCAAAGGCC			

Table S2. PCR primers used in this study. Fow and Rev stand for forward and reverse, respectively.

^aRestriction sites are underlined and specified inside brackets.

^bMutagenized bases are shown in bold.

Tables S3. List of the plasmids used in this study.

Plasmids			
pTEC27	Multicopy <i>E. coli</i> /mycobacterial shuttle vector to express <i>tdTomato</i> under the control of a strong mycobacterial promoter	Hyg	Addgene (plasmid 30182)
pMV261	Multicopy <i>E. coli</i> /mycobacterial shuttle vector	Kan	(2)
pMV261_P _{hsp60} _lacZ	The <i>hsp60</i> promoter region is cloned upstream of <i>lacZ</i> into pMV261.	Kan	(3)
pMV261_P ₁₂₃ _ <i>lacZ</i>	The full intergenic region of <i>erm</i> (41) of 123 bp is cloned upstream of <i>lacZ</i> into pMV261.	Kan	This study
pMV261_P ₉₂ _lacZ	A truncated version of 92 bp of the <i>erm(41)</i> intergenic region is cloned upstream of <i>lacZ</i> into pMV261.	Kan	This study
pMV261_P ₆₁ _lacZ	A truncated version of 61 bp of the <i>erm(41)</i> intergenic region is cloned upstream of <i>lacZ</i> into pMV261.	Kan	This study
pMV261_P ₃₈ _lacZ	A truncated version of 38 bp of the <i>erm(41)</i> intergenic region is cloned upstream of <i>lacZ</i> into pMV261.	Kan	This study
pMV261_P _{61_Mut(B7)} _lacZ	A truncated version of 61 bp of the <i>erm(41)</i> intergenic region containing mutations in the <i>whiB7</i> binding site is cloned upstream of <i>lacZ</i> into pMV261.	Kan	This study
pMV261_P _{61_Mut(-35)_} lacZ	A truncated version of 61 bp of the <i>erm(41)</i> intergenic region containing mutation in the putative <i>erm(41)</i> -35 box is cloned upstream of <i>lacZ</i> into pMV261.	Kan	This study
pMV261_P _{61_Mut(B7/-35)} _lacZ	A truncated version of 61 bp of the <i>erm(41)</i> intergenic region containing mutation into the <i>whiB7</i> binding site and in the putative <i>erm(41)</i> -35 box is cloned upstream of <i>lacZ</i> into pMV261.	Kan	This study
pMV261_ <i>lacZ</i>	The <i>lacZ</i> reporter gene is cloned into a promoter-less pMV261.	Kan	(3)
pMV261_P _{MAB_4384} _lacZ	pMV261_ <i>lacZ</i> carrying the promoter region of <i>MAB_4384</i> cloned upstream of <i>lacZ</i>	Kan	(3)
pMV261_P ₁₂₃ _tdTomato	The red fluorescent marker td <i>Tomato</i> is cloned into the pMV261 under the control of the full/123bp <i>erm(41)</i> intergenic region.	Kan	This study
pMV361_whiB7	<i>whiB7</i> cloned into the integrative vector pMV361 under the control of the strong and constitutive <i>hsp60</i> promoter.	Apra	This study

Hyg, hygromycin; Kan, kanamycin; Apra, apramycin.

References

- 1. Singh S, Bouzinbi N, Chaturvedi V, Godreuil S, Kremer L. 2014. In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clin Microbiol Infect 20:O1124–O1127.
- 2. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF. 1991. New use of BCG for recombinant vaccines. Nature 351:456–460.
- 3. Richard M, Gutiérrez AV, Viljoen AJ, Ghigo E, Blaise M, Kremer L. 2018. Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus. Front Microbiol 9:649.

Figure S1. Macrolide-induced resistance profile of *M. abscessus* **CIP104536^T smooth (A) and rough (B) variants in different broth media.** MICs of the two morphotypes were assessed over a period of 14 days in CaMHB, Sauton's medium and Middlebrook 7H9-Glycerol broth. AMK was included as a non-related control drug.

Figure S2. Macrolide-induced resistance profile of clinical isolates in CaMHB. (A) Smooth *M. abscessus* clinical isolates. (B) Rough *M. abscessus* clinical isolates. (C) Smooth *M. bolletii* CIP108541^T. (D) Rough *M. massiliense* CIP108297^T. (E) Smooth *M. abscessus* CIP104536^T in which the *erm*(41) gene has been deleted by double homologous recombination using the suicide-vector pUX1-*katG*. AMK was included as a non-related control drug.

Figure S3. Unmarked deletion of the *erm(41)* **gene. (A)** Genomic environment of *erm(41)*. The L_*Fow/L_Rev* and the R_*Fow/R_Rev* primer sets were used to produce left and right arms, respectively, which were subsequently used to generate pUX1_*katG-erm(41)* to delete *erm(41)* by double homologous recombination. **(B)** 1 % agarose gel of the amplicons using the SEQ_Fow an SEQ_Rev primers. The expected sizes are: *M. abscessus* WT (1034 bp; lane 1), *M. abscessus* $\Delta erm(41)$ Clone 1 (509 bp; lane 2), *M. abscessus* $\Delta erm(41)$ Clone 2 (509 bp; lane 3) and *M. massiliense* WT (758 bp; lane 4). (*) GeneRulerTM 1 kb Plus DNA Ladder.