Residual dipolar couplings for resolving cysteine bridges in disulfide-rich peptides

Venkatraman Ramanujam^{1,2}, Yang Shen², Jinfa Ying², & Mehdi Mobli^{1*}

- 1. Centre for Advanced Imaging, The University of Queensland, St Lucia, 4072, Queensland, Australia
- 2. Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA

Correspondence: Mehdi Mobli, m.mobli@uq.edu.au

Figures

Figure S1. Purity of recombinantly produced Ta1a. Purified Ta1a elutes as single isoform at 16.4 min corresponding to 25.5% acetonitrile concentration in C3 semi-prep column.

[Pf1] = 4.0 r	ng/ml	\mathcal{M}	RQC	= 2.3 Hz
[Pf1] = 6.2 r	ng/ml	\mathcal{M}	RQC	= 3.1 Hz
[Pf1] = 6.6 r	mg/ml	\mathcal{M}	RQC	= 3.2 Hz
[Pf1] = 7 mg	g/ml	\mathcal{M}	RQC	= 4.3 Hz
[Pf1] = 7.5 r	mg/ml	\bigwedge	RQC	= 5.2 Hz
[Pf1] = 10 n	ng/ml		RQC	= 10.5 Hz
[Pf1] = 15 n	ng/ml		RQC	= 12.8 Hz
[Pf1] = 20 n	ng/ml	\bigwedge	RQC	C = 19.3 Hz
40	20	0	-20	-40
	2	H Frequency (Hz))	

Figure S2. Residual ²H quadrupolar coupling (RQC) as a function of Pf1 phage concentration in the sample containing ${}^{13}C/{}^{15}N$ labeled Ta1a in 20 mM phosphate buffer, 5% D₂O, pH 6.2 measured at 298K in 600 MHz. One dimensional ²H spectra of Ta1a sample at various Pf1 concentrations and its corresponding ²H splitting.

Figure S3. ¹H NMR spectrum, one-one echo sequence (Sklenář and Bax, 1987), of Ta1a aligned in different concentrations of Pf1 phage.

Figure S4. Optimization of PEG concentration for RDC measurements in Ta1a. (A) ²H spectra of uniformly ¹⁵N labeled Ta1a aligned in 5% and 8% PEG solution showing an RQC of 13.0 and 32.1 Hz respectively. (B&C) Scatter plot of correlation between experimental and structure based ¹D_{NH} in 5% and 8% PEG solution respectively. (D) Correlation plot of ¹D_{NH} observed for 5% and 8% PEG solution.

Figure S5 ¹H-¹⁵N steady state NOE for Ta1a at a field-strength of 900 MHz. Data were acquired at 25° C using a 200 μ M sample of ¹⁵N labeled Ta1a. The errors are a function of the S/N in the acquired spectra.

Tables

			¹ H free	quency /	MHz
Expt. No	Spectra	J-coupling type	Isotropic	Pf1	PEG
1	IPAP-HSQC	$^{1}J_{ m NH}$	900	600	600
2	HNCO	${}^{1}J_{C\alpha C'}$	600	600	600
3	CT-HN(CO)CA	$^{1}J_{\mathrm{C}lpha\mathrm{H}lpha}$	600	600	600
4	¹ H- ¹⁵ N TROSY	${}^1\!J_{ m NC'}$	600	600	600
5	CT-HN(COCA)CB	${}^{1}J_{C\beta H\beta 2} + {}^{1}J_{C\beta H\beta 3}$	700	600	-
6	HA[HB,HN](CACO)NH	$^{3}J_{ m Hlpha m Heta}$	700	-	-
7	HNHB	$^{3}J_{ m NHeta}$	900	-	-

Table S1. Summary of NMR spe	ectra recorded for Tala sample.
------------------------------	---------------------------------

Table S2. Experimental acquisition parameters for NMR experiments conducted. The ¹⁵N carrier frequency was set 116.5 ppm, the ¹³C α to 56 ppm, the ¹³C' to 177 and the C α -C β to 41. Where values deviate from these, these are provided in the Materials & Methods section of the manuscript. The number of samples refers to complex points, the number of increments is half of this value in traditional sampling.

		t1	t2	t3	Scans	Inter-scan	¹ H Freq.	
3D CT HNCA	Nucl	¹³ C	15N	¹ H		uelay (s)	(WITIZ)	
(isotropic &	Samples	202	110	2048	4	15	600 1	
anisotropic)	Aca (ms)	267	393	122.9	-	1.5	00011	
	Nucl.	¹⁵ N	¹ H	122.9				
2D IPAP-HSQC -	Samples	1600	2048		8	1.5	900.1	
isotropic	Acq. (ms)	336.0	94.6					
	Nucl.	¹⁵ N	¹ H				600.4	
2D IPAP-HSQC -	Samples	1000	1600		32	1.5		
anisotropic	Acq. (ms)	311.8	95.0					
3D CT-	Nucl.	¹³ C	¹⁵ N	¹ H				
HN(CO)CA -	Samples	200	110	2048	4	1.5	600.4	
isotropic	Acq. (ms)	28.0	39.3	122.9				
3D CT-	Nucl.	¹³ C	¹⁵ N	¹ H				
HN(CO)CA –	Samples	166	110	2048	8	1.5	600.4	
anisotropic (Pf1)	Acq. (ms)	23.2	39.3	122.9				
3D CT-	Nucl.	¹³ C	¹⁵ N	¹ H				
HN(CO)CA –	Samples	200	110	2048	8	1.5	600.4	
anisotropic (PEG)	Acq. (ms)	28.0	39.3	122.9				
3D CT-HNCO –	Nucl.	¹³ C	¹⁵ N	¹ H		1.5		
anisotropic	Samples	280	116	2048	4		600.4	
	Acq. (ms)	102.8	41.4	127.8				
3D CT-HNCO –	Nucl.	¹⁵ C	¹³ N	¹ H	-	1.5	600.4	
isotropic	Samples	3192	NUS	2048	4	1.5	600.4	
	Acq. (ms)	102.8	41.4	127.8				
3D CI-	Nucl.	¹⁵ C	¹⁵ N	¹ H 2049	-	1.35	700.2	
HN(COCA)CB -	Samples	26.0	90	2048			/00.2	
	Acq. (ms)	20.9	27.3 15NI	112.0				
3DCI-	Nuci.	524		⁻ П 2048	Q	1.5	600.1	
anisotronic (Pfl)	Aca (ms)	26.7	113	136.5	0	1.5	000.1	
	Nucl	15N	$^{11.5}$	¹ H				
3D HA[HB,HN]	Samples	56	270	2048	8	1.5	700.2	
(CACO)NH	Aca (ms)	17.1	203	112.6	0	1.5	700.2	
	Nucl	¹⁵ N	¹ H	¹ H				
3D HNHB	Samples	40	128	2048	16	1.5	900.1	
	Acq. (ms)	6.1	7.1	81.1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2D ¹⁵ N-HSOC	Nucl.	¹⁵ N	¹ H	-				
(Heteronuclear	Samples	200	2048		32	4	900.1	
NOE)	Acq. (ms)	43.8	81.9					
	Nucl.	$^{1}\mathrm{H}$	¹³ C	¹ H				
NOESV	Samples	112	56	2048	8	1	900.1	
NUESY	Acq. (ms)	5.4	1.5	75.8				
15N HSOC	Nucl.	¹⁵ N	$^{1}\mathrm{H}$	¹ H		1.5 900		
NOESY	Samples	136	80	2048	16		900.1	
	Acq. (ms)	6.3	15.7	75.8				

			$^{3}J_{ m HlphaHeta2}$		$^{3}J_{\mathrm{H}lpha\mathrm{H}eta\mathrm{3}}$			
	AA	$^{3}J_{\mathrm{H}lpha\mathrm{H}eta2}$	upl ^a	$^{3}J_{\mathrm{H}\alpha\mathrm{H}\beta3}$	upl ^a	$^{3}J_{\text{N-H}\beta2}$	$^{3}J_{\text{N-H}\beta3}$	χ1
Res [#]	type	Hz	Hz	Hz	Hz	Hz	Hz	deg
1	SER ^b	6.96	7.04	n.d ^c	4.78	d	_	average
2	GLU ^b	_	_	_	_	medium	medium	average
3	PRO ^b	6.96	6.98	6.33	6.62	_	_	average
4	ASP ^b	6.39	6.42	5.50	5.64	large	small	average
5	GLU ^e	8.64	8.64	n.c ^f	n.c	$n.q^{\mathrm{f}}$	n.q	n.c
7	CYS ^b	8.27	8.37	6.73	6.89	medium	medium	average
8	ARG b	7.93	7.99	5.63	5.89	medium	medium	average
10	ARG b	8.33	8.42	n.d	3.69	n.a ^g	n.a	average
11	MET b	5.78	5.96	n.d	3.96	medium	medium	average
13	HIS ^e	8.81	9.06	n.c	n.c	n.q	n.q	n.c
14	LYS ^b	7.22	7.39	6.49	6.51	medium	medium	average
15	GLU b	7.57	7.61	6.67	6.71	medium	medium	average
16	PHE	n.d	4.54	10.81	10.84	small	small	180°
17	ASN	9.18	9.21	n.c	n.c	n.q	n.q	n.c
18	TYR	n.d	4.21	10.12	10.12	small	small	180°
19	LYS	11.03	11.20	n.d	4.84	small	large	-60°
20	SER ^b	n.d	5.22	n.d	5.22	medium	medium	average
21	ASN ^b	8.09	8.25	6.44	6.50	medium	medium	average
23	CYS	11.27	11.28	n.d	4.80	small	large	-60°
24	ASN ^e	8.42	8.48	n.c	n.c	n.q	n.q	n.c
26	CYS	n.d	4.04	9.46	9.48	small	small	180°

Table S3. χ 1 classification using *J*-couplings for β -methylene protons containing residues in Ta1a.

28	ASP ^b	6.42	6.70	n.d	3.50	medium	medium	average
29	GLN	10.73	10.77	n.d	4.32	small	large	-60°
33	CYS	n.d	4.78	10.57	10.63	small	small	180°
34	GLU	9.49	9.71	4.01	4.01	small	large	-60°
36	GLU	9.23	9.31	n.d	5.30	small	large	-60°
37	CYS ^b	7.54	7.59	n.d	5.37	small	small	average
38	PHE	10.91	11.27	n.d	5.59	small	large	-60°
39	ARG							
57	e	8.32	8.42	n.c	n.c	n.q	n.q	n.c
40	ASN	4.52	4.80	3.48	3.70	large	small	60°
41	ASP	10.37	10.48	4.86	5.11	small	large	-60°
43	TYR	4.75	5.13	10.83	11.02	small	small	180°
46	CYS	10.31	10.32	n.d	3.83	small	large	-60°
47	HIS	5.59	5.92	10.92	11.05	small	small	180°
48	GLU ^e	9.20	9.27	n.c	n.c	n.q	n.q	n.c
50	GLN	8.69	8.75	4.18	4.21	small	large	-60°
51	LYS ^b	_	_	_	_	medium	medium	average

^acalculated from the lowest contour level without seeing a peak; ^bstereospecific designations not meaningful; ^cnot detected. i.e. below the signal-to-noise threshold; ^dcouplings involving resonances non-observable; ^eresidues with degenerate $H_{\beta2}/H_{\beta3}$ chemical shifts; ^fnot calculated (or not qualitatively assigned) due to overlap of $H_{\beta2}$ and $H_{\beta3}$ chemical shifts; ^gnot measured due to overlap of the diagonal signal.

			$^{3}J_{\mathrm{H}\alpha\mathrm{H}\beta}$	
Res [#]	AA type	$^{3}J_{\mathrm{H}\alpha\mathrm{H}\beta}/\mathrm{Hz}$	upl ^a / Hz	$\chi_1 \ /(deg)$
6	ILE	8.21	8.32	average
12	THR	$n.d^b$	6.22	average
22	VAL	9.72	9.80	180°
30	VAL	7.18	7.29	average
42	VAL	10.63	10.68	180°
44	THR	8.29	8.34	-60°

Table S4 Classification of χ_1 torsion angles for β -methine proton containing residues in Ta1a.

^acalculated from the lowest contour level without seeing a peak; ^bnot detected. i.e. below the signal-to-noise threshold.

Res [#]	AA type	$d_{\alpha\beta2}(i,i)$	$d_{\alpha\beta3}(i,i)$	$d_{N\beta 2}(i,i)$	d _{Nβ3} (i,i)	χ1 (deg)
1	SER ^a	strong	weak		_	n.c ^e
2	GLU ^a	strong	weak	n.d ^d	n.d	n.c
3	PRO ^a	strong	weak	_	_	n.c
4	ASP ^a	strong	strong	strong	medium	average
5	GLU ^b	n.q ^e	n.q	n.q	n.q	n.c
7	CYS ^a	strong	strong	strong	strong	average
8	ARG ^a	weak	strong	medium	strong	average
10	ARG ^a	strong	weak	strong	weak	average
11	M ET ^a	strong	strong	strong	weak	average
13	HIS ^b	n.q	n.q	n.d	n.d	n.c
14	LYS ^a	weak	strong	strong	strong	average
15	GLU ^a	strong	strong	strong	strong	average
16	PHE	strong	weak	strong	strong	180°
17	ASN ^b	n.q	n.q	n.q	n.q	n.c
18	TYR	strong	weak	strong	strong	180°
19	LYS	weak	strong	strong	weak	-60°
20	SER ^a	strong	weak	weak	strong	average
21	ASN ^a	strong	weak	strong	weak	average
23	CYS	weak	strong	strong	weak	-60°
24	ASN ^b	n.q	n.q	n.q	n.q	n.c
26	CYS	strong	weak	strong	medium	180°
28	ASP ^a	strong	strong	medium	strong	average
29	GLN	weak	strong	strong	medium	-60°
33	CYS	strong	weak	strong	strong	180°
34	GLU	weak	strong	strong	weak	-60°
36	GLU	weak	strong	weak	strong	average

Table S5 $\chi 1$ Classification using ¹H-¹H NOEs for β -methylene protons in Ta1a.

37	CYS ^a	strong	strong	medium	strong	average
38	PHE	weak	strong	weak	strong	average
39	ARG ^b	n.q	n.q	n.q	n.q	n.c
40	ASN	strong	strong	medium	strong	60°
41	ASP	weak	strong	medium	strong	average
43	TYR	strong	weak	medium	strong	180°
46	CYS	weak	strong	strong	weak	-60°
47	HIS	strong	weak	medium	strong	180°
48	GLU ^b	n.q	n.q	n.q	n.q	n.q
50	GLN	weak	strong	strong	weak	-60°
51	LYS ^a	weak	strong	weak	strong	average

^astereospecific designations not meaningful; ^bresidues with degenerate $H_{\beta 2}/H_{\beta 3}$ chemical shifts; ^ccouplings involving resonances non-observable; ^dnot detected; ^enot calculated (or peak quality not qualitatively assigned) due to peak overlap.

Table S6 Estimation of χ_1 angles from one-bond dipolar couplings. The sum of the C_β–H_{β2} and C_β– H_{β3} residual dipolar couplings (RDCs) are compared to sums of pairs of backbone RDCs. Close agreement indicates

	$\chi_{1} \sim 180^{\circ}$	$\chi_l\sim 60^\circ$	$\chi_1 \sim -60^\circ$		
	$D_{C\alpha H\alpha} + D_{(C\alpha C')}^{b}$	$D_{C\alpha H\alpha} \!$	$D_{(C\alpha C')}{}^b + D_{(C\alpha C')}{}^{a,b}$	ΣD _{СβНβ}	χ_{I}^{c}
Residue	(Hz)	(Hz)	(Hz)	(Hz)	(deg)
Phe-16	3.35	49.50	30.38	-2.40	180°
Cys-26	13.92	-9.83	77.46	26.75	180°
Asn-40	-59.52	26.65	18.77	26.15	60°
Tyr-43	-56.73	1.96	-3.73	-58.69	180°
His-47	-54.36	14.81	-3.63	-56.60	180°
1				1	1

^aobtained from the $D_{C'C\alpha}$ of the preceding residue; ^bvalues normalized to $D_{C\alpha H\alpha}$ by multiplication by 10.37; ^cestimated by comparing the $\Sigma D_{C\beta H\beta}$ to backbone $D_{C'C\alpha}$ and $D_{C\alpha H\alpha}$.

	Original structure	Refined structure
Experimental restraints		
Distance restraints (CYANA)		
Short-range (i-j<=1)	349	350
Medium-range (1 <i-j<5)< td=""><td>137</td><td>143</td></i-j<5)<>	137	143
Long-range (i-j>=5)	88	85
Dihedral angle restraints	93	99
Disulfide-bond restraints	9	9
RDC restraints		
¹ D _{NH}	-	96
$^{1}D_{C\alpha H\alpha}$	-	96
¹ D _{NC}	-	88
$^{1}D_{C\alpha C'}$	-	95
$^{1}D_{(C\beta H\beta 2+C\beta H\beta 3)}$	-	37
Total number of restraints per residue	13.3	21.7
Q-factor ^{Pf1}	0.39	0.08
Q-factor ^{PEG}	0.58	0.21
RMSD from mean structure in Å		
(residues from 4 helices used and given in brackets)		
Backbone atoms (5-10, 13-24, 30-35, 41-49)	0.41	0.24
All heavy atoms (5-10, 13-24, 30-35, 41-49)	1.71	1.63

Table S8 Classification of disulfide bonds in conformational categories (Schmidt et al., 2006) fromNOE-derived structure of Ta1a.

Ensemble	Disulfide conformation ^b				
structures ^a	Cys ₇ -Cys ₃₇	Cys ₂₃ -Cys ₃₃	Cys ₂₆ -Cys ₄₆		
Model 1	-RHHook	-LHSpiral	+/-RHSpiral		
Model 2	-RHHook	-LHSpiral	+/-RHSpiral		
Model 3	-RHHook	+/-LHSpiral	+/-RHSpiral		
Model 4	-RHStaple	+/-LHSpiral	+/-RHSpiral		
Model 5	-LHSpiral	+/-LHSpiral	+/-RHSpiral		
Model 6	-RHStaple	-LHSpiral	+/-RHSpiral		
Model 7	-LHSpiral	-LHSpiral	+/-RHSpiral		
Model 8	-RHStaple	+/-LHSpiral	+/-RHSpiral		
Model 9	-RHHook	-LHSpiral	+/-RHSpiral		
Model 10	-RHStaple	-LHSpiral	+/-RHSpiral		
Model 11	-RHHook	+/-LHSpiral	+/-RHSpiral		
Model 12	-RHStaple	-LHSpiral	+/-RHSpiral		
Model 13	-RHHook	+/-LHSpiral	+/-RHSpiral		
Model 14	-LHSpiral	+/-LHSpiral	+/-RHSpiral		
Model 15	-LHSpiral	-LHSpiral	+/-RHSpiral		
Model 16	-RHHook	-LHSpiral	+/-RHSpiral		
Model 17	-RHHook	-LHSpiral	+/-RHSpiral		
Model 18	-RHHook	-LHSpiral	+/-RHSpiral		
Model 19	-LHSpiral	+/-LHSpiral	+/-RHSpiral		
Model 20	-RHStaple	-LHSpiral	+/-RHSpiral		
Model 21	-LHSpiral	+/-LHSpiral	+/-RHSpiral		
Model 22	-LHSpiral	-LHSpiral	+/-RHSpiral		
Model 23	-RHHook	-LHSpiral	+/-RHSpiral		
Model 24	-RHHook	-LHSpiral	+/-RHSpiral		

Model 25	-RHStaple	-LHSpiral	+/-RHSpiral

^aNOE-derived structure (PDB: 2KSL); ^bLH:Left handed oriented; RH:Right handed oriented; -:Negative value for the respective dihedral angle; +:Positive value for the respective dihedral angle.

Reference

- Schmidt, B., Ho, L., and Hogg, P.J. (2006). Allosteric disulfide bonds. *Biochemistry* 45(24), 7429-7433. doi: 10.1021/bi0603064.
- Sklenář, V., and Bax, A. (1987). Spin-echo water suppression for the generation of pure-phase twodimensional NMR spectra. J Magn Reson (1969) 74(3), 469-479. doi: 10.1016/0022-2364(87)90269-1.