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Description of the synthetic data problems (used in the Fig
2 of the main manuscript)

This section provides the description of the benchmark, whose results are presented in Manuscript

in the Figure 2. For a given number of data-points T > 0 and a data dimension (number of fea-

tures) n ≥ 2, we generate the random data X = [x1, . . . , xT ] ∈ Rn,T from multivariate normal

distribution with different parameters based on a predefined cluster affiliation.

We choose the cluster affiliation in such a way, that the number of points affiliated to cluters

Tk is approximately the same along the clusters, i.e.

Tk :=

{
(k − 1)

⌊
T

K

⌋
+ 1, . . . ,min

{
k

⌊
T

K

⌋
, T

}}
denotes the set of point indexes affiliated to k-th cluster. Please, notice that these sets are disjoint

and union of them forms the set of all point indexes {1, . . . , T}. Using this decomposition, we

generate corresponding data points for every cluster k = 1, . . . , K as random realisations from

the multivariate normal distributions

∀t ∈ Tk : xt ∼ N (µk,Σk)

where µk ∈ Rn denotes the mean value and Σk ∈ Rn,n a covariance matrix.

In our benchmark, we choose K = 4 with parameters

µ1 := 0, Σ1 =

 0.1 0.05
0.05 0.1

0.2
n−2

In−2

 , µ2 :=


0.8
1.6
0
...
0

 , Σ2 =

 0.1 −0.05
−0.05 0.1

0.2
n−2

In−2

 ,

µ3 :=


1.6
0
0
...
0

 , Σ3 =

 1 0
0 1

0.2
n−2

In−2

 , µ4 :=


0.8
0.8
0
...
0

 , Σ3 = Σ4

where In−2 ∈ Rn−2,n−2 is identity matrix.

.



General SPA formulation

The SPA optimization problem is given by

[S∗,Γ∗] := arg
S,Γ

min
Γ∈ΩΓ

L(S,Γ) (SPA)

where

L(S,Γ) :=
T∑
t=1

distS(X(t),Γ(t)) + ε2
SΦS(S) + ε2

ΓΦΓ(Γ) (1)

ΩΓ := Ωγ × · · · × Ωγ = ΩT
γ (2)

Ωγ := {γ ∈ RK | ∀k = 1, . . . , K :
K∑
k=1

γk = 1, γk ≥ 0} (3)

T denotes the number of data points, X = {X(t), t = 1, . . . , T} ⊂ X are given data from

space X deployed with the norm ‖ · ‖, K > 1 denotes the number of discrete states (clusters),

Γ = {Γ(t), t = 1, . . . , T} ⊂ Ωγ ⊂ RK , are unknown cluster affiliation probability vectors, and

S are unknown parameters of mapping between data points X and probability representation Γ.

We include the possibility of Tikhonov-based regularization of original ill-posed problem using

the regularization functions ΦS , ΦΓ with corresponding regularization parameters εS, εΓ ≥ 0.

In this section, we consider the most general case; please notice that the distance function

distS : X × Ωγ → R+
0 is non-symmetric and we do not require any particular properties ex-

plicitly. As a simple case, we can consider a finite dimensional data space X = Rn and a linear

relationship between the datapoint x ∈ X and it’s corresponding probabilistic representation

γ ∈ Ωγ , i.e., we suppose

x =
K∑
k=1

γkS:,k = Sγ (4)

where S ∈ Rn,K is a matrix of parameters of this mapping. The equation (4) can be interpreted

as expected value of data representation vectors S:,k ∈ Rn with probability density vector γ.



After the substition of (4) into the distance function we can write

distS(x, γ) := dist(x, Sγ)

where we can additionally consider any standard distance function (metric) dist : X×X → R+
0 ,

for example Euclidean measure (see Section “SPA in the Euclidean space” in this Supplement)

or Kullback-Leibler divergence.

Set a feasible initial approximation Γ0 ∈ ΩΓ and iteration counter it = 0.

while ‖L(S,Γit)− L(Sit−1,Γit−1)‖ ≥ ε

solve Sit = arg
S

minL(S,Γit−1) (with fixed Γit−1)

solve Γit = arg
Γ

min
Γ∈ΩΓ

L(Sit,Γ) (with fixed Sit)

it = it + 1
endwhile

Return an approximation of the data representation vectors Sit and an approximation of cluster
affiliation probability vectors Γit.

Algorithm 1: General SPA algorithm.

The problem ( SPA ) can be solved using the Algorithm 1. The idea is based on the construc-

tion of the sequence of split optimization problems. The iteration computational complexity

of this algorithm is given by the complexity of the computation of inner optimization problems

with fixed variables. The algorithm of this type is well-known as coordinate-descent method [J.

Nocedal and S. J. Wright: Numerical Optimization. Springer, 2003] or alternating least-squares

method [G. Beylkin and M. J. Mohlenkamp: Algorithms for numerical analysis in high dimen-

sions. SIAM Journal on Scientific Computing, 26:21332159, 2005] . The following Lemma

presents the basic convergence properties of the algorithm.

Lemma 1. If the solutions of inner optimization problems in Algorithm 1 exist, then algorithm



generates sequence of approximations of optimization problem (SPA) with nonincreasing ob-

jective function values, i.e.

L(Sit,Γit) ≤ L(Sit−1,Γit−1) for it = 1, 2, . . . (5)

Proof. If the solutions of inner optimization problems exist, then the solution process of inner

optimization problems provides the approximation with smaller (or the same) function value

with respect to non-fixed variable, i.e. (see the Definition 1 in APPENDIX),

∀S : L(Sit,Γit−1) ≤ L(S,Γit−1), in the case of fixed Γit−1 (6)

Γ ∈ ΩΓ : L(Sit,Γit) ≤ L(Sit,Γ), in the case of fixed Sit (7)

Choosing S = Sit−1 in (6) and Γ = Γit−1 in (7) we get

L(Sit−1,Γit−1) ≥ L(Sit,Γit−1) ≥ L(Sit,Γit)

Since the objective function (1) is generally non-convex (but bounded from bellow - each

distance function is non-negative), the sequence (5) can possibly converge only to the local

optimum. To deal with this non-globality, one has to run the algorithm for several random initial

Γ0 and choose the solution with the lowest function value. Such a Monte-Carlo-based approach

is commonly used for solving the optimization problem with multiple local optimality points

and it can be found in literature as annealing steps [J. Nocedal and S. J. Wright: Numerical

Optimization. Springer, 2003] .

However, the convergence of the whole process still highly depends on the solvability of

inner optimization problems. Following lemmas present the elementary and the most common

situations when the solution exists.



Lemma 2. If distance function distS and regularization function ΦS in (SPA) are convex,

bounded from bellow and continuously differentiable with respect to variable S, then the so-

lution of the problem with respect to S exists and it can be found using the necessary optimality

conditions for unconstrained problems.

Proof. The Lemma is a consequence of optimization theory fundamental results, see for exam-

ple [S. Boyd and L. Vandenberghe: Convex Optimization. Cambridge University Press, New

York, 1st edition, 2004] .

Lemma 3. If distance function distS and regularization function ΦΓ in (SPA) are continuous

in variable Γ, then the solution of the problem with respect to Γ exists.

Proof. Please notice that feasible set ΩΓ is compact (i.e., closed and bounded) and convex,

therefore if L is continuous, then the existence of the solution is a consequence of Weierstrass

Extreme Value Theorem [S. Boyd and L. Vandenberghe: Convex Optimization. Cambridge

University Press, New York, 1st edition, 2004] .

Typically, the largest dimension parameter of the whole problem (SPA) is the number of data

points T and the classification data-discretization process (SPA) does not reduce this number.

It provides the data representation vectors S, whose size is determined by the size of individual

data points (the dimension of vector space X ) and the number of them is equal to the number of

clusters K. We can conclude, that the optimization problem with respect to S is much smaller

in comparison to the optimization problem with respect to the second variable Γ. The unknown

Γ consists of cluster affiliation probability vector of each individual data points, i.e., its size

is determined by T and K. Fortunately, the objective function L (1) is composed as a sum of

local representation errors and therefore if the regularization function ΦΓ(Γ) is also additively

separable (the case when it consists of the sum of local regularization functions for individ-



ual representations) then the whole minimization problem (SPA) is separable. The following

Lemma presents the basic property of additively separable optimization problems.

Lemma 4. If L in optimization problem (SPA) can be written as a sum of separated functions

(i.e., L is additively separable in t) in t (except ΦS(S)), i.e., there exist functionsLt(S,Γ(t)), t =

1, . . . , T such that

L(S,Γ) =

(
T∑
t=1

Lt(S,Γ(t))

)
+ ΦS(S) (8)

then the solution of optimization problem (SPA) with fixed S can be composed as a solution of

individual problems

Γ∗(t) = arg
Γ

min
Γ∈ΩΓt

Lt(S,Γ(t)) (9)

where

ΩΓt = {γ ∈ RK |
K∑
k=1

γk = 1, γ ≥ 0}

and ΩΓ1 × · · · × ΩΓT = ΩΓ is the decomposition of the feasible set of the original problem

(SPA).

Proof. The definition of optimality point of (9) reads as (see the Definition 1 in APPENDIX)

∀Γ(t) ∈ ΩΓt : Lt(S,Γ
∗(t)) ≤ Lt(S,Γ(t))

Since this inequality can be formulated for all t = 1, . . . , T , we can sum these T inequalities to

obtain
T∑
t=1

Lt(S,Γ
∗(t)) ≤

T∑
t=1

Lt(S,Γ (t))

If we add term ΦS(S) (constant in Γ) to both sides of this inequality and use notation (8), we

obtain

∀Γ ∈ ΩΓ : L(S,Γ∗) ≤ L(S,Γ)

which is a definition of the optimality point of optimization problem (SPA) with respect to

Γ.



The separability plays crucial role in the embarassingly parallel computations; one can solve

the whole set of T optimization problems independently using modern multi-core architectures,

see Figure S2. The Γ-problem can be splitted into smaller subsets and distributed onto sepa-

rated computational nodes, which is a commonly adopted approach when working on super-

computers. Each node solves the given subset of problems without any communication with

the other nodes. Moreover, if the node includes multi-core processors, then (again) each core

can solve independently the part of the node subproblem. This “embarrasingly-parallel” hierar-

chical computation of the large-scaled problem can be exploited even more when using modern

GPU architectures; in this case, the relativelly small Γ(t) problem (of size K) can be solved

using just one computational thread, i.e., one computational core (please see Fig. 2c in the main

manuscript).

It is necessary to mention that if the regularization function ΦΓ is not separable in T (for

example when enforcing the persistency of regime/cluster in time, see FEM-H1 and FEM-BV

methods [reference (30) in the main manuscript] ), then the problem is not embarassingly par-

allel and computational nodes/cores/threads have to communicate during the solution process.

However, as was demonstrated in [L. Pospı́šil, P. Gagliardini, W. Sawyer, and I. Horenko: On

a scalable nonparametric denoising of time series signals. Communications in Applied Mathe-

matics and Computational Science, 13:107138, 2018] , one can still utilize Projected Gradient

methods since the projection onto separable simplexes ΩΓ is still embarassingly parallel.

The following Theorem summarizes the general properties of the Algorithm (1).

Theorem 1 (Properties of SPA algorithm). Let X = {x(t), t = 1, . . . , T} ⊂ X be given data

from space X , K > 1 a given number of clusters. Let distS , ΦS , ΦΓ be such a functions that

L(S,Γ) in (SPA) is convex, bounded from bellow and continuously differentiable with respect

to variable S, and continuous in variable Γ.

Then Algorithm 1



(a) is generating monotonically non-increasing sequence.

Moreover, if L(S,Γ) is separable problem in Γ, then Algorithm 1

(b) is linear algorithm in the size T of the data statistics X ,

(c) requires the amount of communication independent of data size.

Proof. (a) is a consequence of Lemma 2, Lemma 3, and Lemma 1. To prove (b) and (c), please

notice that the solution of optimization problem with respect to S is independent of the number

of provided data points T . If the assumption of separability is fullfilled, then in the case of

solving the problem with respect to Γ, we can using Lemma 4 reformulate the original problem

as a set of T independent problems, whose dimension is (again) independent of T .

Let us present the connection between SPA and some of the commonly used discretization

(clustering) methods in following Corollaries.

Corollary 1 (Suboptimality of K-means). Measured in terms of squared Euclidean distance,

discretisations providided by K-means are always suboptimal to the discretisations obtained

with (SPA).

Proof. Let us consider dataX ∈ Rn,T . The aim of the K-means clustering algorithm [reference

(16) in the main manuscript] is to optimally partition given data into K disjoint clusters based

on the Euclidean distance from (unknown) optimal centroids of the clusters. The algorithm

computes these cluster centroids Sk ∈ Rn and binary affiliation Γ ∈ {0, 1}K,T , where Γk,t = 1

if xt belongs to k-th cluster and Γk,t = 0 otherwise. The corresponding optimization problem

is formulated as

[S∗,Γ∗] := arg
Γ

min
Γ∈ΩΓ

Lkmeans(S,Γ), Lkmeans(S,Γ) :=
K∑
k=1

T∑
t=1

Γk,t‖X(t)− Sk‖2
2 (10)



where ΩΓ ⊂ {0, 1}K,T includes the condition for strict affiliation of a point into exactly one

cluster, i.e.,

ΩΓ := {Γ ∈ {0, 1}K,T |∀t = 1, . . . , T :
K∑
k=1

Γk,t = 1}

The problem (10) is solved iteratively; the feasible initial approximation of affiliations Γ is

chosen randomly (the points are randomly affiliated to clusters) and afterwards, the iterative

procedure solves consecutively the problems with one fixed variable. In the case of K-means,

both of the subproblems have analytical solutions

S∗k =
1

T∑
t=1

Γk,t

T∑
t=1

Γk,tX(t), Γ∗k̄,t =

{
1 if k̄ = arg

k
min ‖X(t)− Sk‖

0 otherwise.
(11)

In fact, the scheme of the algorithm is the same as in the Algorithm 1 and one can easily check

that if Γ is binary variable and we choose distS(X(t),Γ(t)) :=
K∑
k=1

‖X(t)− SΓk(t)‖2
2 in (SPA)

(in following text denoted as (SPA2)) then

L(S,Γ) =
T∑
t=1

K∑
k=1

‖X(t)− SΓk(t)‖2
2 =

K∑
k=1

T∑
t=1

Γk,t‖X(t)− Sk‖2
2 = Lkmeans(S,Γ) (12)

and therefore K-means algorithm is equivalent to (SPA2).

The variant of K-means algorithm with relaxed binary condition is well-known as soft K-

means algorithm [C. Bauckhage: Lecture Notes on Data science: Soft k-Means Clustering,

B-IT, University of Bonn, doi:10.13140/RG.2.1.3582.6643. 2015] . In this case, Γk,t represents

the probability that X(t) is affiliated to the k-th cluster. The feasible set ΩΓ enforces the rows

of Γ to be a corresponding discrete probability density vector, i.e., each element is continuous

variable from [0, 1] and because of the law of the total probability, the sum of the elements of

this vector has to be equal to one. One can easily check that ΩΓ defined by (2) represents these

conditions. However in the case of continuous Γ, the equality (12) does not hold. Using the

Jensen’s inequality [J. Nocedal and S. J. Wright: Numerical Optimization. Springer, 2003] we



get

L(S,Γ) =
T∑
t=1

K∑
k=1

‖X(t)− SΓk(t)‖2
2 ≤

K∑
k=1

T∑
t=1

Γk,t‖X(t)− Sk‖2
2 = Lkmeans(S,Γ)

and therefore soft K-means algorithm produces only the upper estimation of the (SPA2) opti-

mization problem.

Corollary 2 (Suboptimality of FEM-BV and FEM-H1.). Measured in terms of squared Eu-

clidean distance, discretisations providided by FEM-BV and FEM-H1 methods are always sub-

optimal to the discretisations obtained with (SPA).

Proof. The family of FEM-BV and FEM-H1 methods consists of methods used for time series

analysis [reference (30) in the main manuscript] , [L. Pospı́šil, P. Gagliardini, W. Sawyer, and

I. Horenko: On a scalable nonparametric denoising of time series signals. Communications in

Applied Mathematics and Computational Science, 13:107138, 2018] . The idea is to extend

stationary models with clustering and additional time regularization for enforcing the model

time persistency.

In time series modelling, we suppose that the measured data x1, x2, . . . , xT ∈ Rn are de-

scribed by the parametric model ψ and include the additive noise, i.e.,

xt = ψ(t,Θ) + εt (13)

For instance one can consider autoregessive models, e.g., the Var-X model defined as

ψ(t,Θ) = µ+

p∑
i=0

Aixt−iτ +

q∑
j=0

Bjut−jτ (14)

where Θ = (µ,A0, . . . , Ap, B0, . . . , Bq) includes all model parameters, τ > 0 is a discretisation

time step, p, q ≥ 0 represent the size of memory, and ut denote the external factors or controls.

The aim of the analysis is to find parameters of the model which fit the given data xt, ut in an



optimal way, for example, one can utilize minimum least square error to formulate optimization

problem

Θ∗ := arg
Θ

min
T∑
t=1

‖xt − ψ(t,Θ)‖2
2 (15)

In the case of Var-X model (14) the optimization problem (15) is unconstrained quadratic pro-

gramming problem and the necessary optimality conditions formulate the corresponding system

of linear equations which has to be solved.

FEM-BV and FEM-H1 belong to the non-stationary models; here we suppose that the pa-

rameters of model Θ are non-stationary, i.e., they are changing (can change) in time. In general,

non-stationary model without any additional assumptions, e.g., restriction of the set of permis-

sible parameters, lead to ill-posed and biased results. In the case of FEM-BV and FEM-H1,

we include the assumption of the time persistency of model parameters introducing the finite

number of regimes (i.e., clusters) in which the model parameters are stationary. The switching

between those regimes is realized by a hidden regime-switching process, which describes the

activity of each regime in a given time. For example, if we consider stationary Var-X model

(14) on each of the K regimes, then the corresponding optimization problem is formulated as

[Θ∗,Γ∗] := arg
Θ,Γ

min
Γ∈ΩΓ

T∑
t=1

K∑
k=1

Γk,t‖xt − ψ(t,Θk)‖2
2 + ε2ΦΓ(Γ) (16)

where Θ = [Θ1, . . . ,ΘK ] includes (unknown) parameters of local models on regimes and Γk,:

are model indicator functions defined in similar as in the case of K-means, i.e., Γk,t = 1 if

the time series in time t is in k-th regime and and Γk,t = 0 otherwise. Regularization function

ΦΓ(Γ) with regularization parameter ε2 ≥ 0 enforces the time persistency of a regime-switching

process. In the case of FEM-BV, we consider Bounded variation (BV) norm defined as

ΦΓ(Γ) :=
K∑
k=1

T−1∑
t=1

|Γk,t+1 − Γk,t|

If we consider binary Γ then this value is equal to the number of switches between regimes and

the regularization by this function decreases the global number of switches in the solution. The



optimization problem (16) is solved using Algorithm 1, however, in this case the Γ subproblem

is not separable due to non-separable regularization term and this problem of dimension KT

has to be solved using linear programming algorithm. For extended details on the method see

[reference (30) in the main manuscript] .

It is straightforward to verify that the formulation of FEM-BV corresponds to (SPA) with

distance function defined as a local Euclidean distance between given data X(t) and the local

value of model ψ

distΘ(X(t),Γ(t)) := ‖X(t)− ψ(t,ΘΓ(t))‖2, ΘΓ(t) =
K∑
k=1

Γk,tΘk (17)

Similarly to the soft K-means clustering case considered in the Corollary 1 above, we can

relax the hard clustering property (i.e., the property that each data point is exclusively affiliated

to exactly one regime) considering Γk,t to be probability of affiliation of X(t) to k-th regime.

Each Γ:,t forms the discrete probability density vector of affiliation of X(t) to regimes and a

corresponding feasible set is given by (2). To include the assumption of time persistency, one

can adopt the H1 half-norm

ΦΓ(Γ) :=
K∑
k=1

T−1∑
t=1

(Γk,t+1 − Γk,t)
2

to get the FEM-H1 method, see [reference (30) in the main manuscript] . The problem is

solved by an Algorithm 1, the corresponding Γ subproblem is non-separable convex quadratic

programming problem of size KT , see [L. Pospı́šil, P. Gagliardini, W. Sawyer, and I. Horenko:

On a scalable nonparametric denoising of time series signals. Communications in Applied

Mathematics and Computational Science, 13:107138, 2018] .

Please notice that Θ depends linearly on variable Γ, the Var-X model depends linearly on

parameters Θ, and the distance function distΘ is convex in variable ψ. Summarizing these

properties we can state that distance function is convex in Γ (see [S. Boyd and L. Vandenberghe:



Convex Optimization. Cambridge University Press, New York, 1st edition, 2004] for the list of

operations which preserve convexity). Using the Jensen’s inequality we get

L(S,Γ) =
T∑
t=1

‖X(t)− ψ(t,ΘΓ(t))‖2
2 ≤

T∑
t=1

K∑
k=1

Γk,t‖X(t)− ψ(t,Θk)‖2
2 = LFEM(S,Γ)

This inequality holds also when we add any regularization ΦΓ(Γ) to the both sides. Hence,

FEM-BV and FEM-H1 algorithms produce only the upper estimation of the (SPA) optimization

problem with a corresponding choice of distance function and regularization.

SPA in the Euclidean space

We suppose the data from real n-dimensional vector space X := Rn and Euclidean distance

measure on X defined by

distS(X(t),Γ(t)) :=
K∑
k=1

‖X(t)− SΓk(t)‖2
2

For the simplicity, we compose the vectors into matrices

X := [X(1), . . . , X(T )] ∈ Rn,T , Γ := [Γ(t), . . . ,Γ(T )] ∈ RK,T , S ∈ Rn,K

and afterwards, the corresponding optimization problem (SPA) without regularization can be

written in a form

[S∗,Γ∗] := arg
S,Γ

min
Γ∈ΩΓ

‖X − SΓ‖2
F (SPA2)

where F denotes Frobenius norm and the feasible set is defined by

ΩΓ := {Γ ∈ RK,T | ∀t = 1, . . . , T ∀k = 1, . . . , K :
K∑
k=1

Γk,t = 1,Γk,t ≥ 0} (18)

Lemma 5. The solution of problem (SPA2) is always non-unique for any K > 1.

Proof. Let us consider an arbitrary solution [S∗,Γ∗] and nonsingular matrix R ∈ RK,K , R 6=

IK,K such that RΓ ∈ ΩΓ. Such a matrix always exists, e.g., we can consider a permutation



matrix which permutes the rows of Γ, i.e., the indexes of clusters. Since we can write

L(S∗,Γ∗) = ‖X − S∗Γ∗‖2
F = ‖X − S∗R−1R︸ ︷︷ ︸

=I

Γ∗‖2
F = L(S∗R−1, RΓ∗)

we can state that feasible [S∗R−1, RΓ∗] 6= [S∗,Γ∗] has the same (minimal) function value and

therefore it also solves the problem.

Optimality conditions

We define the Lagrange function [J. Nocedal and S. J. Wright: Numerical Optimization.

Springer, 2003] corresponding to optimization problem (SPA2) by

L(S,Γ, λE, λI) := ‖X − SΓ‖2
F +

T∑
t=1

λEt

(
K∑
k=1

Γk,t − 1

)
−

T∑
t=1

K∑
k=1

λIk,tΓk,t

Here λE ∈ RT are Lagrange multipliers corresponding to equality constraints defined by the

feasible set (18) and λI ∈ RK,T denotes the Lagrange multipliers corresponding to the non-

negativity bound constraints in (18).

The full system of Karush-Kuhn-Tucker (KKT) optimality conditions for this system will

be:

∇SL(S,Γ, λE, λI) = − 2XΓT + 2SΓΓT = 0 (19)

∇ΓL(S,Γ, λE, λI) = − 2STX + 2STSΓ + (λE)T ⊗ 1K − λI = 0 (20)

∇λEL(S,Γ, λE, λI) = ΓT1K − 1T = 0 (21)

∇λIL(S,Γ, λE, λI) = − Γ ≤ 0 (22)

λI ≥ 0 (23)

∀k, t : λIk,tΓk,t = 0 (24)



where 1K ∈ RK ,1T ∈ RT denotes the vectors of ones. Equations (19) and (20) are first-order

optimality conditions, equation (21) and inequality (22) are constraints given by the definition of

the feasible set (18), inequality (23) preserves the non-negativity of inequality Lagrange mul-

tipliers, and equations (24) represent the so-called complementarity conditions for inequality

constraints.

The solution of S subproblem

Lemma 6 (The solution of S-problem). Let Γ ∈ ΩΓ in problem (SPA2) be fixed. Then the

system of all solutions of optimization problem (SPA2) with respect to S is given by

S∗ = XΓT
(
ΓΓT

)+
+ αTRT , with parameter α ∈ Rr,n (25)

where
(
ΓΓT

)+ ∈ RK,K denotes the pseudoinverse (i.e., the matrix such that AA+A = A,

A+AA+ = A+, (AA+)T = AA+, and (A+A)T = A+A) of matrix ΓΓT , R ∈ RK,r is a matrix

whose columns form the basis of the null space of ΓT , i.e.

ImR = Ker ΓT (26)

and r = dim Ker ΓT denotes the nullity of matrix ΓT .

Proof. Please notice that the objective function of (SPA2) in terms of variable S is continuously

differentiable convex matrix quadratic function. The necessary optimality condition of given

unconstrained optimization problem is given by (19). This system of linear equations with

multiple right-hand side vectors with symmetric positive semi-definite system matrix always

has a solution. If the system matrix is non-singular, then the unique solution is given by

S∗ = XΓT (ΓΓT )−1

However, the non-singularity of system matrix ΓΓT ∈ RK,K (and consequently, the existence of

inverse matrix) is not guaranteed - since Ker ΓΓT = Ker ΓT (see [A. J. Laub: Matrix Analysis



For Scientists And Engineers. Society for Industrial and Applied Mathematics, 2014] ) we

can see that if and only if Γ has linearly independent rows, then matrix ΓΓT is non-singular

(invertible). The system of all solutions is given by (25) where all solutions differ by the vector

from Ker ΓΓT , see [Z. Dostál: Optimal Quadratic Programming Algorithms, with Applications

to Variational Inequalities. SOIA, 2009] .

Next we deal with the eventual ill-posedness of the optimization problem (SPA2) in variable

S, or equivalently, with the ill-posedness of the system of linear equations (19). Deploying

Tykhonov-regularization, we reformulate the original (SPA) problem choosing the regulariza-

tion function

ΦS(S) :=
1

nK(K − 1)

n∑
i=1

K∑
k1=1

K∑
k2=1

(Si,k1 − Si,k2)2 (27)

and consider regularization parameter ε2
S > 0. Please notice that the solution of the optimization

problem in term of variable S is independent on the choice of regularization function ΦΓ. The

following Lemma 8 proves that (27) guarantees the unique solvability of S-problem.

Lemma 7. The computational complexity of solving S subproblem in (SPA2) isO(K3 +KnT ),

with the memory complexity of O(K2 + nK).

Proof. The first step in solving the S subproblem is the assembly of the matrix ΓΓT and of the

matrix of the right hand-side vectorsXΓT in an equation (19). Let us remind that the complexity

of computing matrix-matrix multiplication of general (non-sparse) matrices A ∈ Rn,m and

B ∈ Rm,p isO(nmp), therefore in our case, the overall complexity of assembling the problem is

O(TK2)+O(nTK). The memory required to store these two new matrices isO(K2)+O(nK).

In general, the direct methods for solving a system of linear equation Ax = b, A ∈ Rm,m

have the complexity of order O(m3). Iterative methods, like Krylov subspace algorithms, are

based on the iterations where the computational complexity scaling in the leading order is dom-

inated by the multiplication with a system matrix A, which is of order O(m2). Number of



iterations needed for the convergence, when using a suitable preconditioner, is usually much

less than O(n). Therefore, the overall work for solving the system of linear equations is less

than O(m3). In general, numerical linear algebra algorithms for this purpose are using the aux-

iliary vectors of dimension Rm, whose number is independent on the dimension of the problem.

Therefore, the amount of additional memory used for solving the system of linear equations is

of the order O(m).

Applying these general results to S subproblem which consists of T linear systems of di-

mension K, we obtain the total computational complexity O(TK3) and a memory complexity

O(TK). Since the system matrix is the same for all subsystems, therefore one can compute

pseudoinverse and use (25) directly, which will lead to the total computational complexity of

O(n3) +O(K2T ). In practial applications the computation of pseudoinverse is typically much

slower than solving the system of linear equations.

Corollary 3. In the case of K-means algorithm, the evaluation of analytical solution S∗ (11)

consists of computing two sums with the computational complexity O((n + K)T ). To compute

the sum, one has to use additional auxiliary vector of dimension O(K).

Lemma 8 (S-problem with regularization). Let Γ ∈ ΩΓ in problem (SPA2) with additional

regularization function (27) be fixed. Then for any ε2
S > 0 the problem with respect to S has a

unique solution given by

S∗ = XΓTH−1
εS
, HεS := ΓΓT +

2ε2
S

nK(K − 1)
(KIK,K − 1K,K) (28)

where IK,K ∈ RK,K is identity matrix and 1K,K ∈ RK,K is a matrix full of ones. Moreover,

spectrum of the regularized Hessian matrix HεS is bounded by

λmin(HεS) ≥ min
{
T
K
, 2εS

2

n(K−1)

}
λmax(HεS) ≤ ‖ΓΓT‖2 + 2εS

2

n(K−1)

(29)



Proof. The gradient of the original objective function L in (SPA2) without regularization is

given by the left-hand side of (19). Let us focus on the gradient of regularization function

whose components are given by (for every i ∈ {1, . . . , n}, k ∈ {1, . . . , K})

[∇ΦS(S)]i,k = 1
nK(K−1)

(
K∑

k2=1

2(Si,k − Si,k2)−
K∑

k1=1

2(Si,k1 − Si,k)
)

= 2
nK(K−1)

(
2KSi,k − 2

K∑
k1=1

Si,k1

)
= 4

nK(K−1)
(KSi,k − Si,:1K)

where 1K ∈ RK is a column vector of ones. It is easy to see that the whole gradient can be

written as

∇ΦS(S) =
4

nK(K − 1)
(KS − S1K,K)

and therefore the necessary optimality condition of the regularized problem is given by the

solution of a regularized linear system of equations

− 2XΓT + 2S

(
ΓΓT +

2ε2
S

nK(K − 1)
(KIK,K − 1K,K)

)
= 0 (30)

It remains to show that the system matrix is non-singular for any ε2
S > 0 and therefore we will

be able to multiply the whole equation with the matrix inverse to obtain a unique solution.

Please notice that the matrix GK := KIK,K − 1K,K is a Laplacian matrix of the complete

graph on K nodes. The spectrum is composed from one zero eigenvalue with corresponding

eigenvector full of ones (i.e., KerGK = span{1K}), and eigenvalues of value K with multi-

plicity K − 1, see [F. R. K. Chung: Spectral Graph Theory. American Mathematical Society,

1997] .

For the simplicity, let us denote ε̂ :=
2ε2S

nK(K−1)
> 0. For any non-zero y ∈ RK we can

differentiate two cases

• if y /∈ KerGK then yTGKy = KyTy and

yT
(
ΓΓT + ε̂GK

)
y = yTΓΓTy︸ ︷︷ ︸

≥0

+ε̂ yTGKy︸ ︷︷ ︸
=KyT y

≥ ε̂KyTy > 0 (31)



• if y ∈ KerGK = span{1K} then there exists a non-zero α ∈ R such that the non-zero

y can be written as y = α1K . Using the equality constraints of the feasible set ΩΓ (18)

written in a form ΓT1K = 1T we can state that

yTΓΓTy = α2
1
T
KΓΓT1K = α2

1
T
T1T = α2T =

T

K
α2
1
T
K1K =

T

K
yTy > 0

and consequently

yT
(
ΓΓT + ε̂GK

)
y = yTΓΓTy︸ ︷︷ ︸

= T
K
yT y

+ ε̂yTGKy︸ ︷︷ ︸
=0

=
T

K
yTy > 0 (32)

This proves that yT (ΓΓT + ε̂GK)y > 0 for any y 6= 0, i.e., that the system matrix in (30) is

symmetric positive definite and therefore there exists a unique solution of this system given by

(28). This also proves that the original objective function of a problem (SPA2) with a regular-

ization (27) for any fixed ε2
S > 0 is strictly convex and the optimization problem with bounded

closed convex feasible set (18) has a unique minimizer. Since for any symmetric matrix and

any non-zero y it holds that yTAy ≥ λmin(A)yTy, we can combine (31) and (32) to prove the

lower bound estimate in (29). To prove the upper bound estimate, one can use a property of the

norm and the eigenvalues of a complete graph Laplace matrix

‖HεS‖2 = ‖ΓΓT + ε̂(KIK,K − 1K,K)‖2 ≤ ‖ΓΓT‖2 +
2ε2

S

n(K − 1)

Lemma 9 (Uniqueness of reconstruction with fixed Γ). Let [S1∗,Γ1∗] and [S2∗,Γ2∗] be two

solutions of (SPA2) for given dataX . Let us denote the appropriate reconstructions byXrec1 :=

S1∗Γ1∗ and Xrec2 := S2∗Γ2∗. If Γ1∗ = Γ2∗ then Xrec1 = Xrec2.

Proof. From the optimality conditions, S1∗ and S2∗ solves (SPA2) with fixed Γ := Γ1∗ = Γ2∗.

All solutions of corresponding QP differ by a vector from kernel of Hessian matrix (see [Z.



Dostál: Optimal Quadratic Programming Algorithms, with Applications to Variational Inequal-

ities. SOIA, 2009] , [L. Pospı́šil, P. Gagliardini, W. Sawyer, and I. Horenko: On a scalable

nonparametric denoising of time series signals. Communications in Applied Mathematics and

Computational Science, 13:107138, 2018] , and (25)) and using Lemma 21 we get

Xrec1 −Xrec2 = (S1∗ − S2∗)︸ ︷︷ ︸
∈Ker ΓΓT=Ker ΓT

Γ = 0

Lemma 10 (Derivative of a solution with fixed the Γ). Let Γ ∈ ΩΓ in a problem (SPA2) with

an additional regularization function (27) be fixed and let S∗(X) be a solution (28) for any X .

Then, for any j = 1, . . . , n and t = 1, . . . , T∥∥∥∥∂S∗(X)

∂Xj,t

∥∥∥∥
2

≤ 1

λmin(HεS)
≤ 1

min
{
T
K
,

2ε2S
n(K−1)

} (33)

where λmin(HεS) is the smallest eigenvalue of the regularized Hessian matrix HεS , given by

(28) and further estimated using (29).

Proof. We use the Fréchet-derivative definition

∂S∗(X)

∂Xj,t

= lim
δ→0

S∗(X + δej,t)− S∗(X)

δ‖ej,t‖2

= lim
δ→0

S∗(X + δej,t)− S∗(X)

δ

where ej,t ∈ Rn,T is a standard basis vector with elements defined by

i = 1, . . . , n, τ = 1, . . . , T : [ej,t]i,τ :=

{
1, if i = j and τ = t,
0, elsewhere.

Using the solution (28), the norm of this Fréchet-derivative can be estimated as∥∥∥∥∂S∗(X)

∂Xj,t

∥∥∥∥
2

= lim
δ→0

‖S∗(X + δej,t)− S∗(X)‖2

δ
= lim

δ→0

δ
∥∥ej,tΓTH−1

εS

∥∥
2

δ
=
∥∥ejγTt H−1

εS

∥∥
2
,

where ej ∈ Rn is a vector of the standard unit orthonormal basis and γt := Γ:,t. Using the

properties of the norm, we can further estimate∥∥ejγTt H−1
εS

∥∥
2
≤ ‖ej‖2‖γt‖2

∥∥H−1
εS

∥∥
2
≤
∥∥H−1

εS

∥∥
2

= λmax(H−1
εS

) =
1

λmin(HεS)



Corollary 4. In the case of K-means, the indicator functions Γ are binary and

H0 = ΓΓT =

 N1

. . .
NK

 ∈ RK,K , Nk :=
T∑
t=1

Γk,t

where Nk ≥ 0 denotes the number of points affiliated to k-th cluster. The eigenvalues of diago-

nal matrix H0 are equal to the values on the diagonal, therefore upper estimation (33) depends

only on the inverse value of the smallest cluster size; it is independent on both of the data size

and the number of clusters.

The solution of Γ subproblem

In this Section, we suppose that in the optimization problem (SPA2) the variable S is fixed

and it remains to solve the problem in a variable Γ only (the second optimization problem of

Algorithm 1). In this case, the objective function is additivelly separable and it can be written

in the form of separable Quadratic Programming (QP) problems with linear equality and bound

constraints.

Lemma 11. The solution of (SPA2) with fixed S is equivalent to the solution of T independent

QP problems

γ∗t := arg
γ

min
γ∈Ωγ

1

2
γTAγ − bTt γ, Ωγ := {γ ∈ RK | Bγ = c, γ ≥ 0} (34)

where
A := 2STS, bt := STxt, B := 1

T
K , c := 1

X = [x1, . . . , xT ] ∈ Rn,T

and the original solution of (SPA2) can be composed as

Γ∗ := [γ∗1 , . . . , γ
∗
T ] ∈ RK,T



Proof. From the definition of Frobenius norm and matrix-matrix multiplication we have

‖X − SΓ‖2
F =

T∑
t=1

‖xt − Sγt‖2
2 =

T∑
t=1

(
xTt xt − 2xTt Sγt + γTt S

TSγt
)

∝
T∑
t=1

1
2
γTt (2STS)γt − (STxt)

Tγt

Moreover, it is easy to check that the composition of Ωγ for all γt, t = 1, . . . , T forms the

original feasible set ΩΓ (see (2) and (3)). Then using Lemma 4 the problem can be rewritten as

the solution of the separated subproblems.

From the computational point of view, the Γ-problem is more challenging since one has

to deal with optimization problems on the fasible set described by the combination of linear

equality constraints and bound constraints. In the case of QP (34), the subproblems can be

solved by the Interior-Point methods or by the Augumented Lagrangian methods combined with

Active-set approach [J. Nocedal and S. J. Wright: Numerical Optimization. Springer, 2003]

, [Z. Dostál: Optimal Quadratic Programming Algorithms, with Applications to Variational

Inequalities. SOIA, 2009] . In our implementation we use the fact that the feasible set Ωγ is

the simplex of size K. Since the objective function is continuously differentiable, then one

can use Projected Gradient Descent methods, for example Spectral projected gradient method

for QP [E. G. Birgin, J. M. Martinez, and M. M. Raydan: Nonmonotone spectral projected

gradient methods on convex sets. SIAM Journal on Optimization, 10:11961211, 2000] , [L.

Pospı́šil, P. Gagliardini, W. Sawyer, and I. Horenko: On a scalable nonparametric denoising

of time series signals. Communications in Applied Mathematics and Computational Science,

13:107138, 2018] .

Lemma 12. The computational complexity of decreasing the objective function in Γ for a fixed

A in (SPA2) is O(nK2 + nKT + TK2), with a memory complexity of O(K2 +KT ).

Proof. The complexity of assembling this QP problem is given by the complexity of a matrix-

matrix multiplications STS and STX , which is O(nK2 + nKT ). These objects require a



memory of the order O(K2 +KT ).

The number of iterations required for solving this QP problem on convex sets depends on

the spectral properties of its Hessian matrix [Z. Dostál: Optimal Quadratic Programming Al-

gorithms, with Applications to Variational Inequalities. SOIA, 2009] . Let us focus on one

iteration, which will decrease the value of an objective function (34). Such a decrease can be

obtained using a projected gradient descend step

γk+1 = PΩγ (γ
k − ᾱ∇f(γk)) (35)

with a step-length ᾱ ∈ (0, ‖A‖−1). Decrease of the function value for a convex QP on a general

closed convex set has been proven in [Z. Dostál: On the decrease of a quadratic function

along the projected-gradient path. ETNA, 2008] and [L. Pospı́šil and Z. Dostál: The projected

Barzilai-Borwein method with fall-back for strictly convex QCQP problems with separable

constraints. Mathematics and Computers in Simulation, 145:7989, 2018] .

The computational complexity of computing the gradient in (35) is O(K2) because of the

Hessian matrix multiplication. Computational iteration complexity of the projection onto a

simplex is of order O(K2), see [Y. Chen and X. Ye: Projection onto a simplex. Unpublished

manuscript, arXiv:1101.6081, 2011] . Since the step has to be performed for all γt, the overal

complexity is O(TK2). The step for each γt requires auxiliary vectors of additional memory

O(K), therefore a computation of the whole Γ takes additional O(KT ) of memory.

Corollary 5. In the case of K-means algorithm, the evaluation of analytical solution Γ∗ (11)

consists of evaluation of local error and finding the maxima for all data points. The computa-

tional complexity is O(nKT ) and the size of auxiliary vectors is O(KT ).

Lemma 13. The computational complexity of one iteration of (SPA2) isO(nKT+(n+T )K2+

K3), with a memory complexity of O(K2 + (n+ T )K).

Proof. The Lemma is a direct combination of Lemma 7 and Lemma 12.



Corollary 6. The complexity of one iteration of K-means algorithm can be obtained combining

Corollary 3 and Corollary 5. The computational complexity is O(nKT + (n + K)T ) and the

memory complexityO(KT+K+n). In practical big data applications the dimension n and the

statistics size T are much larger then the discretisation dimension K. It means that in such sit-

uations both K-means and SPA will have the same leading order of the computational iteration

complexityO(nkT ) and the same leading order of the required memory in T , beingO(KT ). In

contrast, spectral clustering methods (like LSD, PCCA+) and density-based clustering meth-

ods (like DBSCAN and “mean shift”) will have the leading order in both the computational

complexity and in the required memory scaling ranging between O(T log(T )) and O(T 2).

Lemma 14. Let S ∈ Rn,K be fixed. Function γ∗ : Rn → Ωγ defined as

γ∗(x) := arg
γ

min
γ∈Ωγ
‖x− Sγ‖2

2

is a continuous piecewise linear function.

Proof. Let us consider arbitrary x1, x2 ∈ Rn and corresponding γ1 := γ∗(x1), γ2 := γ∗(x2).

Since both of these values solve the optimization problem, there exist appropriate Lagrange

multipliers λI1, λ
E
1 , λ

I
2, λ

E
2 such that the KKT optimality conditions (20), (21), (22), (23), (24)

are satisfied in the form

−2STxt + 2STSγt + λEt 1K − λIt = 0 (36)

γTt 1K = 1 (37)

γt, λ
I
t ≥ 0 (38)

∀k : {λIt}k{γt}k = 0 (39)

for both of the given t ∈ {1, 2}. Let us consider parameter α ∈ [0, 1], build a convex combina-



tion of equations (36) and get

− 2STxα + 2STSγα + λEα1K − λIα = 0 (40)

where we denoted
xα := (1− α)x1 + αx2

γα := (1− α)γ1 + αγ2

λEα := (1− α)λE1 + αλE2

λIα := (1− α)λI1 + αλI2

(41)

It is easy to see that (40) can be considered as the first KKT optimality condition for any xα

which lies on the line connecting x1, x2. In this case, the solution γα = γ∗(xα) of the cor-

responding optimization problem can be built as a linear combination of γ1, γ2 with the same

coeficient. The conditions (37) and (38) for γα are also satisified since the feasible set Ωγ is

convex (and every convex combination of points inside the convex set is also in this set) and/or

one can directly check that for any α ∈ [0, 1]

γTα1K = (1− α) γT1 1K︸ ︷︷ ︸
=1

+α γT2 1K︸ ︷︷ ︸
=1

= 1

γα = (1− α)γ1︸ ︷︷ ︸
≥0

+ αγ2︸︷︷︸
≥0

≥ 0

λIα = (1− α)λI1︸ ︷︷ ︸
≥0

+ αλI2︸︷︷︸
≥0

≥ 0

The reason why the function γ∗ is not linear for general x1, x2 is the complementarity con-

dition. If we substitute (41) into (39) for α, we obtain

∀k : {λIα}k{γα}k = α(1− α)
(
{λI1}k{γ2}k + {λI2}k{γ1}k

)
= 0

Since (38) and (39) such a condition is satisfied for all α ∈ [0, 1] if and only if for all k

{λI1}k = {λI2}k = 0 and/or {γ1}k = {γ2}k = 0

The line connecting x1, x2 can be splitted into the segments which satisfied these conditions and

therefore the function γ∗ is piecewise linear.



Corollary 7. Let S be fixed and let us define a function

Xrec(X) := SΓ∗(X), where Γ∗(X) := arg
Γ

min
Γ∈ΩΓ

‖X − SΓ‖F

It is easy to see that this function linearly depends on Γ∗(X) and since this separable function

is composed from linear functions (see Lemma 14) the derivative

∂Xrec

∂X

is a piecewise constant function.

Lemma 15. Let K = 2, S ∈ Rn,2, x ∈ Rn be given. Then the optimization problem

γ∗ := arg
γ

min
γ∈Ωγ

L(γ), L(γ) := ‖x− Sγ‖2
2

Ωγ := {γ ∈ R2 | γ1 + γ2 = 1, γ1, γ2 ≥ 0}

has a solution

γ∗ = [P[0,1](α1), P[0,1](α2)]T , α1 =
〈x− S2, S1 − S2〉
‖S1 − S2‖2

2

, α2 = −〈x− S1, S1 − S2〉
‖S1 − S2‖2

2

(42)

where P[0,1](α) is a projection of α ∈ R onto interval [0, 1] given by

P[0,1](α) := arg
β

min
β∈[0,1]

(α− β)2 = max{0,min{1, α}} (43)

Proof. Let us denote the columns of matrix S = [S1, S2]. The KKT optimality conditions (20),

(21), (22), (23), (24) form the system

− 2

[
ST1
ST2

]
x+ 2

[
〈S1, S1〉 〈S1, S2〉
〈S2, S1〉 〈S2, S2〉

]
γ +

[
λE
λE

]
−
[
λI1
λI2

]
= 0 (44)

γ1 + γ2 = 1 (45)

γ1, γ2, λI1 , λI2 ≥ 0 (46)

λI1γ1 = λI2γ2 = 0 (47)



Using the equality (45), we can eliminate variable γ2 = 1 − γ1 in (44). Additionally, we can

substract the equations and after some manipulations we obtain

−〈x− S2, S1 − S2〉+ γ1〈S1 − S2, S1 − S2〉 −
λI1 − λI2

2
= 0

Using the notation (42) for α1 and including the remaining KKT conditions (46) and (47), we

end up with the equivalent system

γ∗1 = α1 +
λI1 − λI2

2
, 0 ≤ γ∗1 ≤ 1, λI1 , λI2 ≥ 0, λI1γ

∗
1 = λI2(1− γ∗1) = 0 (48)

The same system of equations and inequalities can be obtained as KKT system of projection

optimization problem (43); here the Lagrange function is given by

L(β, λI) := α2 − 2αβ + β2 − λI2β − λI1(1− β)

and the KKT optimality conditions can be derived and modified as

∂L
∂β

= −2α + 2β − λI2 + λI1 = 0 ⇒ β∗ = α− λI1−λI2
2

0 ≤ β∗ ≤ 1, λI1 , λI2 ≥ 0, λI1β
∗ = λI2(1− β∗) = 0

(49)

We see that if we denote the output of projection as γ∗1 = β∗ = P[0,1](α1) (like in the presented

solution (42)) then systems (49) and (48) are the same.

The similar process can be performed to obtain γ∗2 , however, in this case, we use γ1 = 1−γ2

to eliminate variable in (44).

Lemma 16 (Uniqueness of reconstruction with fixed S). Let [S1∗,Γ1∗] and [S2∗,Γ2∗] be two

solutions of (SPA2) for given dataX . Let us denote the appropriate reconstructions byXrec1 :=

S1∗Γ1∗ and Xrec2 := S2∗Γ2∗. If S1∗ = S2∗ then Xrec1 = Xrec2.

Proof. From the optimality conditions, Γ1∗ and Γ2∗ solves (SPA2) with fixed S := S1∗ = S2∗.

All solutions of corresponding QP for every t = 1, . . . , T differ by a vector from kernel of Hes-

sian matrix (see [Z. Dostál: Optimal Quadratic Programming Algorithms, with Applications to



Variational Inequalities. SOIA, 2009] ) and using Lemma 21 we get

Xrec1 −Xrec2 = S (γ1∗
t − γ2∗

t )︸ ︷︷ ︸
∈KerSTS=KerS

= 0

Computing optimal discretisations for Bayesian and Marko-
vian models

Theorem 2. Let xt ∈ Rn and yt ∈ Rm be two time series of length T , X = [x1, . . . , xT ] ∈

Rn,T , Y = [y1, . . . , yT ] ∈ Rm,T . The solution of (SPA2) in the form

[S∗ε ,Γ
∗
x] = arg

S,Γ
min

Γx∈ΩΓ

‖Xε − SεΓx‖2
F (50)

with

Xε :=

[
Y
εX

]
, Sε :=

[
SyΛ
εSx

]
(51)

and ε ≥ 0 is equivalent to the solution of (SPA2) problems

[S∗x,Γ
∗
x] := arg

Sx,Γx

min
Γx∈ΩΓ

‖X − SxΓx‖2
F (52)

[S∗y ,Γ
∗
y] := arg

Sy ,Γy

min
Γy∈ΩΓ

‖Y − SyΓy‖2
F (53)

in Tikhonov-sense with regularization parameter ε and Λ ∈ RK,T is left-stochastic matrix of

conditional probabilities such that the discrete Bayesian and Markovian model equations

Γy = ΛΓx (54)

are satisfied.

Proof. The combination of problems (52) and (53) into one optimization problem using Tikhonov-

based approach is given by

[S∗x,Γ
∗
x, S

∗
y ,Γ

∗
y] = arg

Sx,Γx,
Sy ,Γy

min
Γx,Γy∈ΩΓ

‖Y − SyΓy‖2
F + ε‖X − SxΓx‖2

F (55)



where ε ≥ 0 is a Tykhonov-regularisation parameter, controlling the relative importance of the

X-discretisation problem with respect to the Y-discretisation problem. Substituting (54) into

(55) and using the properties of Frobenius norm, we can write the objective function in form

‖Y − SyΓy‖2
F + ε‖X − SxΓx‖2

F =

∥∥∥∥[ Y
εX

]
−
[
SyΓy
εSxΓx

]∥∥∥∥2

F

=

∥∥∥∥[ Y
εX

]
−
[
SyΛ
εSx

]
Γx

∥∥∥∥2

F

Getting use of (51) we can reformulate optimization problem (55) into form (50).

Sensitivity and feature selection with SPA in the Euclidean
space

Lemma 17. Let S ∈ Rn,K be given. We consider x ∈ Rn and its small perturbation x+d ∈ Rn.

Let us denote γ∗x and γ∗x+d the optimal probabilistic discretisations of x and x + d with respect

to S, i.e.,

γ∗x := arg
γ

min
γ∈Ωγ

Lx(γ), Lx(γ) := ‖x− Sγ‖2
2

γ∗x+d := arg
γ

min
γ∈Ωγ

Lx+d(γ), Lx+d(γ) := ‖(x+ d)− Sγ‖2
2

(56)

and Ωγ = {γ ∈ RK :
K∑
k=1

γk = 1 ∧ γ ≥ 0} is a feasible set. Then

‖γ∗x+d − γ∗x‖2
STS ≤ 〈d, S(γ∗x+d − γ∗x)〉 (57)

where ‖γ‖STS =
√
〈STSγ, γ〉 is a seminorm on RK induced by the scalar product with a

symmetric positive semidefinite matrix STS.

Proof. Using Lemma 22 we state that the point γ∗ is a solution of optimization problem if and

only if

〈∇Lx(γ∗x), γ − γ∗x〉 ≥ 0 ∀γ ∈ Ωγ (58)

〈∇Lx+d(γ
∗
x+d), γ − γ∗x+d〉 ≥ 0 ∀γ ∈ Ωγ (59)



Since the feasible set is the same for both of optimization problems and consequently γ∗x, γ
∗
x+d ∈

Ωγ , we can choose γ = γ∗x+d in (58) and γ = γ∗x in (59). We get

〈∇Lx(γ∗x), γ∗x+d − γ∗x〉 ≥ 0
〈∇Lx+d(γ

∗
x+d), γ

∗
x − γ∗x+d〉 ≥ 0

and the sum of these inequalities gives us

〈∇Lx(γ∗x)−∇Lx+d(γ
∗
x+d), γ

∗
x+d − γ∗x〉 ≥ 0 (60)

The gradient of the continuously differentiable objective functions can be computed as

∇Lx(γ) = −2STx+ 2STSγ, ∇Lx+d(γ) = −2ST (x+ d) + 2STSγ

and substituted into (60) to get

〈STd− STS(γ∗x+d − γ∗x), γ∗x+d − γ∗x〉 ≥ 0

Using the properties of a scalar product, we can rewrite this inequality as (57).

Corollary 8. Let us consider an arbitrary point x ∈ Rn and its perturbation in j-th feature

xh := x+ hej, {ej}i :=

{
1, if i = j,
0, if i 6= j.

Let us denote a so-called reconstruction of these points by xrec
x := Sγ∗x and xrec

xh
:= Sγ∗xh . Since

the seminorm on the left hand-side of (57) is non-negative, we get using simple subtitution

0 ≤ 〈hej, S(γ∗x+d − γ∗x)〉 = h
(
{xrec

xh
}j − {xrec

x }j
)

= ({xxh}j − {xx}j)
(
{xrec

xh
}j − {xrec

x }j
)

We can conclude that the sign of the feature change in the data is the same as the sign of the

feature change in corresponding reconstructions.

Corollary 9. Using Cauchy-Bunyakovsky-Schwarz inequality we can further estimate (57) to

form

‖γ∗x+d − γ∗x‖2
STS ≤ 〈d, S(γ∗x+d − γ∗x)〉 ≤ ‖d‖.‖γ∗x+d − γ∗x‖STS



and therefore

‖γ∗x+d − γ∗x‖STS ≤ ‖d‖

or using the notation for xrec

‖xrec
x1
− xrec

x2
‖ ≤ ‖x1 − x2‖ (61)

for any x1, x2 ∈ Rn.

The original optimization problem can then be rewritten as a projection problem to the set

of all possible reconstructed points Ωrec ⊂ Rn

γ∗ = arg
γ

min
γ∈Ωγ
‖x− Sγ‖, xrec = Sγ∗

m
xrec = PΩrec(x) := arg

y
min
y∈Ωrec

‖x− y‖, Ωrec := {Sγ, γ ∈ Ωγ}

In such a case the projection will always be a non-expansive operator, i.e.,

∀x1, x2 ∈ Rn : ‖PΩrec(x1)− PΩrec(x2)‖ ≤ ‖x1 − x2‖

Additionally, the distance between any xrec
1 , xrec

2 ∈ Ωrec can be bounded by the largest

distance in the feasible set. In the case of the polytope Ωrec, the largest distance is given by

the largest distance between the vertices stored in columns of matrix S, i.e.,

‖xrec
1 − xrec

2 ‖2 ≤ max
k1,k2

‖Sk1 − Sk2‖2 (62)

Theorem 3. For a sufficiently large T , let [S∗,Γ∗] denote the solution of (SPA2) for X ∈ Rn,T .

Let Xrec(X) := S∗(X)Γ∗(X) denote a reconstruction of the optimal discrete approximation of

a data X . Then for any dimension j = 1, . . . , n and for any t = 1, . . . , T it holds that

1.) if K = 2 then ∥∥∥∥∂Xrec
:,t

∂Xj,t

∥∥∥∥
2

≤
|S∗j,1 − S∗j,2|
‖S∗:,1 − S∗:,2‖2

(63)

2.) if K ≥ 2 then ∥∥∥∥∂Xrec:,t

∂Xj,t

∥∥∥∥
2

≤ 1 (64)



Proof. Using the chain rule we get

∂Xrec
:,t

∂Xj,t

=
∂S∗(X)Γ∗:,t(X)

∂Xj,t

=
∂S∗Γ∗:,t(X)

∂S∗
∂S∗(X)

∂Xj,t

+
∂S∗(X)Γ∗:,t

∂Γ∗:,t

∂Γ∗:,t(X)

∂Xj,t

The first term represents the derivate of the recontruction with fixed Γ∗. We already proved

in Lemma 10 that the upper estimation of the norm of this derivative depends on the smallest

eigenvalue of matrix ΓΓT . We will assume that T is sufficiently large in a such way that the

smallest eigenvalue is sufficiently large and therefore this norm is sufficiently small. In this

case, the norm of a derivative depends only on the second term of the above expression, i.e., we

approximate ∥∥∥∥∂Xrec
:,t

∂Xj,t

∥∥∥∥
2

≈
∥∥∥∥∂S∗(X)Γ∗:,t

∂Γ∗:,t

∂Γ∗:,t(X)

∂Xj,t

∥∥∥∥
2

=

∥∥∥∥S∗∂Γ∗:,t(X)

∂Xj,t

∥∥∥∥
2

This value represents the norm of a derivative of a reconstruction with fixed S∗, therefore in the

following proof we will suppose that S∗ is fixed.

1.) In the case of K = 2, we can use an analytical solution of γ∗(xt) := Γ∗:,t(X) provided by

the Lemma 15. Since (for given S = [S:,1, S:,2] ∈ Rn,2 and for any xt ∈ Rn)

γ∗1(xt) =


0, if α1 < 0
1, if α1 > 1
α1, elsewhere

, γ∗2(xt) =


0, if α2 < 0
1, if α2 > 1
α2, elsewhere

the derivatives are given by

∂γ∗1(xt)

∂Xj,t

=

{
0, if α1 < 0 or α1 > 1,
∂α1

∂Xj,t
, elsewhere,

∂γ∗2(xt)

∂Xj,t

=

{
0, if α2 < 0 or α2 > 1,
∂α2

∂Xj,t
, elsewhere,

(65)

where
∂α1

∂Xj,t
= ∂

∂Xj,t

(
〈xt−S∗

:,2,S
∗
:,1−S∗

:,2〉
‖S∗

:,1−S∗
:,2‖22

)
=

S∗
j,1−S∗

j,2

‖S∗
:,1−S∗

:,2‖22
,

∂α2

∂Xj,t
= ∂

∂Xj,t

(
− 〈xt−S

∗
:,1,S

∗
:,1−S∗

:,2〉
‖S∗

:,1−S∗
:,2‖22

)
= − S∗

j,1−S∗
j,2

‖S∗
:,1−S∗

:,2‖22

(66)

From (65), (66), and since α1 + α2 = 1 we can easily conclude that

∂γ∗1(xt)

∂Xj,t

= −∂γ
∗
2(xt)

∂Xj,t

,

∣∣∣∣∂γ∗1(xt)

∂Xj,t

∣∣∣∣ ≤ ∣∣∣∣∂α∗1(xt)

∂Xj,t

∣∣∣∣ (67)



Using the linearity of derivative, the partial derivative of reconstruction X rec
:,t can be com-

puted as

∂Xrec
:,t

∂Xj,t

=
∂(S∗γ∗(xt))

∂Xj,t︸ ︷︷ ︸
∈Rn

= S∗
∂γ∗(xt)

∂Xj,t︸ ︷︷ ︸
∈RK

=
∂γ∗1(xt)

∂Xj,t︸ ︷︷ ︸
∈R

S∗:,1︸︷︷︸
∈Rn

+
∂γ∗2(xt)

∂Xj,t︸ ︷︷ ︸
∈R

S∗:,2︸︷︷︸
∈Rn

and using (67) we get∥∥∥∂Xrec
:,t

∂Xj,t

∥∥∥2

2
=

n∑
i=1

(
∂γ∗1 (xt)

∂Xj,t
S∗i,1 +

∂γ∗2 (xt)

∂Xj,t
S∗i,2

)2

=
n∑
i=1

[(
S∗i,1 − S∗i,2

) ∣∣∣∂γ∗1 (xt)

∂Xj,t

∣∣∣]2

≤

[
n∑
i=1

(S∗i,1 − S∗i,2)2

]
︸ ︷︷ ︸

=‖S∗
:,1−S∗

:,2‖22

(
|S∗
j,1−S∗

j,2|
‖S∗

:,1−S∗
:,2‖22

)2

=
(S∗
j,1−S∗

j,2)2

‖S∗
:,1−S∗

:,2‖22

2.) From a definition of the Fréchet-derivative we have

∂Xrec
:,t

∂Xj,t

:= lim
h→0

X rec
:,t,h −X rec

:,t

h

where Xrec
:,t,h is reconstruction of point X:,t,h defined as X:,t with perturbated j-th feature,

i.e.,

X:,t,h := X:,t + hej, {ej}i :=

{
1, if i = j,
0, if i 6= j.

Since the reconstruction Xrec
:,t is continuous function of X:,t, we can write∥∥∥∥∂Xrec

:,t

∂Xj,t

∥∥∥∥2

2

=

∥∥∥∥lim
h→0

X rec
:,t,h −X rec

:,t

h

∥∥∥∥2

2

= lim
h→0

1

h2
‖X rec

:,t,h −X rec
:,t ‖2

2

The inner norm can be estimated using (61) to get

lim
h→0

1

h2
‖X rec

:,t,h −X rec
:,t ‖2

2 ≤ lim
h→0

1

h2
‖X:,t,h −X:,t‖2

2 = 1

Corollary 10. The previous Lemma motivates for using the regularization of S-problem (27).

In the case of K = 2, such a regularization minimizes the norm of derivative (63). In the case

of general K, this regularization modifies the resulting polytope generated by S∗ in a such way

that this polytope is distinguishing between the features of reconstructed data, see (62).



Corollary 11. Please, notice that the dependence of reconstruction of Xrec on data X is linear

and the respective derivative is piecewise constant, see Corollary after Lemma 14. In practice,

we can estimate the derivative in (64) using forward finite difference to obtain

I(j) =
1

T

T∑
t=1

∥∥∥∥∂Xrec
:,t

∂Xj,t

∥∥∥∥2

2

≈ 1

Th2

T∑
t=1

‖Xrec(xt + hej)−Xrec(xt)‖2
2

Due to discontinuities in derivatives, such a method is exact for sufficiently small step h.



Figures

CPU GPU CPU GPU CPU GPU

t

node node node

Γ SPA), (SPA2) is addi-
tively separable in t then the solution of optimization problem with fixed S can be composed
as a solution of individual problems (see Lemma 4 and Lemma 11). In such a case, we can dis-
tribute T independent problems into several computation nodes such that the each node solves
its own subset of problems. This local computation can be be performed by local CPU cores
and/or using GPU cores, where (again) each core solves its individual subset of local optimiza-
tion problems. Additionally, if we distribute the data of the problem in the same way, then
each computational resource will have an access to its own local part of memory, without any
additional communication.

Fig. S1. Distributed solution of  problem  If objective function in (.



(a) approximation quality scaling (b) computational cost scaling

(c) parallelisability scaling

(a) computational cost, (b) discretization
quality and (c) parallelizability for (SPA2) (blue surfaces), K-means clustering (dark-green),
Nonnegative Matrix Factorisation (in its probabilistic variant called Left-Stochastic Decom-
position (LSD), magenta surfaces) and the Self-Organising Maps (SOM, a special form of
unsupervised neuronal networks used for discretization, orange surfaces). For every combi-
nation of data dimension n and the data statistics length T , methods are applied to 50 same
randomly-generated data sets and the results in each of the curves represent averages over
these 50 problems. Parallel speed-up in (c) is measured as the ratio of the average times
time(GPU)/time(CPU) needed to reach the same relative tolerance threshold of 10−5 on a single
Graphics Processing Unit (GPU, ASUS TURBO-GTX1080TI-11G, with 3584 CUDA cores)
for time(GPU) versus a single CPU core (Intel Core i9-7900X CPU) for time(CPU). MATLAB
script Fig1 reproduce.m reproducing these results is available for open access in the repository
SPA at https://github.com/SusanneGerber.

Fig. S2. Comparison of different measures.

https://github.com/SusanneGerber
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(a) Lorenz-96 1D turbulence model (weakly-
chaotic regime)
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(b) Lorenz-96 1D turbulence model (strongly-
chaotic regime)
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(c) surface temperature dynamics over Europe
(1979-2010, 20x30 grid ECMWF resimulation
data)

10 20 30 40 50 60
number of clusters

10 -1.5

10 -1

2* 10 -1

m
ea

n 
sq

ua
re

 E
uc

lid
ea

n 
pr

ed
ic

tio
n 

er
ro

r SPA+Markov
SPA+NN
KMeans+NN
KMeans+Markov
persistent prediction
mean prediction

(d) molecular dynamics simulation of 10-
Alanine in water
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(e) EG dynamics in a brain-computer interface
(BCI2000 data)

models (based on applications of the Theorem 2, blue lines) to the one-time-step predictions
obtained by the standard prediction methods. The combination of SPA with Markov models is
the only prediction scheme that outperforms the persistent prediction (i.e., when the next state
is predicted to be the same as the current one) for all of the considered systems.

Fig. S3. Comparison of one time-step prediction s for a combination of SPA with Markov



APPENDIX

Definition 1. We say that point x∗ is a minimizer of function f on given feasible set Ω, written

as

x∗ = arg
x

min
x∈Ω

f(x)

if (and only if) all points from the feasible set have larger or equal function value than f(x∗),

i.e.,

∀x ∈ Ω : f(x∗) ≤ f(x)

Lemma 18. Let X ∈ Rn,T , a, x ∈ Rn, b ∈ Rn, A = AT ∈ Rn,n. Then

∂aTXb

∂X
= abT ,

∂bTXTXb

∂X
= 2XbbT ,

∂xTa

∂x
= a,

∂xTAx

∂x
= 2Ax

Lemma 19. Let n,K, T ∈ N and A ∈ Rn,T , B ∈ RK,T . Then

T∑
t=1

A:,t(B:,t)
T = ABT ∈ Rn,K

Proof. From the definition of matrix-vector multiplication, the components of the result on

left-hand side of the equation can be written in form (for every i ∈ {1, . . . , n}, j ∈ {1, . . . , K})[
T∑
t=1

A:,t(B:,t)
T

]
i,j

=
T∑
t=1

Ai,t(Bj,t)
T = 〈Ai,:, Bj,:〉 = Ai,:(Bj,:)

T

which is a value of the corresponding matrix component on right-hand side of the equation.

Lemma 20. (of four fundamental subspaces): for any B ∈ Rn,m it holds

KerB ⊥ ImBT , ImB ⊥ KerBT

KerB ∪ ImBT = Rm, ImB ∪KerBT = Rn

Proof. See [A. J. Laub: Matrix Analysis For Scientists And Engineers. Society for Industrial

and Applied Mathematics, 2014] .



Lemma 21. Let n,K, T ∈ N and A ∈ Rn,T , B ∈ RK,T . Then

KerAAT = KerAT ⊂ Rn (68)

KerB ⊂ KerAB ⊂ RK (69)

Proof. To prove (68), it is necessary to show that

∀x ∈ Rn : AATx = 0 ⇔ ATA = 0

(⇐) Let us consider x ∈ Rm such that ATx = 0. Then AATx = AATx︸︷︷︸
=0

= 0 (this also proves

(69))

(⇒) Let us consider x ∈ Rm such that AATx = 0. Using smart zero, we can write

0 = xT0 = xTAATx = ‖ATx‖2

The norm of the vector is equal to zero if and only if the vector is equal to zero, therefore

ATx = 0.

Lemma 22. Let f : Rn → R be a continuously differentiable convex function and let Ω ⊂ Rn

be closed convex set. Then x∗ ∈ Ω is a solution of optimization problem

x∗ := arg
x

min
x∈Ω

f(x)

if and only if

∀x ∈ Ω : 〈∇f(x), x− x∗〉 ≥ 0

Proof. See [S. Boyd and L. Vandenberghe: Convex Optimization. Cambridge University Press,

New York, 1st edition, 2004] .
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