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1. Introduction 

These supplementary materials provide supporting data for the article ‘Do more 

intelligent brains retain heighted plasticity for longer in development? A 

computational investigation’ by M. S. C. Thomas. Section 2 covers additional 

findings for the model, while Section 3 provides additional detail about the design of 

the model, the derivation of its parameters, the calibration of the range of variation of 

the parameters, and the encoding of the parameters in the artificial genome. 
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2. Additional results 

2.1 Simulated interaction of the heritability of cognitive ability and socio-

economic status 

 

Figure S1 (a): Interaction of the quality of the environment (implementing the effects 

of variations of socio-economic status) with the heritability of behavior, for the 

genetic-wide / environment-wide population; (b) relationship between quality of the 

environment and total number of connections in the network. Both measures are 

reported for regular verbs at 500 epochs of training (data from Thomas & Coecke, in 

prep.) 
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It has been reported that the heritability of intelligence is reduced in individuals from 

low SES background (Turkheimer et al., 2003; though see Hanscombe et al., 2012). 

In the genetic-wide / environmental narrow population, where all environments were 

sampled in the range 0.6 to 1 (where the possible range was 0 to 1), there was little 

influence of SES on heritability. In the genetic-wide / environment-wide population, 

environments could be much more impoverished. Figure S1(a) shows MZ versus DZ 

correlations split by quartiles of SES (number of twin pairs per group: lower = 55, 

lower-mid=66, upper-mid=67, higher=61). The reduction in heritability is clearest in 

the lower quartile, with an attendant increase in shared environment. Therefore, the 

modulation of heritability by SES was dependent on the absolute level of stimulation 

from the training environment. Noble et al. (2015) reported effects of SES on cortical 

surface area. The association with income was reliable but non-linear, such that the 

steepest gradient was present at the lower end of the income spectrum, and the effect 

sizes of the relationships were 1-2% of the variance. Figure S1(b) plots the total 
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number of connections in each network against SES for the genetic-wide / 

environment-wide condition. A non-linear relationship is also demonstrated, 

accounting for around 2% of the variance in structure. 
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2.2 Population mean developmental trajectories for behavior, total network 

connections, and total connection magnitude, for the four populations 

 

Figure S2. Population means for behavior (regular verbs), and the two network 

structure indices of total connection number and total connection magnitude, for the 

four populations in the 2x2 design across the full lifespan of development (1000 

epochs of training). 
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2.3 Average connection strength in high ability and low ability networks across 

development 

Low ability networks tended to have stronger connection weights. This disparity was 

not present at the start of training but emerged, as networks with fewer 

representational resources attempted to learn equivalent input-output mapping sets. 

 
 

 
Figure S3: Average connection strength (total connection magnitude divided by total 

connection number) for high ability networks and low ability networks across 

development for the genetic-wide / environment-narrow population. Error bars show 

standard deviations. (Main effect of Ability, F(1,998)=29.91, p<.001, ηp
2=.029; main 

effect of Development (quadratic) F(1,998)=2545.43, p<.001, ηp
2=.718; interaction of 

Ability x Development, F(1,998)=28.83, p<.001, ηp
2=.028). 
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2.4 Mean performance trajectories of high ability and low ability groups early in 

development 

 

Figure S4: Accuracy differences between high ability and low ability networks in the 

first 100 epochs of training, for the genetic-wide / environment-narrow population.  

 

 

These data demonstrate that accuracy differences between high and low ability 

networks emerge very early in development. They are already present during the first 

100 epochs of training prior to the time 1 measure of heritability. 
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2.5 MZ-DZ correlation differences for the four populations using a more 

environmentally sensitive measure of ability 

 

Figure S5: The difference between MZ and DZ correlations across development, 

using untransformed performance on irregular verbs at epoch 50. This measure is 

normally distributed and discriminating between individuals, but is sensitive to 

variations in environmental quality. Data are shown for the 2x2 design. 

 

 

The main impact of using untransformed irregular verb performance is to reduce the 

heritability of high ability groups in the conditions with narrow environmental 

variation. This is because formerly, ability was determined by the ‘culture-fair’ 

measure removing environmental influence, and therefore mainly determined by 

internal neurocomputational properties. With the untransformed measure, high ability 

is more dependent on how good the environment is, hence reducing heritability. The 

correlation of environmental quality for the ‘culture-fair’ ability measure was: 
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GWEN=-.004; GWEW=-.032; GNEN=.023; GNEW=-.032. For the more 

environmentally sensitive measure, it was GWEN=.113 ; GWEW=.450; GNEN=.178; 

GNEW=.455. 
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2.6 MZ-DZ correlation differences for the four populations across development 

for total network connections, and total connection magnitude 

 

Figure S6: MZ-DZ twin correlation difference, proportional to heritability, for the two 

indices of network structure, total connection number and total connection magnitude, 

across development for the 2x2 design. 

 

 

 

Total connection number shows an initial rise in heritability, followed by a fall during 

pruning (where the richness of the environment influences how many connections are 

lost), followed by a plateau. Magnitude shows increasing heritability across 

development. 
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Figure S7: MZ-DZ twin correlation difference across development for the genetic-

wide / environment-narrow condition, for the two structural indices, split into high 

and low ability groups. (a) Total connections. (b) Total magnitude. Ability group is 

defined using the ‘culture-fair’ measure. 

 

(a) Total connections 

 

(b) Connection magnitude 
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Connection magnitude (strength gain) indicated higher heritability for the high ability 

group, while connection number (connection loss) indicated higher heritability for the 

low ability group. 
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2.7 Correlation between behavior, structural measures, environmental quality, 

and timing of plasticity changes for the four simulated populations 

 

Table S1: Pearson correlation between behavior, structural measures, environmental 

quality, and timing of plasticity changes for the four simulated populations 

experiencing different relative range of variation of genetic and environmental 

factors. Correlations were computed at the mid point in development (500 epochs of 

training). Perf = performance accuracy on regular verbs; CoN = total number of 

network connections; CoM = total magnitude of network connections; Env = quality 

of the training environment; Prn = timing onset of connection pruning / reduction in 

plasticity. 

 

G
en

et
ic

 v
ar

ia
tio

n 

  Environmental variation 

  Narrow  Wide 

  CoN CoM Env Prn   CoN CoM Env Prn 

N
ar

ro
w

 

Perf .348** .116** .562** .070*  Perf .241** .457** .850** .054 

CoN  .584** .059 .069*  CoN  .691** .200** .061 

CoM   -.031 .056  CoM   .496** .056 

Env    .005  Env    .059 

            

W
id

e 

Perf .157** .136** .143** .024  Perf .105** .257** .774* .014 

CoN  .613** -.022 .296**  CoN  .653* .049 .303** 

CoM   .049 .063*  CoM   .234** .084** 

Env    .035  Env    .006 

*  p<.05 2-tailed 

** p<.01 2-tailed 
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Pruning onset didn’t explain much of the variance in performance. Correlations 

between structural indices were stronger than between structural indices and behavior. 

Environment quality explained more of the variance in behavior than in the structural 

indices. Effect sizes for the implemented SES effect on behavior ranged from 2.04% 

of the variance in the genetic-wide / environment-narrow condition to 72.25% of the 

variance in the genetic-narrow / environment-wide condition. Effect sizes for the 

implemented SES effect on structure ranged from .05% of the variance in the genetic-

wide / environment-narrow condition to 24.60% of the variance in the genetic-narrow 

/ environment-wide condition. 
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3. The base model 

These simulations explored a population of networks acquiring the past tense domain, 

where individual variability was included both in the parameters of the artificial 

neural networks which modeled the children’s learning systems, and the learning 

environment to which they were exposed. The parameters of the artificial neural 

networks were encoded in an artificial genome. Population variability in parameters 

was created by generating and breeding populations of artificial genomes. Each 

genome was realized as a parameterized network. The network was exposed to an 

individualized learning environment, generating a trajectory of behavioral 

development. The inclusion of an artificial genome level in the simulations allowed 

two avenues of exploration. First, it permitted us to study the associations that can 

arise between values on the artificial genome and behavioral variability that is the 

product of an implemented developmental process (see Figure 2). These results are 

considered in Thomas, Forrester & Ronald (2015). Second, it allowed us to generate 

individuals with different levels of genetic similarity, such as parents, siblings, 

monozygotic (identical) twins, and dizygotic (fraternal twins); siblings could be 

exposed to a shared family learning environment, unique learning events, or a 

combination of the two. Measurements of the similarity of behavior between related 

individuals then permitted the simulation of behavior genetic designs, such as twin 

studies. The simulations therefore provided a framework to study heritability of 

behavior within a developmental framework. 
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Figure S8: Schematic of the population modeling simulations 

 

 

 

 

 

 

 

 

This document outlines the computational parameters that varied in the artificial 

neural networks. It details how the range of variation for each parameter in the 

population was established. It then describes the method for designing the artificial 

genome, and the assumptions that this method embodies. The details of the breeding 

process are described. Finally, a set of lookup tables is included detailing how values 

on the artificial genome were mapped to computational parameter values in the 

artificial neural networks. Two sets of tables are included, one that specifies a wide 

range of computational parameter variation in the population, a second that specifies a 

relatively narrow range of variation. By combining these with training sets that also 

can vary widely or narrowly in quality, the relative contributions of internal versus 

external influences on individual differences in behavior can be gauged. 

 

3.1 Model architecture and parameters  

The original connectionist model employed a three-layer artificial neural network, 

comprising an input layer, a layer of internal or ‘hidden’ units, and an output layer. It 

was trained using the backpropagation algorithm (Rumelhart, Hinton, & Williams, 
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1986), a type of supervised learning. The free parameters in the model were the 

number of hidden units, the learning rate, and the momentum (see below). An 

expanded set of 14 parameters was employed in the current simulations, in many 

cases to allow for additional analogues to known neurocomputational properties. 

However, backpropagation itself is not viewed as fully biologically plausible. We use 

it here in place of a more biologically plausible error-correction algorithm (see 

Thomas & McClelland, 2008, for discussion). An introduction to the idea that 

parameters in connectionist models can explain types of cognitive variability can be 

found in Thomas and Karmiloff-Smith, 2003a). The parameters and model 

architecture are depicted schematically in Figure S9. 
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Figure S9: Architecture of the connectionist model of English past-tense acquisition, 

showing the internal parameters that varied in the population. 
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The parameters were as follows: 

Building the network: 

- Architecture: In addition to the 3-layer network, a 2-layer network without a layer 

of hidden units, and a fully connected network were used. A 2-layer network has 

less computational power than a 3-layer network but learns more quickly. A fully 

connected network contains both direct connections from input to output and a 

hidden layer, and produces a computationally more powerful system. Networks 

could therefore have 1, 2, or 3 layers of connection weights. Previous connectionist 

models have proposed single or multiple pathways may be available to connect 

input and output (e.g., Westermann, 1998; Zorzi, Houghton & Butterworth, 1998), 

and that differential use of routes may explain individual differences in behavior 

(Harm & Seidenberg, 2004; Plaut, 1997; Thomas & Karmiloff-Smith, 2002). 

Recent functional brain imaging of reading lend support to this proposal (e.g., 

Richardson et al., 2011; Seghier et al., 2008).  

- Hidden units: For networks with a hidden unit layer, the number of hidden units 

could vary. Variations of the number of hidden units have been proposed to 

account for developmental deficits such as dyslexia (e.g., Harm & Seidenberg, 

1999) and autism (e.g., Cohen, 1998), as well as individual differences 

(Richardson et al., 2006a, b). We did not vary the number of hidden layers. More 

hidden units within a layer increases computational power and the rate of learning, 

while more layers of hidden units increases computational power but slows down 

learning, since error must be propagated from the output more deeply into the 

network to improve learning (see Richardson et al., 2006a,b, for a comparison of 

these conditions). 
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- Sparseness: The architecture determined how many layers of connection weights 

existed. Of the potential connections in a layer, only a certain proportion was 

created. The sparseness parameter set the probability that any given connection 

would be created. Greater connectivity increases computational power, but can 

lead to slower learning. Under some conditions, it can also lead to poorer 

generalization, since greater integration of information causes more item-specific 

and context-specific learning (see McClelland, 2000, for a proposal that 

conjunctive coding may cause autistic symptoms; and conversely, Beversdorf, 

Narayanan & Hughes, 2007, for a proposal that the symptoms arise from sparse 

connectivity). 

- Weight variance: Connection weights were assigned an initial random value within 

a range depending on this parameter. E.g., if set to 0.5, weights would be 

randomized between +/- 0.5. Large initial weights take time to unlearn, which 

slows learning (an effect known as entrenchment; see Munakata & McClelland, 

2003, for discussion). 

 

Processing dynamics: 

- Processing noise: The net activation a receiving unit receives from a given sending 

unit is a product of the sending unit’s activation and the connection strength 

between them. Transmission noise was added to this net activation. Gaussian noise 

was used and the parameter specified the standard deviation of the noise 

distribution around zero. Noise has been used to simulate under-specified 

representations in development (e.g., to simulate Specific Language Impairment: 

Joanisse & Seidenberg, 2003; or as a candidate explanation of autistic symptoms: 
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Simmons et al., 2007), and has also been proposed as an essential primitive in 

neural processing (McClelland, 1993). 

- Unit threshold function: A receiving unit sums the net activation from all sending 

units and uses an activation function to determine its consequent output. We used a 

common non-linear activation function, the sigmoid or logistic function, equivalent 

to a smoothed threshold. This function has a free parameter, the ‘temperature’, 

which makes the smoothed threshold either steeper or shallower. The activation 

function was: 

€ 

Output =
1

1+ e− temperature× netinput+bias( )  

where netinput is the summed activation to a unit, bias is the negative of the unit’s 

threshold, and Output is the unit’s activation state in response to this input. A 

shallow function (low temperature) denies a unit the opportunity to make large 

output changes in response to small changes in net input, whereas a steep function 

(high temperature) approximates a non-smoothed threshold, thereby producing a 

unit with binary response characteristics. Variations in the slope of the sigmoid 

function have been proposed as candidate explanations of disorders such as 

specific language impairment (Thomas, 2005) and schizophrenia (Cohen & 

Servan-Schreiber, 1992), as well as ageing (Li & Lindenberger, 1999). Changes to 

the slope of the sigmoid have a number of effects on learning. A shallow slope 

means that processing units are less sensitive to small differences in their input. 

This poor discriminability means they will be slow to learn categorizations that 

rely on small distinctions in the input. Secondly, in the backpropagation algorithm, 

weight update for a given error signal is proportional to the slope on the sigmoid 

(the differential of the function). If the function resembles a gentle S-shape, then 

the slope across the range of unit activations will be small. A shallow sigmoid will 
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lead directly to slower learning. Conversely, if the temperature is very high, 

producing a sigmoid similar to a step function, for most inputs to a unit, it will be 

jammed on or off (‘saturated’) rather than in its dynamic range. When a unit is 

saturated, the slope on the sigmoid function is flatter (the regions below or above 

the step). When it is in its dynamic range it is steep (the step). If a unit is 

predominantly saturated due to a high temperature, the flat slope will again lead to 

small weight changes for a given error signal and therefore slow learning. Finally, 

units with high temperatures flip between being saturated on or off. They are 

therefore ill suited to learning mappings requiring graduations of activation states. 

In sum, temperatures that are either too high or too low can delay learning. 

 

Network maintenance: 

- Connection weight decay: each connection’s magnitude was reduced by a small 

proportion on each presentation of a training pattern, according to the weight decay 

parameter. The approximate range of weight decay values was derived by 

estimating a percentage of weight value that could plausibly be lost overall all of 

training (e.g., 50%), and then dividing this proportion by the number of training 

epochs (e.g., 1000) and the number of training patterns presented on each epoch 

(e.g., 508), to give a proportional reduction in the connection weights to be applied 

on each pattern presentation (e.g., 0.5/1000/508=9.84 x 10-7). To our knowledge, 

weight decay has not been used as a candidate mechanism to explain individual 

variability. 

- We did not simulate the increase in synaptic density observed in human cortex 

during infancy and early childhood, instead simulating the outcome of this process 

through variations in the sparseness of connectivity; we did, however, 
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implemented the pruning of spare resources from mid-childhood (Huttenlocher, 

2002). The pruning process eliminated small connection weights. Variations in 

pruning have been proposed as an explanation of autistic symptoms, and 

specifically developmental regression (Thomas, Knowland & Karmiloff-Smith, 

2011). The pruning process involved three parameters: onset, threshold, and 

probability: 

- Connection pruning – onset: Connections that were not being used were 

probabilistically pruned away after a certain point in training. The onset parameter 

determined the point in training when pruning began (see Thomas & Johnson, 

2006, for simulations of pruning applied to sensitive periods in plasticity). 

- Connection pruning – threshold: Connections stood a chance of being pruned after 

onset only if their magnitude fell below a threshold determined by this parameter. 

The rationale is that small weights are assumed not to transmit strong activations 

and therefore not to be playing a key role in computations. They may therefore be 

removed to save on resources. 

- Connection pruning – probability: If the magnitude of a connection fell below 

threshold after pruning had begun, it was eliminated probabilistically based on this 

parameter. High probability leads to faster loss of unused connections. Low 

probability leads to slower loss. 

 

Network adaptation: 

- Learning algorithm error measure: The backpropagation algorithm was used with 

two different metrics to determine the error signal marking the disparity between 

the network’s current output and its intended target. These were Euclidean distance 

and cross-entropy (Hinton, 1989). The Euclidean distance metric produces less 
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weight change for a unit when it is committed to an erroneous response than the 

cross-entropy measure. That is, when a unit is stuck on in a saturated state but the 

learning algorithm requires it to be off, or vice versa, cross-entropy will lead to 

faster changes to its weights to change its activation state than Euclidean distance. 

Under some conditions, cross-entropy can therefore be a more plastic learning 

algorithm, leading to faster learning and higher ceiling performance.  

- Learning rate: This parameter determined how much the connection weights were 

altered in response to a certain disparity between output and target during 

supervised learning. A large learning rate produces a system that learns more 

quickly but that also may be unstable, flipping between good performance on 

different parts of the problem domain. Differences in learning rate have been 

proposed as explanations of individual differences in cognitive ability (Richardson 

et al., 2006a,b) and general intelligence (Garlick, 2002), as well as developmental 

deficits (e.g., dyslexia; Harm & Seidenberg, 1999). 

- Momentum: This parameter allowed some proportion of the weight change on the 

previous learning trial to be carried over. It serves a smoothing function to prevent 

learning from getting stuck in local, sub-optimal solutions. While a parameter 

often varied in connectionist models of development, it has not to our knowledge 

been used as a candidate explanation for individual differences in learning. 

 

Network response: 

- Nearest neighbor threshold: Network output comprised a vector of continuous 

activation values between 0 and 1, while legal responses of the network were 

binary vectors. An algorithm determined which legal phoneme was closest to the 

activation patterns at onset, nucleus, and coda. However, the phoneme was only 
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recognized as a response if the activation was sufficiently close to the legal 

phoneme (using a root mean square or RMS measure). This was determined by the 

nearest neighbor threshold. (The legal phonemes could of course still be the 

incorrect ones for the target verb). The nearest neighbor computation may be 

viewed as equivalent to the settling of an unimplemented recurrent attractor 

network into a particular response state (see Plaut et al., 1996, for a model of 

reading development in which this attractor network was implemented). The 

nearest neighbor threshold parameter then indexes the efficiency of this attractor 

network to generate a response within some notional deadline. A high threshold 

allows an approximate output to be recognized as correct (i.e., larger error is 

tolerated); a low threshold requires a more exact initial output. The use of a nearest 

neighbor algorithm allowed the network to generate accuracy levels. Differences in 

the functioning of the attractor network (sometimes called ‘clean-up’ units) have 

been proposed as a candidate explanation of developmental deficits (e.g., dyslexia; 

Harm & & Seidenberg, 1999). 

 

3.2 Calibrating parametric variation 

Calibration was carried out to establish the full range of variation for each parameter 

over which the artificial neural network exhibited some degree of learning. In general, 

the network was fairly robust to variation in its parameters, as illustrated in Appendix 

A. 

Two of the network parameters were categorical: the architecture and learning 

algorithm metric. The others were continuously valued. In order to produce variability 

in the population according to these remaining parameters, they were calibrated as 

follows. An initial ‘normal’ set of parameters was defined. These were estimated 
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based on previous research. Each of the continuously valued parameters was then 

varied in turn, holding the all other parameters at their initial values. For each 

parameter, the range was derived that produced failure of learning up to highly 

successful learning. In some cases, parameters had a monotonic relationship to 

performance (e.g., hidden units, where more was better); in other cases, there was an 

optimal intermediate value (e.g., activation function). The functions linking a given 

parameter and behavioral outcomes, with all other parameters held constant, are 

included in Appendix A. The aim was to determine an average or adequate value for 

each parameter, which was defined heuristically as ‘just enough to succeed and then a 

little bit more’. Values were then derived that would cause increasingly poorer or 

increasingly better performance around this value. We attempted to make poorer and 

better performance roughly symmetrical around average performance for each 

parameter. This caused some parameter ranges to be skewed. For example, 50 hidden 

units was determined as the average value in a 3-layer network. Values of 40 or 30 

would cause poorer performance. However, to achieve equivalent differences above 

average level, 100 or 200 hidden units might be necessary. We chose to emphasize 

behavioral symmetry around the average parameter value rather than parametric 

symmetry, on the grounds that the symmetrical bell curve is a common pattern 

observed in human abilities. The ranges for each parameter for the phonology-to-

phonology network are included in Figure S10. 

We chose not to vary the input and output coding scheme. Our previous work 

suggests that, within certain limits, varying the problem encoding has similar effects 

on the developmental trajectory to altering computational parameters (Thomas & 

Karmiloff-Smith, 2003b). However, recoding the problem domain can in principle 

have extreme effects on learnability, if key distinctions in the input or output are lost 
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in the recoding. Some models of developmental language impairment and dyslexia 

propose that differences in the representation of phonology cause subsequent 

behavioral deficits in grammar and reading acquisition (e.g., Harm & Seidenberg, 

1999; Hoeffner & McClelland, 1993; Joanisse, 2004). 

 Although only main effects of each parameter were considered as sources of 

variability during calibration, we expected interactions between these 

neurocomputational parameters in subsequent learning. To pick four examples: (i) 

large numbers of hidden units can partially compensate for a shallow sigmoid 

function in those processing units; (ii) having a more sparse initial connectivity is 

likely to reduce the amount of weights eliminated via pruning because their 

magnitudes will be larger; (iii) high weight decay can be countered by a higher 

learning rate; (iv) an over-aggressive pruning process (e.g., with a high threshold and 

high probability) can be alleviated if its onset occurs very late in training when 

weights have become large, but exacerbated if the onset is early. Large numbers of 

parameter combinations were possible within our scheme: given the number of levels 

specified for each parameter, approximately two trillion unique parameter 

combinations were available. 
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Figure S10: Parameter values and target population frequencies for genetic-wide 

(black) and genetic-narrow (grey lines) conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure S10, dark lines show parameter values (x-axis) and their target frequencies 

in the population (y-axis) for each of the 14 computational parameters. Each gene had 
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two alleles, coded as binary values. Several genes coded for each parameter value. 

Sets of binary values were summed and a look-up table used to derive each parameter 

value. The numbers of binary alleles for each parameter were as follows. G-Wide = 

hidden units: 10; temperature: 10; noise: 8; learning rate: 12; momentum: 8; weight 

variance: 8; architecture: 6; learning algorithm: 4; nearest neighbor threshold: 10; 

pruning onset epoch: 10; pruning probability: 8; pruning threshold: 10; weight decay: 

10; sparseness: 12 (total 126 bits). G-Narrow = hidden units: 4; temperature: 6; noise: 

6; learning rate: 4; momentum: 2; weight variance: 6; architecture: 2; learning 

algorithm: 4; nearest neighbor threshold: 4; pruning onset epoch: 4; pruning 

probability: 4; pruning threshold: 6; weight decay: 4; sparseness: 4 (total 60 bits). 

 
3.3 Specifying an artificial genome for the model 

The use of genetic algorithms entails creation of an artificial genome to encode the 

neural network’s parameter values, such that all possible genomes correspond to legal 

parameter sets. In creating the genome, we made the following assumptions: 

 

• There were two copies of each gene, with genes residing on pairs of 

chromosomes.  

• For simplicity, each gene had only two variants or alleles.  

• The two alleles produced different outcomes in the functionality of the 

neurocomputational parameter which they encoded.  

• The influence of genes was intended to be additive: we did not include 

dominant or recessive effects, and genes had the same effect in combination as 

in isolation. This constraint was motivated by the finding within behavioral 

genetics that the effect of gene variants is predominantly additive on 

phenotypic outcomes (Plomin et al., 2008). Nevertheless, our method of 
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implementing the mapping between gene variants and neurocomputational 

parameters did inadvertently produce some non-additive effects. 

• All neurocomputational parameters were polygenic. That is, their value was 

determined by the additive action of a collection of genes.  

• In the first instance, we assumed that the action of genes was not pleiotropic; 

that is, with respect to neurocomputational parameters, we assumed that no 

gene affected the value of more than one parameter at once. This 

simplification likely will not hold in many cases, and certainly the current 

theoretical view is that the relationship between genes and cognitive processes 

is pleiotropic (see, e.g., Kovas & Plomin, 2006). 

 

The assumption of polygenicity was motivated by the fact that we are using 

computational models to capture cognitive-level phenomena, and is a point worth 

emphasizing. We expect many low-level neural variations to influence 

neurocomputational functions at the level of cognitive processes in neural circuits. 

We therefore viewed it as unlikely that a single gene would modulate a 

neurocomputational parameter responsible for normal cognitive variation.  

We assumed, for reasons of simplification only, that the combination of alleles 

for each polygenic neurocomputational parameter had a deterministic relation to the 

value of that parameter in the instantiated network: that is, the allele set alone 

determined the parameter value. Alternatively, this may be viewed as the assumption 

that the relation between alleles and parameter setting relied on an environment that 

did not vary across the individuals in the simulated population. We assumed (and did 

not instantiate) a much larger part of the genome that was species universal and was 

responsible for the basics of, for example, creating the processing units, the 
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connections, the activation dynamics, the sensorium, the input-output connectivity 

pathways, and the mechanics of experience-dependent systems. 

Turning to mechanisms of breeding, we assumed that there was sexual 

reproduction, so that each gene had a 50% chance of being passed on to a gamete (egg 

or sperm), which combined with a gamete of another individual to create a new 

offspring. Although reproduction was sexual in this sense, we did not consider sex 

effects in these simulations (i.e., there were no genetic differences between males and 

females). During breeding, we assumed that there was uniform crossover and no 

linkage disequilibrium, the latter falling beyond the scope of our simulations. That is, 

the presence or absence of a given allele in a gamete was independent of the presence 

or absence of any others. This assumption is violated in humans because genes on the 

same chromosome have a greater than 50% chance of being transferred into a gamete 

together, and the closer they lie on a chromosome, the higher the chance. 

When Genetic Algorithms are used for machine learning optimization, the 

most successful individuals of the previous generation are often retained in the next 

generation. In our case, after breeding, the previous generation died. Breeding enabled 

the creation of individuals with different degrees of relatedness, for instance as twins 

or siblings. For some conditions, we created identical (monozygotic; MZ) or fraternal 

(dizygotic; DZ) twin pairs. MZ twins shared the same genome, while DZ twins and 

siblings were created by generating two offspring from the same set of parents, but 

from a different sperm and egg. DZ twins and siblings shared 50% of their alleles on 

average. Also in contrast to the more common use of Genetic Algorithms, we did not 

include genetic mutation during reproduction. In humans, the mutation rate is 

extremely low (e.g., Strachan & Read, 2003, cite a rate of between 1 and 4 mutations 

per 100,000 genes per generation). Mutations serve to reduce the average genetic 
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similarity of siblings below 50%, and our preference was to maintain retain the 50% 

value, since it is the one deployed in standard behavioural genetic models. Several 

other aspects fell beyond the scope of the simulations. We did not model the effects of 

epistasis (interactions between genes) or epigenetic effects on gene expression; we did 

not model assortative mating – in our simulations, mates were selected at random 

from the population; and we did not model gene-environment correlations (Plomin et 

al., 2008) – variation in the composition of the environment had no correlation with 

the nature of an individual’s genotype. 

 

3.4 Parameter values and their link to the artificial genome for the past tense 

network 

For the basic past tense network, the total of number of genes used to encode the 

value of the 14 computational parameters was 126 (or two copies of 63) as follows – 

hidden units: 10; temperature: 10; noise: 8; learning rate: 12; momentum: 8; weight 

variance: 8; architecture: 6; learning algorithm: 4; nearest neighbor threshold: 10; 

pruning onset epoch: 10; pruning probability: 8; pruning threshold: 10; weight decay: 

10; sparseness: 12 (total 126 bits). 

 

Figure 3 plots the range of values for each parameter against their target frequency of 

occurrence in the population. The translation of a genome into a parameter set was 

implemented by assigning alleles the value of 1 or 0, and then deriving the total for all 

the genes influencing the parameter (thereby ensuring additivity). The parameter 

value was calculated from the total using a lookup table, created by hand for each 

parameter to reflect the range of values identified during the calibration stage. The 

lookup tables for the 14 parameters (in the Wide Genetic) condition are shown below. 
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Table S2. Lookup table linking the artificial genome to the Hidden Unit parameter, 

for the Wide Genetic Variation condition 

 Hidden Unit Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 10 20 30 40 50 60 75 100 200 350 500 
 

Table S3. Lookup table linking the artificial genome to the Temperature parameter, 

for the Wide Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 0.0625 0.125 0.25 0.5 0.75 1 1.25 1.5 2 3 4 
 

Table S4. Lookup table linking the artificial genome to the Noise parameter, for the 

Wide Genetic Variation condition 

 Noise Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

- 0.04 0.11 0.22 0.27 0.22 0.11 0.03 0.00 

Parameter value 0 0 0.05 0.1 0.2 0.5 2 4 6 
 

Table S5. Lookup table linking the artificial genome to the Learning Rate parameter, 

for the Wide Genetic Variation condition 

 Learning Rate Parameter Value 

Number of 
1-valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probabilit
y  

0.0002 0.0029 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.0029 0.0002 

Parameter 
value 

0.005 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.25 0.3 0.5 
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Table S6. Lookup table linking the artificial genome to the Momentum parameter, for 

the Wide Genetic Variation condition 

 Momentum Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0 0.05 0.1 0.15 0.2 0.35 0.5 0.6 0.75 
 

Table S7. Lookup table linking the artificial genome to the Weight Variation 

parameter, for the Wide Genetic Variation condition 

 Weight Variation Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0.01 0.05 0.1 0.25 0.5 0.75 1 2 3 
 

Table S8. Lookup table linking the artificial genome to the Architecture parameter, 

for the Wide Genetic Variation condition. (0 = 2-layer, 1 = 3-layer, 2 = fully-

connected) 

 Architecture Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

- 0.109 - 0.781 - 0.109 - 

Parameter value 0 0 1 1 1 2 2 
 

Table S9. Lookup table linking the artificial genome to the Learning Algorithm 

parameter, for the Wide Genetic Variation condition. (0 = Euclidean distance error 

metric, 1 = cross-entropy error metric) 

 Learning Algorithm Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 0.063 0.938 - - - 
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probability 
Parameter value 0 1 1 1 1 

 

Table S10. Lookup table linking the artificial genome to the Nearest Neighbor 

Threshold parameter, for the Wide Genetic Variation condition 

 Nearest Neighbor Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.010 0.044 0.117 0.451 - 0.205 0.117 0.044 0.011 - 

Parameter 
value 

0.0025 0.005 0.01 0.025 0.1 0.1 0.15 0.2 0.25 0.5 0.5 

 

Table S11. Lookup table linking the artificial genome to the Pruning Onset parameter, 

for the Wide Genetic Variation condition 

 Pruning Onset Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 - 0.45 0.21 0.12 0.04 0.01 0.001 

Parameter value 1000 500 250 150 100 100 75 50 25 20 0 
 

Table S12. Lookup table linking the artificial genome to the Pruning Probability 

parameter, for the Wide Genetic Variation condition 

 Pruning Probability Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 - 0.49 0.22 0.11 0.03 0.004 

Parameter value 0 0.01 0.025 0.05 0.05 0.1 0.5 0.75 1 
 

Table S13. Lookup table linking the artificial genome to the Pruning Threshold 

parameter, for the Wide Genetic Variation condition 

 Pruning Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 - 0.66 - 0.12 0.04 0.01 0.001 
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(%) 
Parameter value 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.75 1 1.25 1.5 

 

Table S14. Lookup table linking the artificial genome to the Weight Decay parameter, 

for the Wide Genetic Variation condition 

 Weight Decay Parameter Value 

Number of 1-
valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

- - - - 0.38 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter 
value 

0 0 0 0 0 1x10-7 2x10-7 9.8x10-7 19.7x10-7 98.4x10-7 196.9x10-7 

 

Table S15. Lookup table linking the artificial genome to the Sparseness parameter, for 

the Wide Genetic Variation condition 

 Sparseness Parameter Value 

Number of 1-
valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability 

- - - - - - 0.61 0.19 0.12 0.05 0.02 0.003 0.0002 

Parameter 
value 

0 0 0 0 0 0 0 0.05 0.1 0.2 0.3 0.4 0.5 

 

 

A more constricted range of genetic variation was also considered for each 

computational parameter in the network, shown in Figure S10 in gray. This required 

fewer genes to encode, leading to a genome with only 60 genes (2 copies of 30). For 

one of the parameters, learning algorithm, there were only had two values in the 

original formulation; we restricted the range of variation by fixing the parameter to 

use cross-entropy, thus removing variation in this gene. On average, the parameters of 

the narrow condition had 40% of the range of variation of the wide condition. The 

lookup tables for the Narrow Genetic condition are shown below. 
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Table S16. Lookup table linking the artificial genome to the Hidden Unit parameter, 

for the Narrow Genetic Variation condition 

 Hidden Unit Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 30 40 50 60 75 
 

Table S17. Lookup table linking the artificial genome to the Temperature parameter, 

for the Narrow Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.25 0.5 0.75 1 1.25 1.5 1.75 
 

Table S18. Lookup table linking the artificial genome to the Noise parameter, for the 

Narrow Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0 0.1 0.25 0.5 0.75 1 2 
 

Table S19. Lookup table linking the artificial genome to the Learning Rate parameter, 

for the Narrow Genetic Variation condition 

 Learning Rate Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.05 0.075 0.1 0.125 0.15 
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Table S20. Lookup table linking the artificial genome to the Momentum parameter, 

for the Narrow Genetic Variation condition 

 Momentum Parameter Value 

Number of 1-
valued alleles 

0 1 2 

Population 
probability 

0.25 0.50 0.25 

Parameter value 0.1 0.2 0.3 
 

Table S21. Lookup table linking the artificial genome to the Weight Variation 

parameter, for the Narrow Genetic Variation condition 

 Weight Variation Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.05 0.1 0.25 0.5 0.75 1 1.5 
 

Table S22. Lookup table linking the artificial genome to the Architecture parameter, 

for the Narrow Genetic Variation condition. (0 = 2-layer, 1 = 3-layer, 2 = fully-

connected) 

 Architecture Parameter Value 

Number of 1-
valued alleles 

0 1 2 

Population 
probability 

- 0.75 0.25 

Parameter value 1 1 2 
 

Table S23. Lookup table linking the artificial genome to the Learning Algorithm 

parameter, for the Narrow Genetic Variation condition. (0 = Euclidean distance error 

metric, 1 = cross-entropy error metric) 

 Learning Algorithm Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

- - 1.00 - - 

Parameter value 1 1 1 1 1 
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Table S24. Lookup table linking the artificial genome to the Nearest Neighbor 

Threshold parameter, for the Narrow Genetic Variation condition 

 Nearest Neighbor Threshold Parameter 

Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.025 0.05 0.1 0.2 0.5 
 

Table S25. Lookup table linking the artificial genome to the Pruning Onset parameter, 

for the Narrow Genetic Variation condition 

 Pruning Onset Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 50 75 100 125 150 
 

Table S26. Lookup table linking the artificial genome to the Pruning Probability 

parameter, for the Narrow Genetic Variation condition 

 Pruning Probability Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.025 0.05 0.1 0.2 0.3 
 

Table S27. Lookup table linking the artificial genome to the Pruning Threshold 

parameter, for the Narrow Genetic Variation condition 

 Pruning Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

0.02 0.09 0.23 0.31 0.23 0.09 0.02 

Parameter value 0.2 0.3 0.4 0.5 0.75 1 1.25 
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Table S28. Lookup table linking the artificial genome to the Weight Decay parameter, 

for the Narrow Genetic Variation condition 

 Weight Decay Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 98.0x10-7 20.0x10-7 10.0x10-7 2.0x10-7 0 
 

Table S29. Lookup table linking the artificial genome to the Sparseness parameter, for 

the Narrow Genetic Variation condition 

 Sparseness Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.06 0.25 0.38 0.25 0.06 

Parameter value 0.4 0.3 0.2 0.1 0 
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Appendix A 

Parameter-behavior functions for the base past tense network 

All other parameters were held at default values, while a single parameter was varied. 

Performance is reported for regular verbs on the past tense task. The shape of the 

function is displayed for three points in training, 50, 100, and 250 epochs. The default 

parameter values were: hidden units: 50; temperature: 1; noise: 0; learning rate: 0.01; 

momentum: 0.2; weight variance: 0.5; architecture: 3-layer; learning algorithm: back 

propagation error measure; nearest neighbor threshold: 0.1; pruning onset epoch: 50; 

pruning probability: 0.1; pruning threshold: 0.5; weight decay: 0.000019; sparseness: 

90% connectivity. 
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Unit threshold function (temperature) 

 

 

 

 

 

 

 

Processing noise: 

 

 

 

 

 

 

 

Learning rate: 
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Momentum: 

 

 

 

 

 

 

 

Initial weight variance 

 

 

 

 

 

 

 

Initial weight variance (as above, focused on range 0 to 2) 
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Architecture (1=2-layer; 2=3-layer; 3=fully connected): 

 

 

 

 

 

 

 

Learning algorithm error metric (1=Euclidean distance; 2=Cross-entropy): 

 

 

 

 

 

 

 

 

Nearest neighbor response threshold: 
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Pruning onset: 

 

 

 

 

 

 

 

Pruning probability: 

 

 

 

 

 

 

 

Pruning threshold: 
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Weight decay (total cumulative % of connectivity removed over full 1000 epochs of 

training): 

 

 

 

 

 

 

 

 

Sparseness of initial connectivity (proportion removed): 

 

 

 

 

 

 

 

 

 

 

 


