
Supplementary Materials 

The simulated data and individual-level simulation model have been previously described (1). 

Simulated data generation 

Briefly, we created two simulated longitudinal datasets containing three time-varying covariates 

(treatment, a confounder, and the outcome), and one time-fixed covariate (U) using a structural nested 

accelerated failure time model. The data were simulated following the algorithm described by Robins 

(11) and Young et al (12). Briefly, for each of 105 simulated individuals: 

Step 1: Simulate the counterfactual failure time in the absence of treatment   under an exponential 
distribution with hazard , and set U = . Then for each  implement steps 2, 3, and 4: 

Step 2: Simulate Lk using the probability model: 

, where 0 < τ < 1. Note: Lk is simulated from k = -2. By definition, Ak = 0 for k < 0. 

Step 3: Simulate Ak for previously untreated individuals using the logistic regression model: 
. Set Ak=1 if Ak-1=1. 

Step 4: Generate the failure time as the solution to: , where 

. If T≤k+1 set Yk+1=1 and go to Step 1 for a new subject. Otherwise set Yk+1=0 go 
to Step 2 for k+1. is set to 0 for a null treatment effect and to -1 for a protective effect. By definition, 
everybody has Y0=0. 

Parameter values for the simulation are given in Appendix Table 1. 



Appendix Table 1 Input Parameters Used in the Data Simulation 

Model Parameter Value 
Exponential Parameter for   ( : 0.010 
Treatment effect parameter Ψ 

No effect (sharp null) 
Beneficial effect 

0 
-1 

Conditional probability distribution for Lk

Ak-1 0.675 
γ1 25 
κ -11.2 
τ 0.38 

Conditional probability distribution for Ak, 
logistic regression model parameters 

Intercept 0.1 
Lk -0.3 
Lk-1 -0.25 
Lk-2 -0.10 

Individual-level simulation 

The individual-level simulation model estimated the total effect of treatment on the outcome using a 

series of pooled logistic regression models. 

Step 1: Fit the pooled logistic regression models to the simulated data to estimate the parameters 

, and 

, where time is modeled 

using a spline with knots at 3, 6, 9, and 12 months. 

Step 2: For each of 200 individual-level simulation models, replace the estimate of θ4 with the specified 

guess for the direct effect of Ak-1, in the model for the outcome. The guess ranged, on the odds ratio 

scale, from 0.005 and 1.0 by increments of 0.005 (-5.30 to 0 on the natural scale). 

Step 3: For each of 200 individual-level simulation models, simulate 105 individuals for 12 months by: 

a. Draw baseline confounder values from the baseline distribution observed in the

simulated data.

b. Set treatment to 1 at all time-points for “always treat” and 0 at all time-points for

“never treat”



c. At each time point, generate the outcome probability and confounder value using the

linear predictors of the regression models from Step 1, with the Step 2 parameter

modification, the fixed value of treatment, and the prior simulated confounder values.

Step 4: Obtain the estimated 12-month survival probability under each intervention for each individual- 

level simulation model parameterization from the simulated individuals in Step 3 using the product-limit 

method, and calculate the estimated risk and risk difference. 

Table 1 in the manuscript displays the range of total effect estimates obtained from these runs for each 

simulated dataset. 



Single world intervention graph 

Single world intervention graphs (SWIGS) are a tool for depicting the data generating structure, the 
interventions of interest, and the counterfactual outcomes in a single graphic (13). These graphs have 
similar rules to directed acyclic graphs, but add split nodes to specify the intervention value of interest 
and label all variables downstream of interventions with the counterfactual value that can be observed 
in a world where the intervention is performed. Appendix Figure 1 shows a SWIG that corresponds to an 
intervention that could allow estimation of the controlled direct effect of treatment when CD4 count is 
held constant. On this SWIG we can see that the counterfactual of relevance to the controlled direct 
effect depends on the value of CD4 count selected. 

Appendix Figure 1 Single-world intervention graph (SWIG), showing the problem of estimating the 
direct effect. The controlled direct effect requires setting Lt to a specific value, and as a result all 
subsequent variables are counterfactual on the intervention value chosen. If an intervention on Lt 
cannot be specified the counterfactuals required for the controlled direct effect may not be identifiable. 


