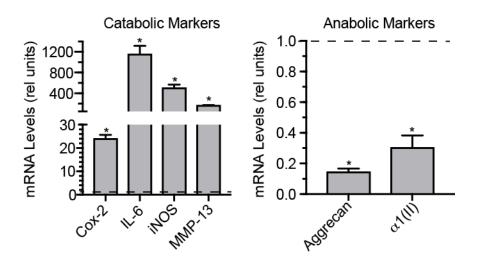
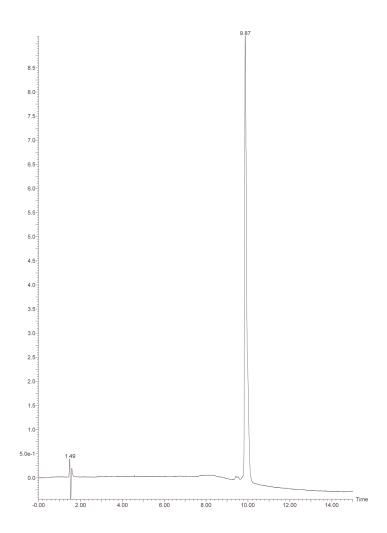
Supplemental Material

A Hyaluronan-binding Peptide (P15-1) Reduces Inflammatory and Catabolic Events in IL-1β-treated Human Articular Chondrocytes

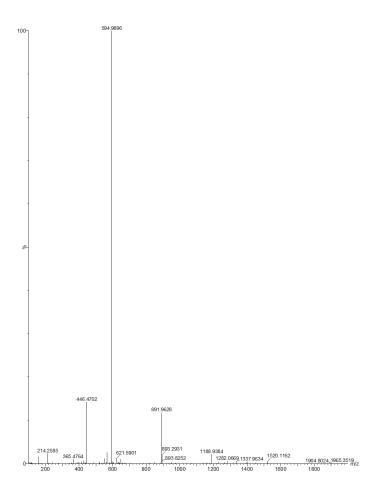
Claire Shortt^{a,b}, Leonard G. Luyt^{c,d}, Eva A. Turley^{c,d}, Mary K. Cowman^{a,e}, and Thorsten Kirsch, a,e

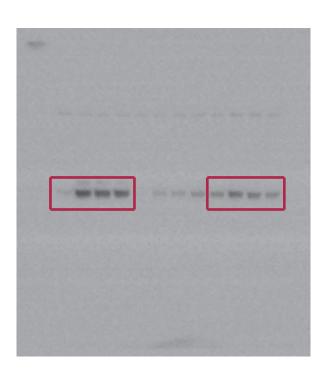

^aMusculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA

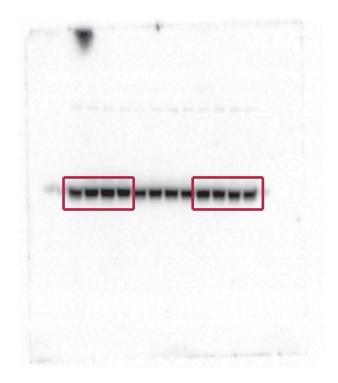
^b The University of Western Ontario, London, ON, Canada


^c London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada

^d Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY, USA


^bCurrent address: FoodMarble Digestive Health, Dublin 2, Ireland


Suppl. Figure 1: mRNA levels of catabolic markers and anabolic markers in human articular chondrocytes cultured in the absence or presence of IL-1 β . Human articular chondrocytes after reaching confluency were serum-starved for 24 h followed by treatment with IL-1 β in PBS/0.1% BSA or PBS/0.1% BSA for 24 h. mRNA levels of catabolic markers (Cox-2, IL-6, iNOS, MMP-13), articular cartilage markers (aggrecan, type II collagen (α 1(II)) were determined by real-time PCR using SYBR Green and normalized to the level of 18S RNA. The mRNA levels are expressed relative to the levels of vehicle-treated cells, which were set as 1 (dotted line). Data were obtained from triplicate PCRs using RNA from 3 different cultures. Values are the mean \pm SD. *p < 0.01 vs. vehicle-treated cells.



Suppl. Figure 2: UV Chromatogram of the P15-1 fraction analyzed by analytical Reversed-Phase High Performance Liquid Chromatography (RP-HPLC).

Suppl. Figure 3: MS Spectra of P15-1. Purity >95%. HRMS (ESI+): m/z calculated for $C_{71}H_{120}N_{28}O_{22}S_2$, Calculated $[M+2H]^{+2} = 891.9378$; Found $[M+2H]^{+2} = 891.9628$, Calculated $[M+3H]^{+3} = 594.6270$; Found $[M+3H]^{+3} = 594.9896$.

Supplementary Figure 4.

Full-lengths blots used to generate Figure 3A.