Supplementary Table1: Bacterial strains used in this study.

Name of Bacterial strain	Relevant genotype
DH5α	F ⁻ endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15
	$\Delta(lacZYA-argF)$ U169, hsdR17($r_{K}^{-}m_{K}^{+}$), λ
BL21 (DE3)	F^- ompT gal dcm lon hsdS _B ($r_B^- m_B^-$) λ (DE3 [lacI lacUV5-T7 gene 1 ind1
	sam7 nin5])
C43	F^- ompT gal dcm hsdS _B ($r_B^- m_B^-$)(DE3)

Supplementary Table 2: List of vectors used in this study.

Name of the vector	Source	Resistance Marker	
pAcYc Duet	Novagen, USA	Chloramphenicol	
pFPVmCherry	Addgene	Addgene Ampicillin	
PCOLA Duet	Novagen, USA	Kanamycin	
pET 28a	Novagen, USA	Kanamycin	
PBAD Myc-HisA	Thermo Fisher Scientific	Ampicillin	
pCDFDuet-1	Addgene	Streptomycin	
pMIND	Dr. Sujay Dasgupta's lab	Kanamycin	
pET Duet	Novagen, USA	Ampicillin	

Plasmid	Description	Reference
pFPV-ppk1-	The <i>ppk1</i> promoter (from -76 to +61 bases) was amplified from	This study. Used
mCherry-tetRO-	Mtb genomic DNA and inserted before mCherry gene using	for in vivo
mprAB	Xba1 and Nde1. The mprAB gene was PCR amplified from	recombinant
	Mtb genomic DNA and incorporated using BamHI and SpeI	reporter assay.
	(site created by SDM). The tetRO promoter from pMIND-	
	tetRO vector (126 to 829) was PCR amplified and inserted	
	using KpnI and BamHI before mprAB gene.	
pFPV <i>-ppk1</i> -	As above except the mprA gene (Rv0981) was cloned in place	This study. Used
mCherry- <i>tetRO</i> -	of <i>mprAB</i> using BamHI and EagI.	for
mprA		in vivo
		recombinant
		reporter assay.
pCDF-para-	The promoter region of pBAD vector (3198 to 458) was PCR	This study. Used
mprB	amplified and cloned in pCDF Duet vector using XbaI and	for
	EcoRI. The mprB gene (Rv0982) PCR amplified from Mtb	in vivo
	genomic DNA was incorporated using HindIII and KpnI.	recombinant
		reporter assay
pFPV-psigE-	As above except the promoter $ppk1$ was replaced by $psigE$ of	This study. Used
mCherry- <i>tetRO</i> -	M. tuberculosis (1, 2). The promoter was inserted into the	for
mprA	plasmid using XbaI and NdeI, before insertion of the tetRO	in vivo
	and <i>mprA</i> genes	recombinant
		reporter assay.
pFPV <i>-ppk1</i> -	The 48th amino acid (aa) of mprA gene, an aspartic acid	This study. Used
mCherry-TetRO-	residue, was mutated to alanine by site directed mutagenesis	for
mut <i>mprA</i> (D48A)		in vivo
		recombinant
		reporter assay.
pAcYcDuet-	The mprA gene PCR was cloned in pAcYc Duet vector using	This study. Used
mprA	BamHI and KpnI.	for protein
		purification.
pAcYcDuet-	A truncated <i>mprB</i> gene (aa 196 to 504) was PCR amplified and	This study. Used
mprB (truncated)	cloned into pAcYc Duet vector using BamHI and EcoRV. The	for protein
	purified protein MprB lacks the predicted periplasmic domain	purification.
	(aa 1-195).	
pAcYcDuet-	The rpoA gene has been cloned in pAcYc Duet vector (using	Used for
rpoA-sigE	BamHI and NcoI) along with <i>sigE</i> gene using KpnI and NdeI.	In vivo

Supplementary Table 3: The different clones used in this study along with the cloning strategies applied for generating them.

		recombinant
		reporter assay.(3)
pCOLADuet	The rpoB gene has been cloned in pAcYc Duet vector (using	Used for
rpoB-rpoC	BamHI and NcoI) along with rpoC gene using EcoRV and	in vivo
	NdeI.	recombinant
		reporter assay.(3)
pET Duet- ppk1-	The pFPV- ppk1-mCherry- tetRO-mprA plasmid was digested	This study. Used
mCherry- tetRO-	with KpnI and HindIII, and the whole insert of tetRO-mprA-	for
mprA	ppk1-mCherry stretch of 2643bp was cloned in pET Duet	in vivo
	vector.	recombinant
		reporter assay.

References:

- 1. **Dona V, Rodrigue S, Dainese E, Palu G, Gaudreau L, Manganelli R, Provvedi R.** 2008. Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor sigmaE in Mycobacterium tuberculosis. J Bacteriol **190:**5963-5971.
- 2. **He H, Hovey R, Kane J, Singh V, Zahrt TC.** 2006. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J Bacteriol **188**:2134-2143.
- 3. Banerjee R, Rudra P, Saha A, Mukhopadhyay J. 2015. Recombinant reporter assay using transcriptional machinery of Mycobacterium tuberculosis. J Bacteriol 197:646-653.

Supplementary Table 4: List of primers used in this study

mprAfwd (BamHI)	ATCGCGGATCCGTGCGAATTCTTGTCGTTGA
mprArev (KpnI)	ATACTGGTACCTCAGGGTGGTGTTTCACGTA
mprB(t)fwd (BamHI)	TTAAGGATCCATGACCGAAGCGGCCGAG
mprB(t)rev (EcoRV)	ATATGATATCCTAGGTTGCGCGCGTGGACT
ppk1fwd (XbaI)	AATCTAGATGAACGGCAGACCAACGG
ppk1rev (NdeI)	AAGCTTCATATGGATACCACGCATGCTCCTC
pFPVseqfwd	GGATACATATTTGAATGTATTTAGAAA
pFPVseqrev	TCAGTTCATGTACGGCTCCAA
seqprimer	GACATTAACCTATAAAAATAGGCG
mprBfwd (HindIII)	TAATAAGCTTATGACCGAAGCGGCCGAGCG
mprBrev (KpnI)	TTGCGCGCGTGGACTGAGAGGTACCAATT
pBADfwd (XbaI)	AAGTTCTAGATTATGACAACTTGACGGCTA
pBADrev (EcoRI)	AAAACAGCCAAGCTTCGAATTCCCACTAGT
ppk1fwd200 (HpaI)	TTAACTAGTTAACTGCGATGTCGACACCCCC
ppk1rev200 (NdeI)	ATATATTAACATATGCCGCACCTCTGTGACGG
pBADnewrev (BclI)	TTGATGATCAGAGCTCGGATCCATGGTTAA
psigEfwd (XbaI)	AATCTAGATATTCCCTGGACAGCGCA
psigErev (NdeI)	AAAGCTTCATATGGGAATTACCGTCGCGTA
psigBfwd	TTAAACTAGTTAACTATTCGCCGACCACGGTTAGC
psigBrev	TATATTAACATATGACGAGGTCCGCCGCG
mprAmutD48Afwd	GCGATCGCCCCG <u>C</u> CGCGTTGGTCCTG
mprAmutD48Arev	CAGGACCAACGCG <u>G</u> CGGGGGGGGATCGC
p2+p3fwd (1)	TTAAACTAGTTAACTCTAAGCCAAAGCTCAGATTGC
p2+p3fwd (2)	TTAAACTAGTTAACTGCTCATATATGGCCCATACG
p3onlyfwd	TTAAACTAGTTAACTGGAACTCCTCGGCGGA
TetROfwd (KpnI)	TTAATATAAGGTACCTCTAGATCACGATTCGCTCG
TetROrev (BamHI)	TATAAATATGGATCCTGTCAGGATTCCACGA
mprABfwd (BamHI)	TGGATCCACTGATGTCCGTGCGAATTCTTG
mprABrev (SpeI)	ATACTAGTCTAGGTTGCGCGCGTGGACTG
mprAfwd (BamHI)	ATCGCGGATCCGTGCGAATTCTTGTCGTTGA
mprArev (EagI)	ATACTCGGCCGTCAGGGTGGTGTTTCACGTA

Supplementary Figures:

Figure S1. Comparative studies of Invivo Recombinant Reporter Assay

(A) The assay as in Fig 2 was repeated with a higher copy number plasmid pET Duet1, where the gene cassette of *tetRO promoter- mprA- ppk1 promoter- mCherry* as shown in Fig 2B were cloned in pET Duet1 as a control study for promoter saturation. Relative fluorescence intensities of mCherry expression with respect to control for 1 OD cells (average of 3 replicates with standard error) were plotted against varying concentration (0.09, 0.37, 0.88, 1.05, 1.58, 2.06, 2.26, 2.57, 3.00 μ g/OD/ml) of MprA keeping MprB fixed at 0.14 μ g/OD/ml (dashed lines, open circles), control: cells with no induction of MprA, but in presence of MprB (0.14 μ g/OD/ml). For comparison the curve of Fig 2C upper panel (solid line, closed circles), was shown as a solid line where the concentration of MprB was 0.14 μ g/OD/ml (closed circles).

(B) Same as in (A), but with varying concentration (0.06, 0.12, 0.14, 0.18, 0.24, 0.26, 0.30, 0.33, 0.38 μ g/OD/ml) of MprB keeping MprA fixed at 0.96 μ g/OD/ml (dashed lines, open circles), control: cells with no induction of MprB, but in presence of MprA (0.96 μ g/OD/ml). For comparison the curve of Fig 2D upper panel (solid line, closed circles), was shown as a solid line where the concentration of MprA was 0.96 μ g/OD/ml (closed circles).

(C) Average of 3 replicates corresponding to the control sets (no induction of either MprA or MprB) of pET Duet1 plasmid having *tetRO promoter- mprA- ppk1 promoter- mCherry* cassette and pFPV plasmid having *tetRO promoter- mprA- ppk1 promoter- mCherry* cassette were taken and their fold changes were plotted as a bar graph.

Figure S2. In vivo Recombinant Reporter Assay with psigE:

(A) A four plasmid construct has been designed as in Fig 2(B) with the third plasmid having promoter sigE in place of ppk1 promoter.

(B) Fluorescence intensities of mCherry expression for 1 OD cells (average of 3 replicates with standard error) were plotted against varying concentration (0.10, 0.31, 0.60, 0.91, 1.05, 1.15, 1.29, 1.40 and 1.56 μ g/OD/ml) of MprA keeping MprB fixed at 0.14 μ g/OD/ml.

(C) Same as above, but with varying concentration (0.06, 0.12, 0.14, 0.18, 0.24, 0.26, 0.30, 0.33 and 0.38 μ g/OD/ml) of MprB keeping MprA fixed at 0.96 μ g/OD/ml.

FigureS3. *In vivo* Recombinant Reporter Assay with phosphorylation deficient mutant of MprA (D48A).

(A) The aspartic acid residue at position 48 is mutated to alanine using site directed mutagenesis and cloned in place of wild type *mprA* gene in the pFPV-*ppk1*-mCherry-*tetRO-mprA* vector keeping all other component of the four plasmid construct intact.

(B) The mCherry fluorescence per OD is plotted against varying concentrations (0.10, 0.31, 0.60, 0.91, 1.05, and 1.15 μ g/OD/ml) of MprA keeping MprB fixed at 0.14 μ g/OD/ml. No significant increase in mCherry fluorescence has been observed which proves that phosphorylated MprA is required for the regulation of *ppk1* promoter and also verifies the functionality of our synthetic circuit. (C) Same as above but with varying concentrations (0.06, 0.12, 0.14, 0.18, 0.24, 0.26 μ g/OD/ml) of MprB keeping MprA fixed at 0.96 μ g/OD/ml.

Figure S4. In vitro Phosphorylation Assay with higher concentration of MprB and MprA respectively.

(A) A varying concentration of MprA was reacted with 1.2 μ M MprB (dashed line). For comparison the curve of Fig 3C was shown as a solid line where the concentration of MprA was 0.8 μ M.

(B) A varying concentration of MprB was reacted with MprA (initially fixed at 0.75 μ M as in Fig3B) kept constant at 1.0 μ M.

(C) Amount of Phosphorylated MprA from three replicates was plotted in dashed lines. For comparison the curve of Fig 3C was shown as a solid line where the concentration of MprB was 0.8 μ M.

(D) Same as C but with fixed amount MprA. Solid line as in Fig 3D

Figure S5. In vitro Transcription Assay with higher concentration of MprB and MprA respectively.

(A) Assay was done using varying concentration of MprA keeping MprB fixed at 1.2 μ M lane1: RNAP only, lane 2: RNAP + MprB-P+BSA, lane 3: RNAP + MprB-P, lane 4-8: RNAP + MprB-P + MprA. In the control experiment (lane 2), upon addition of MprB-P or BSA did not increase (two-tailed Mann-Whitney U Test, p-value < 0.05) the yield of the transcript.

(B) Assay was done using varying concentration of MprB keeping MprA fixed at 0.75µM.

(C) Relative RNA yield from three replicates were plotted as dashed lines. The data were compared with the assay performed at lower MprB concentration (solid line) as in Fig 4D. (D) Same as C but assay was performed with fixed MprA shown by solid line as in Fig 4E.

Figure S6. Control experiments showing that there are no cross-talks among MprAB and *E.coli* TCS.

Relative fluorescence intensities of mCherry expression in the *in vivo* recombinant reporter assays (as in Fig 2) in the presence of different proteins as shown