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Herein, supporting descriptions and experiments are presented approximately adhering to the order of presentation in 

the main text. First, a discussion of possible inter-species prediction variants is presented followed by a visual representation of the 

mathematical notation used to describe the improvements made to the PIPE algorithm. Secondly, the computational improvements 

of the PIPE4 algorithm are discussed with respect to its predecessor, PIPE3. Thirdly, the cross-species experiments demonstrating 

improved classification performance of the new Similarity Weighted score are explored with consideration of the origin and 

influence of training samples on performance outcomes. Thereafter, the inter-species experiments are described in greater detail. 

Finally, the Reciprocal Perspective methodology is validated with respect to inter- and cross-species prediction schemas. 

Inter-Species Prediction Schema Variants 
When assembling the training data for inter-species prediction schemas, a number of potential variants exists. Supplementary Fig. 

1 illustrates the three most likely training set compositions. Namely, leveraging the between species PPIs only (A), leveraging both 

the within species PPIs only (B), or leveraging the between and both within species PPIs (C). Given the focus of this work on the 

validation of inter- and cross-species prediction, the schemas depicted in (A) was used. Certainly, the combined schema in (C) with 

increased magnitude of training samples promises to yield even higher predictive performance, assuming that the training data 

quality is consistent. 

 

 

Supplementary Fig. 1. Example of Three Possible Inter-Species Prediction Schema Training Dataset Compositions. 

(A) leverages only the set of PPIs which have been previously validated occurring between the two organisms. (B) 

leverages the two intra-species sets of PPIs previously validated within each of the two organisms. (C) combines the PPI 

sets from both (A) and (B) producing the largest available PPI training set for two organisms. In this work we use inter-

species prediction schema (A) given our focus on validating our methods in a purely inter-species context (i.e. not reliant 

upon available intra-species PPIs). 

 



Benchmarking the New PIPE Algorithm 
Timing experiments are performed using the intra-species predictions for three model organisms: H. sapiens, A. thaliana, 

and S. cerevisiae. These were selected as representing three conventional applications of PIPE in decreasing order of proteome size. 

Intra-species predictions were performed to ensure use-case compatibility between the PIPE3 and PIPE4 methods. Timing 

experiments average the time for computing a single PPI over the entire interactome. The relevant benchmark test measure for 

the intra-species comparison of PIPE3 and PIPE4 are listed in Supplementary Table S1, where the symbol notation are defined in 

the Methods section of the manuscript. Similarly, the relevant benchmark measures for the combined inter- and cross-species 

prediction schema are given in Supplementary Table S2. The predictions between H. glycines and G. max using the PIPE3 would 

originally have required ~42 days to compute, whereas it was generated in ~2 days using PIPE4, producing a 21.1x speedup. Such 

speedups are necessary if we were to use PIPE iteratively for purposes such as protein engineering as done in InSIPS. All benchmark 

measures are tabulated in Supplementary Table S3. 

Supplementary Table S1. Intra-Species Benchmark Test Measures 

Benchmark Measure H. sapiens A. thaliana S. cerevisiae 

𝜑̅ 35.1 21.7 8.2 

𝑘̅ 558 442 450 

𝛾̅ 6.45 3.33 8.15 

𝑛 20,236 17,226 6,721 

Total known PPIs 66,084 29,035 27,905 
Number of positives tested 66,084 29,035 27,905 

Number of negatives tested 66,084 3,000,000 3,000,000 

Size of comprehensive interactome 204,757,966 148,376,151 22,589,281 

 

Supplementary Table S2. Combined Inter- and Cross-Species Benchmark Test Measures 

Benchmark Measure H. glycines G. max 

𝜑̅ 104.1 77.8 

𝑘̅ 406 336 

𝛾̅ 0.287 

𝑛 21,868 75,781 

Total known PPIs (proxy) 
C. elegans: 

5,476 

A. thaliana: 

29,035 

Size of comprehensive interactome 1,657,178,908 

 

Supplementary Table S3. Inter- and Cross-Species Benchmark Test Measures 

Benchmark Measure 
H.glycines - G.max 

PIPE4 PIPE3 

Database Size (GB) 66 11* 

Database Processing (h) 44.01 44.00 

Time/pair (s) 0.0037 0.0785 

All-to-All Prediction (h) 47.6 1003.8 

Speedup (~x) 21.1x 

* Estimated using Linear Regression assuming database size is proportional to interactome size 

Cross-Species Validation Experiments 
Previous versions of PIPE have shown success in predicting intra-species PPI in relatively well-studied species with large 

numbers of experimentally verified PPIs. Cross-species PPI prediction permits experimental data taken from well-studied species 

to be used to investigate the putative PPI networks of under-studied species which are of research interest yet have very little data 

available. Through the following experiments, the best practices for cross-species PPI prediction will be examined, including from 

which species to take training data, for which species valid predictions can then be made, whether using combinations of training 

species could be advantageous, and validation experiments to demonstrate why the PIPE score needs to be modified for cross-

species prediction. 



As described in the main text, the cross-species version of PIPE, PIPE4, was created to keep track of the species of origin 

for each protein and normalizes the landscape score by considering only those PPIs reflected in the training data. To exemplify the 

importance of this normalization factor, consider the following toy example: 

When using one organism as a proxy for another, the number of possible interactions varies. The original PIPE3 SW 

score would naively pool the proteomes; however, this does not appropriately represent the true frequency of a window within a 

proteome. As depicted in Supplementary Fig. 3, the PIPE3 SW would normalize over both proteomes. The prevalence of a given 

window can vary dramatically between organisms and so the PIPE4 SW score corrects for this by normalizing only over those 

proteomes which actually have training data; A. thaliana only in this case. This normalization becomes more pronounced as the 

number of species increases and does not strictly scale uniformly across all predicted interactions since each protein window has a 

varying number of similar proteins. A diverse set of model organisms were considered to examine this normalization factor change 

further. 

The training PPIs for 17 organisms were assembled for the inter- and cross-species experiments (Supplementary Table 

S4). To control for the amount of available training data, we considered only those organisms with at least 2,000 known PPIs. An 

equivalently sized set of 2,000 PPIs were randomly subsampled from the set of all known PPIs for each of these resulting eight 

organisms. 

The results from these experiments are summarized using both ROC and PR curves, and the area under the PRC (AU-

PRC) and precision at 25% TPR (Pr@25Re) were used as scoring metrics to compare the classification performance of the original 

PIPE3 SW score and the modified PIPE4 SW score. 

 

 

Supplementary Fig. 2. Toy Example Contrasting the PIPE3 and PIPE4 Similarity Weighted Normalization. 
Each line between the proteins indicates a single “hit” where a window in one protein is similar to a window within 

the corresponding protein. Hits only exist within the A. thaliana proteome as it is a well-studied organisms containing 

several training PPIs. In PIPE4, this hit count is normalized only by protein pairs within A. thaliana. 

 



Supplementary Table S4. Model Organisms for Inter- and Cross-Species Predictions. 

Scientific Name Common Name Interactions Sequences 

Homo sapiens Human 66,084 20,236 

Arabidopsis thaliana Thale cress 29,035 17,226 

Saccharomyces cerevisiae Baker’s yeast 27,905 6,721 

Drosophila melanogaster Fruit fly 25,013 8,529 

Caenorhabditis elegans Nematode 5,476 5,891 

Schizosaccharomyces pombe Fission yeast 3,549 5,141 

Mus musculus House mouse 3,402 17,096 

Plasmodium falciparum Malaria-causing parasite 2,250 1,270 

Rattus norvegicus Common rat 531 8,129 

Xenopus laevis African clawed frog 117 169 

Solanum lycopersicum Tomato 98 474 

Danio rerio Zebrafish 94 3,080 

Oryza sativa Asian rice 29 3,832 

Gallus gallus Chicken 28 2,305 

Bos taurus Cow 26 6,026 

Glycine max Soybean 24 429 

Candida albicans Pathogenic yeast 19 1,014 

 

One-to-Many Predictions 
The One-to-Many prediction experiments used the training data from one organism to predict interactions for multiple 

others. This test examines if the modified SW score normalization affected the performance for cross-species predictions when 

using a single training species. Here, each of the eight species was used to predict cross-species interactions for the remaining seven 

species. Averaged results over each of the test species are summarized in Supplementary Table S5 and a set of example ROC curves 

for test species M. musculus are depicted in Supplementary Fig. S4. A Student’s paired t-test under the null hypothesis of equal 

means yielded a difference in means of 0.011 and 0.019 for AUPRC and Pr@15Re respectively, both with p < 0.001.   

Supplementary Table S5. Averaged One-to-Many Cross-Species Prediction of the Target Species. 

Test Species 
AUPRC Pr@25Re 

PIPE4 PIPE3 PIPE4 PIPE3 

H. sapiens 0.239 0.221 0.284 0.247 

A. thaliana 0.163 0.148 0.164 0.142 

S. cerevisiae 0.200 0.210 0.225 0.237 

S. pombe 0.244 0.248 0.288 0.292 

D. melanogaster 0.157 0.142 0.166 0.141 

C. elegans 0.190 0.193 0.206 0.209 

M. musculus 0.337 0.295 0.422 0.357 

P. falciparum 0.127 0.110 0.130 0.111 

Average 0.207 0.196 0.236 0.217 

 



 

Many-to-One Predictions  
The Many-to-One prediction experiments considered pooling the training data for multiple species to then make 

predictions for another. This test sought to determine whether the normalization change becomes increasingly pronounced with 

an increase in training species. Here, the interactions for each test species were made with a model trained using PPIs pooled from 

the other seven species. To correctly reflect this utility in actual application, all available interactions were used here (no sub-

sampling was performed for each of the eight species). Results over each of the test species are summarized in Supplementary Table 

S6 and the ROC curve for each test species is depicted in Supplementary Fig. S5. A Student’s paired t-test under the null hypothesis 

of equal means yielded a difference in means of 0.096 and 0.164 for AUPRC and Pr@15Re respectively, both with p < 0.05.   

Supplementary Table S6. Many-to-One Cross-Species Performance Metrics. 

Test Species 
AUPRC Pr@25Re 

PIPE4 PIPE3 PIPE4 PIPE3 

H. sapiens 0.367  0.186  0.494  0.134  

A. thaliana 0.214  0.138  0.211  0.104  

S. cerevisiae 0.299  0.125  0.370  0.083  

S. pombe 0.416  0.298  0.633  0.330  

D. melanogaster 0.200  0.156  0.213  0.127  

C. elegans 0.249  0.197  0.269  0.160  

M. musculus 0.633  0.557  0.959  0.963  

P. falciparum 0.140  0.090  0.144  0.078  

Average 0.315  0.218  0.412  0.247  

 

 

Supplementary Fig. S3. Example ROC Curves of Target Species M. Musculus 

from One-to-Many using Different Training Organisms. 

 



 

Supplementary Table S7. Statistical tests for rank correlation between the evolutionary rank and the AUPRC rank. 
10:1 class imbalance for each test- species and following N=100,000 permutation tests. 

Test Species 

Kendall’s Tau-b Correlation Spearman’s Rank Correlation 

Corr. 

Coeff. 

p-value 

from R 

p-value 

perm. tests 

Corr. 

Coeff. 

p-value 

from R 

p-value 

perm. tests 

H. sapiens 0.67 0.024 0.014 0.80 0.018 0.012 

A. thaliana  0.68 0.033 0.018 0.76 0.027 0.017 

S. cerevisiae 0.32 0.288 0.184 0.34 0.406 0.206 

S. pombe 0.48 0.111 0.076 0.58 0.129 0.069 

D. melanogaster 0.82 0.006 0.002 0.93 0.001 0.001 

C. elegans 0.44 0.132 0.087 0.52 0.188 0.099 

M. musculus 0.82 0.006 0.002 0.89 0.003 0.003 

P. falciparum 0.5 0.127 0.124 0.58 0.134 0.125 

 

Supplementary Table S8. Statistical tests for rank correlation between the evolutionary rank and the Pr@25Re rank. 
10:1 class imbalance for each test- species and following N=100,000 permutation tests. 

Test Species 

Kendall’s Tau-b Correlation Spearman’s Rank Correlation 

Corr. 

Coeff. 

p-value 

from R 

p-value 

perm. tests 

Corr. 

Coeff. 

p-value 

from R 

p-value 

perm. tests 

H. sapiens 0.67 0.024 0.015 0.8 0.018 0.012 

A. thaliana  0.68 0.033 0.018 0.76 0.027 0.018 

S. cerevisiae 0.4 0.184 0.121 0.41 0.318 0.165 

S. pombe 0.56 0.063 0.041 0.65 0.083 0.042 

D. melanogaster 0.74 0.012 0.006 0.88 0.004 0.003 

C. elegans 0.52 0.079 0.049 0.58 0.133 0.07 

M. musculus 0.82 0.006 0.002 0.89 0.003 0.002 

P. falciparum 0.5 0.127 0.125 0.58 0.134 0.125 

 

 

Supplementary Fig. S4. ROC Curves of each Target Species Many-to-One 

Predictions using the Pooled Training Organisms. 

 



Reciprocal Perspective Inter- and Cross-Species Validation Experiments 
The Reciprocal Perspective (RP) meta-predictor was originally developed for intra-species prediction schemas; however, 

RP is defined in such a way that it can be applied to inter-species, cross-species, and combined schemas. This work, in addition to 

presenting the updated version of the PIPE algorithm, sought to validate the RP meta-predictor for these contexts and exemplify 

the achievable improvements in classification performance. Thus, not only do we present an ultra-fast variant of the PIPE algorithm 

which is broadly applicable to intra-, inter-, and cross-species prediction schemas, we also demonstrate how large improvements 

in predictive performance can be achieved using the RP meta-predictor. 

Expanding upon the PIPE4 cross-species validation experiments, we generated RP classifiers trained on one organism 

and evaluated their performance on others. The RP method extracts a number of context-based features from the comprehensive 

set of all predicted PPIs and applies a cascaded machine learning layer to further differentiate the positive and negative class. The 

vanilla version of the RP method can easily be applied to the intra- and inter-species prediction schema however an interesting facet 

of the PIPE SW score is that its range of values can vary dramatically between organisms, largely due to the number of training 

PPIs available and the prevalence of windows within each organism’s proteomes. As such, certain organisms have inflated scores 

with respect to others. To control for these score-based biases, we restricted our analysis to RP features which are based solely 

upon rank (i.e. Rank-Type) and fold-difference from the protein-specific baseline (i.e. Fold-Type) and did not leverage the score-

based features (i.e. Score-Type). We have previously shown that the joint combination of these features can lead to statistically 

significant improvement in predictive performance. Given the limited set of features here, we can only expect modest increases in 

predictive performance. 

Cross-Species Validation Experiments 
The RP features for the cross-species validations experiments were reduced to only the Rank- and Fold-Type. Here, a 

subset of five model organisms were considered for One-to-Many predictions. This experiment sought to examine the expected 

improvement in predictive performance over the PIPE4 cross-species experiments. The baseline performance was therefore 

established as the average AUPRC from the PIPE4 cross-species experiments. The reduced set of RP features were extracted and 

a Random Forest classifier trained. The model was then evaluated on each of the four other organisms. The AUPRC was noted and 

this process was repeated for 1,000 bootstrap iterations to produce a distribution of AUPRCs and the average was reported. The 

difference in average AUPRC was depicted in Fig. 3 in the main text. 

 


