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S1 Supplementary methods: Computational details

The excited-state dynamics simulations consisted of three main steps: (i) sampling of the nuclear phase
space in the electronic ground state to provide appropriate initial conditions,1 the SHARC dynamics
simulations, and data analysis. Unless otherwise noted, classical MD simulations were performed with
AMBER16,2 electronic structure and QM/MM calculations with a development version of ADF2017,3

and the dynamics simulations itself with SHARC2.0.4,5

S1.1 Initial condition generation

The procedure of sampling the ground state coordinates and velocities is reported elsewhere,1 and only
briefly presented here. Supplementary Fig. S1 gives a graphical overview over the steps involved.

First, classical molecular dynamics simulations were carried out. The force field employed for the
complex was taken from the generalized AMBER force field,6,7 where the missing bonded parameters
involving Re were parametrized based on a few-ps QM/MM trajectory. The partial charges were obtained
from a RESP fit8 to electron density obtained at the B3LYP/6-31G* (LANL2DZ for Re9) level of theory,
using the Gaussian09 software.10 The Van-der-Waals radius of Re was set to 1.47Å.11 The complex was
solvated in a 12Å truncated octahedron box of 1054 TIP3P12 H2O molecules and a chloride ion was added
to neutralize the charge of the complex. After minimization, the system was thermalized to 300K (NVT
ensemble) for 20 ps, followed by equilibration to 1 bar for 200 ps (NPT ensemble). A 10 ns production run
(NPT ensemble) was used to obtain 500 equally spaced geometry/velocity snapshots. These steps are
represented by the horizontal arrows in Supplementary Fig. S1. All MD simulations employed a time step
of 0.5 fs, which was necessary in order to avoid constraining the C–H and N–H bond vibrations of the
complex. Note that the O–H bond lengths of the water molecules were also not constrained.

As discussed in Refs. 1,13–15 classical MD at 300K will bestow too little internal energy to a molecule
like [Re(CO)3(Im)(Phen)]+, compared to the zero-point energy. In order to provide a more appropriate
amount of internal energy, each of the 500 snapshots was heated to 600K for 20 ps with all solvent
molecules frozen (blue arrows in Supplementary Fig. S1). Subsequently, all atoms were imaged into the
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Figure S1: Preparation of initial conditions. The main steps were classical, force-field-based MD
simulations to sample 500 molecular snapshots, local reheating of the solute, QM/MM relaxation in the
ground state, and excited-state dynamics simulations. In the excited state, less trajectories were run,
because not every initial condition was selected for excitation in the initial state selection scheme.
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primary cell, periodic boundary conditions, barostat and thermostat turned off, and the system propagated
for 100 fs in the NVE ensemble (black arrows in Supplementary Fig. S1). The resulting endpoints of the
500 trajectories were collected and converted into SHARC initial condition format. During this conversion,
we accounted for the fact that AMBER uses a leapfrog-like algorithm (which stores coordinates ~R(t) and
velocities ~v(t− ∆t

2 )) whereas SHARC uses the velocity Verlet algorithm (coordinates ~R(τ) and velocities
~v(τ)). To compensate this, we computed

~R(τ) = ~R

(
t− ∆t

2

)
= ~R(t)− ∆t

2
~v

(
t− ∆t

2

)
, (1)

where ∆t was the time step employed in the AMBER simulations (0.5 fs).
Subsequently, we ran short ground state QM/MM trajectories (level of theory in Supplementary

Section S1.2) in order to reduce any effects from imperfect force field parameters. According to Ref. 1,
this short relaxation at QM/MM level shifts all bond length and angle distributions much closer to the
ab initio optimized values, and shifts the absorption spectrum (see below) by 0.2 eV. In order to avoid
that coherent motion originating from the switch from force field to ab initio is carried to the excited
state, the short QM/MM trajectories were run for randomized simulation times (between 50 fs and 100 fs).
The end points of these trajectories were then collected and constitute the actual starting points of the
excited-state simulations.

Besides initial coordinates and velocities, the initial active state and electronic wave function coeffi-
cients are also required to launch the excited-state trajectories. These were obtained for each geometry
from a vertical excitation calculation including 30 singlet states at the level of theory given in Sup-
plementary Section S1.2. The absorption spectrum, obtained by summing over all 500 snapshots and
convoluting with Gaussians (full width at half maximum (FWHM) of 0.1 eV), is shown in Supplementary
Fig. S2. The most relevant part of the spectrum is located around the experimental excitation energy
of [Re(CO)3(Im)(Phen)]+, which is 400 nm.16 Vertical excitation at this wave length can populate the
adiabatic states S1 to S5. Whether an initial condition is accepted and which state is actually the initial
state for each of the 500 geometries was decided by a stochastic algorithm.17 Here, in order to receive
a sufficient number of initial states from the 500 geometries, we chose an excitation window of 2.8 eV
to 3.2 eV, which contains the experimental excitation energy and only the states S1 to S5. Inside this
window, the stochastic algorithm accepted 151 initial conditions, with 43 starting in S1 (28%), 53 in S2

(35%), 25 in S3 (17%), 25 in S4 (17%), and 5 in S5 (3%). Out of these 151 initial conditions, 100 were
actually simulated. From these, 6 were unusable due to network errors that lead to corrupted restart
files. Hence, the results presented here and in the main text are based on 94 trajectories, out of which 29
started in S1 (31%), 32 in S2 (34%), 17 in S3 (18%), 14 in S4 (15%), and 2 in S5 (2%). As can be seen no
initial state was underrepresented in the final set of trajectories. The initial wave function coefficients
were simply set to cspin-free

i = δiα, where α is the initial active spin-free state.

S1.2 Electronic structure

All electronic structure calculations performed during the ground state QM/MM dynamics,1 the vertical
excitation calculations, and the excited-state dynamics simulations employed the same electronic structure
level of theory: (time-dependent) B3LYP18 with dispersion correction19 and the ZORA relativistic
Hamiltonian,20 as implemented in the ADF2017 package3. A mixed-ζ basis set was employed for an
optimal compromise between accuracy and efficiency:1 ZORA-TZP21 for Re, ZORA-DZ for H atoms and
the four C/N atoms of the imidazole ligand not bonded to Re, and ZORA-DZP for all other atoms. No
electrons were frozen and standard SCF settings were used. Solvation effects were considered through
electrostatic embedding22, where [Re(CO)3(Im)(Phen)]+ constituted the QM region, and the water
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Figure S2: Simulated absorption spectrum of [Re(CO)3(Im)(Phen)]+ in aqueous solution.
The total spectrum is given by the thick black line, the contributions of the individual spin-free adiabatic
states are shown in color. The excitation energy window from where initial states were drawn is shown as
a light grey box.

molecules and chloride ion the MM region. Excited states were computed with the Tamm-Dancoff
approximation (TDA), and SOCs were computed through a perturbational ZORA formalism.23 Mixed-
quality integration grids were used.1

S1.3 SHARC excited-state dynamics

We considered 7 singlet states (ground state plus 6 excited singlets) and 8 triplet states, i.e., a total of 31
spin-mixed states (7+3×8). In order to construct the gradient of the current active spin-mixed state, we
mixed5 the gradients of all singlet and triplet states that are closer than 0.3 eV to the active state; in this
way, we reduce the amount of gradient computations while keeping accurate spin-mixed gradients.

The simulations were run until 250 fs, with a nuclear time step of 0.5 fs. The electronic wave function
was propagated with a 0.02 fs time step with the local diabatization algorithm.24 The necessary wave
function overlaps were computed with the WFoverlap code25 based on auxiliary wave functions generated
from the TDA transition density matrices.26 In order to speed up these overlap calculations, the auxiliary
wave function vectors were truncated25 to 99.97% of the norm, keeping only the largest vector elements.

During surface hops, the velocity vectors of all atoms of [Re(CO)3(Im)(Phen)]+ were rescaled, but not
the velocities of MM atoms. Similarly, in the energy-based decoherence correction27 instead of the full
kinetic energy of the system we only considered the kinetic energy of the [Re(CO)3(Im)(Phen)]+ atoms.

S1.4 SHARC frozen-nuclei dynamics

The frozen-nuclei dynamics was carried out with the same settings mentioned above, except that the
nuclei were replaced by a single dummy atom and the nuclear velocity was set to zero (which also renders
the decoherence correction inactive). The quantum-chemical data (Hamiltonian matrix, transition dipole
moment matrices) from the first time step of each trajectory was fed to SHARC at all time steps. Gradients
were set to zero and the overlap matrix to a unit matrix. In this way, 94 trajectories were propagated
until 50 fs.

S1.5 Frozen-nuclei dynamics with explicit laser fields

The frozen-nuclei dynamics including explicit laser fields was done for a single frozen-nuclei trajectory,
using three different laser fields. In all cases, the same randomly chosen polarization vector, a phase of
0, and a central energy of 3.3397 eV (corresponding to the energy of a bright spin-mixed state for that
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geometry) were chosen. The envelope was of sin2 type: the laser was off for the first 1 fs, then the envelope
increased between 1 fs and the pulse center as sin2, and then decreased over the same time span, giving a
symmetric envelope. The simulations were continued for 5 fs after the pulse finished. The maximum field
strengths were chosen to transfer about 75% of the ground state population to the excited states. Note
that the simulations only considered the transition dipole moments between S0 and the excited singlet
states; all other static and transition dipole moments were omitted from the dipole moment matrices.
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S2 Supplementary methods: Data analysis

S2.1 Electronic populations and representations

In SHARC, the actual nuclear dynamics is propagated in the so-called “diagonal” representation of the
electronic states.5 The diagonal states are computed as the eigenstates of the full molecular Hamiltonian
including spin–orbit couplings (also called “spin-mixed states” in the main text). Because directly
computing these eigenstates is very demanding, we apply a two-step procedure.23,28 First, a number of
relevant eigenstates of the (spin-free) molecular Coulomb Hamiltonian (MCH) are obtained as usual with
electronic structure code (in this case, ADF), and subsequently the full Hamiltonian matrix in the basis
of these MCH eigenstates is constructed (including the MCH eigenenergies and spin–orbit couplings)
and diagonalized to produce the diagonal states. A validation of this two-step spin–orbit treatment is
presented in Supplementary Section S3.

Due to the two-step procedure, in SHARC the MCH–diagonal transformation matrix is known and
it is possible to either analyze the state populations in the diagonal or the MCH representation. The
electronic populations in the MCH (i.e., spin-free) representation can be computed in two different ways.
On one hand, one can compute “classical” populations, which requires that the active states in the diagonal
representation of all trajectories and all time steps is mapped to MCH states, which can then be counted.
This provides statements like “At time step t, 80% of trajectories are moving in active states that are
predominantly S2.” However, due to strong mixing in the present case, this mapping is non-trivial. On
the other hand, one can compute “quantum” populations by incoherent averaging over the quantum
amplitudes. The latter can easily be transformed between diagonal and MCH representation:

PMCH
i (t) =

1

Ntraj

∑
traj

∣∣∣∑
α

Uiαc
diag
α

∣∣∣2 , (2)

where i is an MCH state, α is a diagonal state, and U is the MCH–diagonal transformation matrix.
Note that here we employ a decoherence correction that makes the classical and quantum populations
approximately equal. We also note that we obtain identical results when computing the electronic
populations with the quasi-Wigner protocol of Subotnik and coworkers,29 showing that the “quantum”
populations are appropriate.

We also note that the obtained MCH populations give no indication about the electronic character
(i.e., they are not diabatic). The electronic character can be analyzed through the charge transfer analysis
(see Supplementary Section S2.4).

S2.2 Densities of states

The densities of states were obtained by collecting all energy differences between the S0 and the computed
singlet and triplet states and convoluting this data with Gaussians (FWHM of 0.05 eV). The active state
density was likewise obtained from the energy differences between S0 and the current active spin-mixed
state. For Figure 1f–g, these convoluted densities of state were averaged over the time intervals 8–12 fs
(Figure 1f) and 200–250 fs (Figure 1g), respectively.

S2.3 Time-resolved emission spectrum

The raw (not temporally broadened) emission spectrum was obtained by:

σraw(E, t) =

ntraj∑
n

(fosc)ne−
(E−En)2

W , (3)
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where En and (fosc)n are the energy difference and oscillator strength for the active→ground state
transition and W = (0.25 eV)2

4 ln 2 defines the width of the Gaussians used to broaden the spectrum on the
energy axis (0.25 eV FWHM). To obtain the temporally broadened emission spectrum, the raw spectrum
was additionally convoluted in the time domain with a Gaussian:

G(t) = e−t
2/β , (4)

with β = (100 fs)2

4 ln 2 defining the temporal width (100 fs FWHM).
In order to obtain an estimate of the luminescence decay time, the broadened emission spectrum was

integrated over all energies and fitted with a bi-exponential decay function f(t) convoluted with G(t).
The bi-exponential fitting function is:

f(t) = A
(
re−

t
τ1 + (1− r)e− t

τ2

)
. (5)

Here, A is an overall intensity factor, τ1 is the fast time constant, τ2 is the slow time constant, and r is
the ratio of the contributions of fast and slow channel.

S2.4 Charge-transfer character analysis

In order to follow the evolution of the electronic wave function, at each time step we computed charge
transfer descriptors for all excited states with the TheoDORE program.30,31 For the analysis, we divided
the complex into 9 fragments: (1) Re, (2)–(4) the three CO ligands, (5) imidazole N atoms, (6) imidazole
C atoms, (7) phenanthroline N atoms and C atoms in para-position to the N atoms, (8) all other
phenanthroline C atoms except for the C=C bridge, and (9) the C=C bridge. H atoms were always
included in the fragment of their parent atom. See Supplementary Fig. S3 for a graphical depiction. This
fragmentation scheme was chosen based on a correlation analysis as described elsewhere.31

From the charge transfer analysis, for each of the 94 trajectories for each of the 500 time steps and for
each of the 31 states, one obtains a 9× 9 matrix with elements ΩAB that describes how much contribution
of the wave function is given by charge transfer between fragments A and B. From this data, we first
compute the charge transfer matrix for the total electronic wave function for that trajectory and step:

Ωtraj
AB (t) =

∑
i

∣∣∣∑
α

Uiα(t)cdiag
α (t)

∣∣∣2 ΩiAB(t), (6)

where ΩiAB is an element of the charge transfer matrix for MCH state i, and the “traj” superscript of Uiα,
cdiag
α , and ΩiAB(t) was omitted for clarity.

After finding the charge transfer matrices for the total electronic wave function of each trajectory
Ωtraj
AB (t), we average them across all trajectories, leaving one 9×9 matrix for each time step:

Ωtotal
AB (t) =

1

Ntraj

∑
traj

Ωtraj
AB (t). (7)

For a qualitative overview over the electronic character, we sum up multiple matrix elements:

ΩRe(CO)3 →phen(t) =
∑

A∈Re, CO

∑
B∈phen

Ωtotal
AB (t), (8)

Ωphen→phen(t) =
∑

A∈phen

∑
B∈phen

Ωtotal
AB (t), (9)

Ωim→phen(t) =
∑
A∈im

∑
B∈phen

Ωtotal
AB (t). (10)
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Note that the sum of all elements of Ωtotal(t) is equal to one.
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Figure S3: Fragmentation scheme for charge transfer analysis. For details on the charge transfer
analysis see Supplementary Section S2.4.
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S3 Supplementary results: Perturbational spin-orbit couplings

In [Re(CO)3(Im)(Phen)]+ the magnitude of the spin–orbit couplings (SOCs) are very large (several hundred
cm−1 for some matrix elements), especially in relation to the small energy gaps. The most accurate
energies of the mixed spin–orbit states are therefore obtained via a variational 2-component treatment,32

where the full spin–orbit Hamiltonian is diagonalized in the full space spanned by all possible TDA
excitations. However, in the SHARC dynamics simulations, we employ a perturbational approach,23,28

where in a first step the spin-free Hamiltonian is diagonalized in the full excitation space, yielding a
number of singlet and triplet states. In the second step, the spin–orbit Hamiltonian is constructed in the
subspace spanned by these singlet and triplet states, and diagonalized to yield the spin–orbit energies.
This approach neglects the spin–orbit couplings between the subspace and all higher-lying states, hence
the spin–orbit analogue of “dynamical correlation energy” is neglected in the perturbational treatment.

In Supplementary Fig. S4 we show whether the perturbational spin–orbit treatment is sufficient and
hence whether the SHARC approach is safely applicable to [Re(CO)3(Im)(Phen)]+. The figure compares
the energies of the few lowest states of [Re(CO)3(Im)(Phen)]+ obtained with different approaches: (a)
spin-free excitation energies (i.e., from step 1 of the perturbational treatment), (b,c,d) spin–orbit excitation
energies from the perturbational approach, using different amounts of singlet and triplet states, and (e)
the variational 2-component treatment. The excitation energies were computed with the above-described
method, for one randomly chosen initial condition geometry of [Re(CO)3(Im)(Phen)]+. In the case
that the number of states in the subspace is equal to the full excitation space, then the perturbational
approach should deliver the same energies as the variational approach. As the full space contains 43,788
excitations with the used basis set, obviously only a small fraction of the excitation space can be used
in the perturbational approach. However, as can be seen, the perturbational approach delivers excellent
excitation energies when compared to the 2-component calculation. The following RMSDs (relative to the
variational calculation) for the excitation energies were obtained: (a) 72meV, (b) 3.8meV, (c) 3.5meV,
(d) 3.2meV (strictly decreasing in accord with the variational principle). This shows that even with the
minimal number of singlet and triplet states, the perturbational approach can be used to reliably compute
spin–orbit energies for third-row transition metal complexes. The results also show that it is not efficient
to go beyond the minimal number of states, because the small improvement in accuracy does not merit
the expense of computing the extra singlets and triplets. However, one can also clearly recognize that the
spin-free energies are not reproducing the energy gaps well.
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Figure S4: Comparison of energies of spin–orbit coupled states using different relativistic
approximations. These approximations are: a no SOCs, b perturbational SOC for 6 singlets and 6
triplets, c for 10 singlets and 10 triplets, d for 150 singlets and 150 triplets, and e for full variational
2-component SOC (equivalent to 43,788 singlets and 43,788 triplets).
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S4 Supplementary results: Evolution of electronic populations

Supplementary Figure S5 shows the same population data as Figure 1 in the main manuscript, but as a
regular line plot.
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Figure S5: Line plot of the temporal evolution of the electronic populations. This figure shows
the same population data as the stacked area plot in Figure 1 in the main text. a Singlet populations,
b triplet populations. The population data was obtained from from 94 SHARC trajectories at the
TD-B3LYP/T-DZP level of theory.
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S5 Supplementary results: Definition of the spin–orbit wave packet

This section provides a formal definition of the “spin–orbit wave packet” that is introduced in the main
manuscript.

We begin with the definition of the full electronic Hamiltonian:

Ĥ full = Ĥspin-free + ĤSOC, (11)

that was already mentioned in passing in Section S3. Importantly, one can either obtain the set of
eigenfunctions of the spin-free Hamiltonian:

Ĥspin-free|ψspin-free
α 〉 = Espin-free

α |ψspin-free
α 〉 (12)

or the set of eigenfunctions of the full Hamiltonian:

Ĥ full|φfull
i 〉 = Efull

i |φfull
i 〉. (13)

Note that the eigenfunctions of the latter Hamiltonian do in general not have a well-defined spin multiplicity.
Therefore, it is possible to represent the eigenfunctions of the full Hamiltonian as linear combinations of
the spin-free eigenfunctions:

|φfull
i 〉 =

∑
α

Uαi|ψspin-free
α 〉. (14)

Equally, the spin-free eigenfunctions can be represented as linear combination of the full eigenfunctions:

|ψspin-free
α 〉 =

∑
i

Uαi|φfull
i 〉. (15)

Hence, the eigenfunctions of the full Hamiltonian can conveniently be called “spin-mixed”. As an example,
the states X1 to X24 in Figure S4 are spin-mixed eigenstates of the Hamiltonian of [Re(CO)3(Im)(Phen)]+

at a particular nuclear geometry. The associated energies of these states are the spin-mixed eigenenergies
Efull
i .
Now we can write the definition of a time-dependent electronic wave function, expanded in the basis

of the spin-free eigenfunctions:
|Ψ(t)〉 =

∑
α

cspin-free
α (t)|ψspin-free

α 〉. (16)

Inserting this expansion into the time-dependent Schrödinger equation and premultiplying with 〈ψspin-free
β |

yields the equation of motion:

∂cspin-free
β

∂t
= − i

h̄

∑
α

〈ψspin-free
β |Ĥ full|ψspin-free

α 〉cspin-free
α (t). (17)

Unfortunately, the matrix elements 〈ψspin-free
β |Ĥ full|ψspin-free

α 〉 do not vanish for α 6= β, so that the
differential equation is not trivially solvable.

Alternatively, one can write the time-dependent electronic wave function in the basis of the eigenfunc-
tions of the full Hamiltonian:

|Ψ(t)〉 =
∑
i

cfull
i (t)|φfull

i 〉. (18)

12



In the same way as above, one obtains the equation of motion:

∂cfull
j

∂t
= − i

h̄

∑
i

〈φfull
j |Ĥ full|φfull

i 〉cfull
i (t), (19)

but here the Hamiltonian matrix is diagonal, so we can simplify to:

∂cfull
j

∂t
= − i

h̄
Efull
j cfull

j (t), (20)

with Efull
j being the eigenenergies of the full Hamiltonian.

The last differential equation can easily be solved to yield the solution of the time-dependent electronic
wave function:

|Ψ(t)〉 =
∑
i

cfull
i (0)e−

i
h̄E

full
j t|φfull

i 〉. (21)

According to this derivation, the time evolution of the electronic wave function after excitation can best
be described as a linear superposition of spin-mixed eigenstates of the full Hamiltonian including SOC. In
this basis, only the complex phase of the expansion coefficients depend on time.

The expansion coefficients cfull
i (0) are determined by projecting the initial wave function |Ψ(0)〉 on the

spin-mixed eigenstates:
cfull
i (0) = 〈Ψ(0)|φfull

i 〉. (22)

This can be done by inserting the resolution of identity for the spin-free states:

cfull
i (0) =

∑
α

〈Ψ(0)|ψspin-free
α 〉︸ ︷︷ ︸

cspin-free
α (0)

〈ψspin-free
α |φfull

i 〉︸ ︷︷ ︸
Uαi

. (23)

Here we assume that the initial electronic wave function is purely singlet—assuming instantaneous, vertical
excitation from the singlet ground state. In the simplest such case, cspin-free

α = δασ, where σ is any single
singlet state. Even in this case, multiple cfull

i (0) will be non-zero. Hence, vertical excitation indeed prepares
a coherent linear superposition of the eigenstates of the full Hamiltonian, making the term “spin–orbit
wave packet” appropriate.
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S6 Supplementary results: Non-Kasha behavior in population

flux

The biexponential ISC process is a clear example of non-Kasha behavior. Population transfer from singlet
to triplet occurs faster than internal conversion. To illustrate this point, Supplementary Fig. S6 presents
the number of net hops between the different electronic states. As can be seen, the number of hops from
the S1 to the triplet states (18 in total) is much smaller than the number of hops from higher singlets to
triplets (55 in total). Although the ratio of the net hops shown in Supplementary Fig. S6 are probably
not statistically converged (due to including only 94 trajectories), the figure clearly shows the strong
non-Kasha behavior of the system.
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Figure S6: Number of net hops for all trajectories between the electronic states. The states
S0, S6, T7, T8, which are included in the simulations but are never significantly populated, and labels for
≤ 4 hops are not shown for clarity.
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S7 Supplementary results: Luminescence decay
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Figure S7: Scatter plot showing the relations between time, oscillator strength, spin expec-
tation value, and state population. Time is given by the horizontal axis, oscillator strength by the
vertical logarithmic axis, spin expectation value by color (singlet in blue, triplet in red, mixed states in
intermediate shades), and state population by dot width. The data shown corresponds to the values
averaged over all 94 trajectories. The arrow simplistically indicates the trend visible in the oscillator
strength of the most populated states.

The luminescence decay that is observed experimentally and in the simulated emission spectrum is
due to a complex interplay of different effects: (i) ISC from predominantly singlet states to predominantly
triplet states, (ii) IC from bright singlet states to less bright singlet states, (iii) modification of brightness
of the singlet states by nuclear motion. Additionally, the strong spin–orbit couplings induce strong mixing
of the states. Supplementary Fig. S7 summarizes these different effects into one graph. It shows the
temporal evolution of the average oscillator strength of each spin-mixed (diagonal) state on the vertical
axis. From the vertical axis, one can read how the oscillator strength of the states changes due to the
nuclear evolution. Additionally, the figure shows the spin expectation value as color code, and it indicates
the most populated states by dot width.

According to the figure, at t = 0 all populated states (large dots) have a relatively large oscillator
strength around 0.01. According to the color code, these states are already spin-mixed (spin expectation
value around 1), but note that the total electronic wave function at t = 0 is a pure singlet, because the
total wave function is a linear combination of the spin-mixed states. Over the course of the simulation,
the oscillator strength of some of the strongly populated states decreases (e.g., between 20 and 30 fs from
0.004 to 0.002. More importantly, ISC drives population from the predominantly-singlet states that show
high oscillator strengths to the predominantly-triplet states that have lower oscillator strength. Most
relevant in this respect is the depopulation of the brightest states (oscillator strength above 0.01), which
are largely dominated by S3 and higher singlet states.
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