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S1 UNDERSTANDING VOLTAGE PROTOCOLS
In this section we analyse the protocols used in this study (and in Beattie et al. (1)), using phase plane analysis. The first four
protocols, Pr2–5, are adaptations of common voltage clamp protocols used to characterise IKr, while Pr7 is a novel sinusoidal
protocol intended to provide the same information in a much shorter time. Pr6 is a collection of (regular and irregular) action
potential wave forms to measure the behaviour of IKr under physiological and pathological conditions.1 As in Beattie et al. (1),
we used Pr6 as a validation protocol, while either Pr7 or the set Pr2–5 were used for model fitting. Note that the full set of
protocols was run on every cell.

There are some similarities between the protocols. Pr2–5 are all periodic protocols, repeated several times (with each repeat
shown in a different colour in the figures) with a change either in one step’s duration (Pr2) or voltage (Pr3–5). All protocols in
this study start with a constant holding potential of −80mV followed by a brief step down −120mV. Because IKr is mostly
inactive at these potentials, this allows the IKr-independent leak current to be estimated and subtracted from the signal (1). The
protocols end with another step down to −120mV, which is intended to rapidly bring the channels into a closed state, thereby
reducing the time needed to settle back to steady state between repeats or between experiments.

S1.1 Phase plane analysis
Using a two-dimensional model (see main manuscript) allows us to represent each possible state as a point on a phase plane, in
which we plot activation a on the x-axis and recovery r on the y-axis. By running simulations and plotting the trajectories of a
and r in the plane we can show the motivation behind different voltage-clamp protocols in terms of the types of behaviour they
provoke.

Held at any given voltage V , the model will eventually converge to a steady state a = a∞(V), r = r∞(V) known as a stable
node, see Figure S1.A. When V is changed abruptly, the stable node instantaneously moves to a new position, to which the
states then converge with speeds dictated by τa(V) and τr (V). With typical parameters for IKr, inactivation/recovery is orders of
magnitude faster than activation/deactivation so that many trajectories through the phase space will start with fast vertical
movement followed by a slower horizontal drift. The model conductance at any point (a, r) in the plane is proportional to the
product a · r . Connecting points with an equal a · r leads to the iso-conductance lines shown in Figure S1.B, which indicate the
fraction of maximal conductance gKr in different regions. Using these two graphs an intuitive idea of IKr behaviour may be
developed, and we will use these phase planes to analyse different voltage protocols throughout the text. An example of a phase
plane trajectory is shown in Figure S2.
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Figure S1: A guide to interpreting phase portraits. (A) At any voltage V , the point (a∞(V), r∞(V)) forms a stable node to which
the system, if held at this V , will converge. The grey line in the figure is formed by plotting these stable nodes for a wide range
of voltages, based on a simulation with the parameters for Cell #5 identified in Beattie et al. (1). (B) Different points in the
phase plane correspond to different fractions of the maximal conductance (given by the product a · r). When all the points for a
given fraction are connected they form the iso-conductance lines shown here. Combining these two figures we can see that the
channel’s steady-states have low conductance while any larger currents are necessarily transient.

1Although we measured current through a hERG1a channel in a CHO cells, we will occasionally use the shorthand IKr to describe the current in this
manuscript
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Figure S2: A simulated phase plane trajectory for the final repeat of protocol Pr2. In the first panel, the cell is being held
at −80mV, and the system is in its steady state a∞(V = −80), r∞(V = −80). In the next panel, a voltage step (P1) is applied,
causing an instantaneous jump of the stable point towards the bottom right of the graph. The system now starts to rapidly
inactivate, resulting in a downward trajectory in the phase plane. After a few milliseconds, inactivation is nearly complete, and
activation begins to dominate the trajectory, resulting in the horizontal trajectory shown in the third panel. At the end of P1, the
system is at (or very close to) its new stable state. Now, a new step (P2) is applied, again leading to an instantaneous jump of the
stable state, followed by a vertical-then-horizontal trajectory of the system through phase space. In the final panel, the original
membrane potential is restored, causing the system to revert to its original stable state.
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S1.2 Pr2: A time constant of activation

Figure S3: Simulated analysis of Pr2, approximating the time constant of activation at V2 = 40mV. The protocol and current are
shown in the left-most panel, with the peak currents during each repeat highlighted. The same highlighting is applied in the
phase diagram, which shows that all peaks occur at almost the same level of recovery, r ≈ r̃ . Next, the peak current is plotted
against the P1 duration and fit with a single exponential. This results in a single time constant, which is shown in the final panel
along with the underlying model variable.

Pr2 (6 repeats of 5.2s each, 31.2s in total) is used to obtain an approximation of the time constant of activation at V = 40mV.
Its main feature is a variable-duration step (P1) at +40mV. In the phase diagram this corresponds to a movement from top-left
(the steady-state for −80mV) down to the stable node for +40mV in the lower-right part of the plane. Note that only the longest
step (darkest red) actually reaches the stable node, while in the other repeats the step ends before the it is reached. During
this time, the model is inactivated (r ≈ 0) to approximately the same degree for each repeat, while the activation level varies
depending on the time spent at 40mV — it is this activation level that we wish to measure. To that end, P1 is followed by a step
(P2) down to −120mV, triggering a rapid recovery and a measurable current.

We now inspect the peak currents during P2, Ipeak. From the phase diagram we can observe that the level of recovery at the
peak is roughly the same for each repeat, so that we can approximate it by some constant (but unknown) value r̃ , and write

Ipeak ≈ gKr · a(tpeak) · r̃ · (V2 − EK ), (S1)

where V2 is the voltage during the P2 step, and a(tpeak) is some unknown activation level. We can also see that the trajectory
from the end of P1 (a point near the x-axis) up to the point where peak current occurs (blue squares) is near-vertical, so that the
level of activation at the peak, a(tpeak), is approximately equal to the level at the end of P1, a1, so that we can write

Ipeak ≈ gKr · a1 · r̃ · (V2 − EK ), (S2)

Next, we solve the differential equation for a under a fixed voltage, to find

a(t) = a∞(V) − (a∞(V) − a0)e−t/τa (V ) (S3)

where V is the voltage during the step, t is the time since the start of the step, and a0 is the level of activation at the start of the
step. Adapting this for the activation at the end of P1, we fill in V = V1 and set t equal to the step duration t1 to find

a1 = a∞(V1) − (a∞(V1) − a0)e−t1/τa (V1) (S4)

which we combine with the equation for Ipeak to find

Ipeak ≈ gKr · r̃ · (V2 − EK ) ·
(
a∞(V1) − (a∞(V1) − a0)e−t1/τa (V1)

)
(S5)

= c1 + c2e−t1/τa (V1). (S6)

In other words, Ipeak should (approximately) be a function of the P1 duration t1 and three unknowns c1, c2, and τa(V1). As a
result, we can plot Ipeak against the P1 duration t1, and fit a single exponential to find the time constant τa(V = V1).

In a typical run of experiments, this protocol would be repeated with different P1 voltages, resulting in time constants for
several voltages. As the data set from (1) does not include these, we will instead obtain further time constants of activation from
Pr5. Finally, a slight variation of this protocol was used in cells 7 and 8, details of which can be found in the code published
with this manuscript at https://github.com/CardiacModelling/FourWaysOfFitting.

4

https://github.com/CardiacModelling/FourWaysOfFitting


Four ways to fit an ion channel model — Supplement

S1.3 Pr3: The steady state of activation

Figure S4: Simulated analysis of Pr3, approximating the steady state activation curve. The protocol and current are shown in the
left-most panel, with the peak currents during each repeat highlighted. The same highlighting is applied in the phase diagram,
which shows that all peaks occur at almost the same level of recovery. Next, the peak current is plotted against the P1 voltage.
Because each repeat had approximately the same recovery level, V = V2 for each repeat, and because the highest voltage leads
to a∞ ≈ 1, we can normalise the peak currents by dividing through the highest obtain value to find the approximation of the
steady state of activation shown in the final panel. Note the difference between the true model variable and the approximation,
which is due to the incomplete approach to the steady state for voltages around 0mV, which can be seen in the phase diagram.

Pr3 (7 repeats of approx. 8.3s each, 58s in total) is intended to characterise IKr’s steady state of activation for several voltages.
Its main feature is a 5 s long variable-voltage step, P1, followed by a step P2 down to a fixed voltage, during which current is
measured. In the phase plane, P1 is visible as a downwards movement from the steady state at −80mV (top left for all repeats)
to a new steady state lower on the plot. This steady state is close to a = 1 for high positive voltages (but notice that lower
voltages have not yet quite reached the stable point after 5 s, which will be important later). Due to the large difference in the
time constants of activation and recovery the P1 currents show a rapid downward movement, followed by a slower horizontal
drift. At the end of P1, the system is close to the steady state of activation for the tested voltage, so that measuring the current
at this point in time would provide us with clear information about the voltage-dependence of activation. Unfortunately, the
level of inactivation at this point makes this current very small, so that it cannot be measured with a reasonable signal-to-noise
ratio. The P2 step to a fixed voltage of −40mV elicits a much stronger IKr current by causing rapid recovery from inactivation.
This is visible in the phase plane as a rapid upward movement, which abruptly stops and turns into a slow leftward drift. Two
interesting things happen near this abrupt ‘corner’ in the graph: (1) as this point is the furthest top-right of any point in P2, this
is where the P2 peak current occurs; (2) recovery reaches its steady-state for the P2 voltage (r∞(V2) ≈ 0.23), which is the same
for every test voltage repeat. Since there has been very little change in activation a when the peak current is reached, we can
approximate the peak current by

Ipeak(V1) ≈ gKr · a∞(V1) · r∞(V2) · (V2 − EK ) (S7)

where V1 and V2 are the voltages during P1 and P2 respectively. At the highest voltage tested V1 = Vmax, we can assume that
a∞(Vmax) ≈ 1, so that we can write

Imax = Ipeak(V1) ≈ gKr · r∞(V2) · (V2 − EK ) (S8)

As a result, we can divide by Imax to obtain

Ipeak
Imax

≈ a∞(V1). (S9)

This can be plotted to give the summary curve shown in Figure S4, and is commonly known as the ‘activation curve’.
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S1.4 Pr4: Time constant of inactivation

Figure S5: Simulated analysis of Pr4, approximating the time constant of inactivation. The protocol and current are shown in
the left-most panel. Next, a phase diagram is shown with the start of P3 highlighted with a blue square, and the end of P3
for every repeat shown with a green square. Simulated currents during P3 are shown in the third panel, and are well-fitted by
a single exponential. This yields the time constants shown in the final panel. The values obtained this way are accurate for
higher voltages but contaminated by activation for lower voltages. Looking back to the phase diagram, the low voltages (blue
lines) have trajectories with a strong horizontal (activation) component, while only the higher voltages (dark red lines) have
trajectories determined mostly by recovery.

Pr4 (16 repeats of approx. 2.9s each, 46s in total, can be used to approximate the time constant of inactivation, and consists of a
long step (P1) at +50mV, followed by a quick step (P2) down to −90mV and finally a variable-voltage step P3. During P1
the model quickly inactivates and then activates, which is visible in the phase plane as a movement from top-left down to the
lower-right corner. P2 then causes a rapid recovery (and a large current), and only minor deactivation: an upwards movement in
the phase plane that is deflected left, to a point near the phase-plane coordinates (a = 0.75, r = 0.7).

Next, the short variable-voltage step P3 is applied. Since P2 left the channels both activated and recovered, large currents can
be recorded throughout P3. Due to P3’s short duration and the large difference between the rates of activation and inactivation,
the decays of most of these currents are characterised almost entirely by inactivation (vertical versus horizontal movements on
the phase plane). As a result, we can fit exponential curves to these decays to approximate a time constant of inactivation for
every tested voltage. Note however, that this assumption is increasingly invalidated for lower potentials, so that Pr4 can only be
used to approximate time constants for higher voltages. The resulting time constant approximations are shown in Figure S5.

Note: Some of the most striking parts of the phase plane diagram for Pr4 correspond to the step after the very short P3. To
trace the movements of the system through the phase plane it may be helpful to consult the 3-dimensional phase diagrams given
in Figure S10 or the videos at https://github.com/CardiacModelling/FourWaysOfFitting.
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S1.5 Pr5: Time constants, IV curve, and steady state of inactivation

Figure S6: Simulated analysis of Pr5, approximating the time constants of activation and inactivation. The protocol and current
are shown in the left-most panel, with the start and end of the P2 step indicated with blue and green squares respectively. The
same highlighting is applied in the phase diagram, which shows all P2 currents start with rapid recovery, followed by slow
deactivation. In the next panel, the P2 currents are plotted and shown to be well fitted by a double exponential. This results in
two time constants, which are shown in the final panels along with the underlying model variables.

Pr5 (9 repeats of approx. 10.3s each, 93s in total) is used to estimate time constants of both activation and inactivation, as well
as providing a graph of voltage-dependent peak currents (the ‘IV curve’) from which the steady states of inactivation can be
approximated. The main part of Pr5 consists of a step to +50mV (P1) followed by a variable-voltage step (P2). As before, the P1
step of Pr5 can be seen in the phase plane as a movement from top-left to a stable point in the lower-right of the plane where the
channels are almost entirely activated (a ≈ 1) and inactivated (r ≈ 0). Next, a much lower voltage is applied during P2, causing
the channels to rapidly recover and resulting in a strong current. This is shown as an upward movement in the phase plane,
which then gradually turns into a horizontal movement as the system begins to deactivate. As a result, P2 is characterised by a
very rapid deflection (positive or negative depending on the sign of V2 − EK ) caused by recovery-from-inactivation, followed by
a much more gradual decay as deactivation sets in.

We can use this two-phase character of the current by fitting one exponential to the start of the P2 current (pre-peak)
to estimate the time constant of inactivation (τr ), and fitting a second exponential to the end of the current (post-peak) to
estimate the time constant of activation (τa) for each test voltage V2. These estimates can be improved by fitting the sum of both
exponentials directly to the currents, using the independently acquired values as initial guesses. The resulting values are plotted
in Figure S6.
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IV Curve and steady state of inactivation

Figure S7: Simulated analysis of Pr5, approximating the steady state of inactivation. The protocol and current are shown in the
left-most panel, with the peak currents during each repeat highlighted. The same highlighting is applied in the phase diagram.
Next, the peak current is plotted against the P2 voltage, resulting in a (commonly referred to as ‘the’) IV curve. By dividing the
peak current through V2 − EK we obtain gKr · a(t) · r(t). We then use the approximations a(t) ≈ 1 and r(t) ≈ r∞(V2), to find
gKr · a(t) · r(t) ≈ gKr · r∞(V2). Finally, we assume that the peak r measured is ≈ 1, so that gKr ≈ max [gKr · r∞(V2)], and we can
divide by this value to find r∞(V2) for every tested V2. The resulting values are shown in the final panel, and can be seen to differ
from the underlying model variable. Looking at the phase diagram, we see that the final assumption (peak r ≈ 1) does not hold,
but also that low-voltage peaks do not occur exactly at r(t) = r∞.

In the second application of Pr5, the steady-state of inactivation (r∞) is approximated in a similar manner to Pr3. First, we
extract the peak current during P2 and plot it as a function of voltage. The result is known as an IV curve, and is shown in
Figure S7. Again, note that the peak current occurs when the trajectory in the phase plane changes from vertical (upwards) to
horizontal (leftwards) movement, and that — especially for the higher voltages — there is relatively little deactivation at this
point. As a result, the peak current can be approximated as

Ipeak ≈ gKr · a∞(V1) · r∞(V2) · (V2 − EK ) (S10)

where (V2−EK ) is known and a∞(V1) ≈ 1 at +50mV. Dividing by these two quantities, we find an approximation for gKr · r∞(V2).
If we further assume that for the lowest voltage r∞(Vmin) ≈ 1 (again, note for later that it is actually closer to 0.9 in this
parameterisation of the model) we can divide by gKr · r∞(Vmin) to find an approximation of r∞(V2) for every tested V2. The result
is shown in Figure S7
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S1.5.1 A note on calculating steady-state of inactivation
Calculating steady states of activation and inactivation requires a division by (V − EK ), creating a singular point at V = EK

where conductance cannot be calculated, but more importantly a region around the point V = EK where any small error is
amplified. Looking at Figure S7, we can see that many of the most rapidly changing (and therefore most informative) parts of
the inactivation curve occur in this region.

In Figure S8.A, we have plotted the peak currents during the P2 step of Pr5 for all cells. A clear and regular trend can be
seen for each cells, and all cells show qualitatively similar behaviour. In the next panel (Figure S8.B) we show the multiplication
factor (V − EK )−1 (blue line) that is applied to the panel A data to obtain the steady-state curve (using EK = −88.4mV). To
illustrate what will happen if the term V −EK is imperfectly known we also plot the 10-th and 90-th percentile of the distribution
1/N(V − EK ,σ), where N is a normal distribution and a (somewhat arbitrary) estimate σ = 2mV. This type of error could
easily arise if the calculated EK differs from the true reversal potential, or if the true transmembrane voltage differs from the
command potential.

The summary curves for all cells in Figure S8.C show that this is not just a hypothetical concern, with most cells showing a
dramatic deviation at -90mV (and even a change of sign for cells 5 and 6). As a result, we had to omit the data from V = −90mV
from the summary curves for the steady state of inactivation. In Figure S8.D we plot the same data with a rescaled y-axis, and
omit the -90mV points, but now it becomes clear that the wide region of error predicted by panel B is also borne out in practice,
as several of the point at -100mV and -80mV also show a strong deviation from the expected sigmoid voltage-dependence.

In the summary curves used in this work, we omitted the -90mV point for both the steady state of inactivation and the
time constant of inactivation (where nearness to -90mV caused problems when fitting an exponential curve). Finally, we point
out that these issues (caused in part by experimental noise) can be somewhat reduced by averaging the values for all cells (a
common noise-reduction technique): the mean value shown is not perfect, but displays a clearer sigmoid form than the data for
the individual cells. This means that this issue, although present in all studies that use a similar summary curve, becomes more
apparent when aiming for cell-specific results (see also (2)).2
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Figure S8: Approximating the steady state of inactivation. (A) The calculation of the steady state of inactivation starts from the
IV curve data from Pr5. This data is smooth, and has the same qualitative nature for every cell. (B) Next, the data is multiplied by
a term 1/(V − EK ). As shown by the blue line, this term has a large magnitude near V = EK , resulting in a strong amplification
of measurement error. The effect of small errors can also be seen by the red lines, which indicate the 10-th and 90-th percentile
of the distribution 1/N(V − EK , 2mV). (C) As expected, a major disruption is visible in the experimental data, especially near
V = −90mV ≈ EK . (D) Omitting the data points for V = −90mV removes the largest errors, but strong effects can still be seen
for −100, −80, and −70mV.

2It may be possible to deal with this issue by introducing a suitable noise model, and performing a weighted fit that assigns lower importance to the affected
points. However, as we did not see this approach in our literature review we did not include such a method in this work.
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S1.6 The summary curves are not the model variables
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Figure S9: (Black lines) The model variables a∞, r∞, τa, and τr , all drawn using the parameters for Cell #5 given in Beattie
et al. (1). (Coloured lines) Simulated summary curves, obtained by using the same model parameters, running simulations
for Pr2–5 and performing exactly the same analysis as on the experimental data. The protocol from which each data point
originates is indicated in the legend.

In explaining the rationale behind Pr2–5, we have relied heavily on the idea that they are designed to approximate the model
variables a∞, r∞, τa, and τr . Historically, this certainly seems to how these protocols originated (see e.g. Hodgkin and Huxley
(3)). However, as theories and models of IKr (and other currents) have grown in complexity the strong connection of protocols
like Pr2–5 to their modelling origins has increasingly been lost. The analysis methods have, however, remained important as
biomarkers in their own right, and many physiologists (aware of the shortcomings and pitfalls we discuss below) have chosen to
interpret them as such. However, even if we take this view, the best interpretation we have of what these biomarkers signify is
still that they resemble the variables of a two-state Hodgkin-Huxley model fit to the data. In addition, Method 1 relies on the
assumption that these procedures accurately approximate the model variables, so that it’s worthwhile pointing out some of the
issues in their calculation below.

Steady-state of activation: The central idea of Pr3 was to reach the steady state of activation (i.e. reach the stable point for
the P1 voltage) and quickly measure a current during P2. Inspecting the phase diagram for Pr3 we can see that this objective is
not met for the voltages around 0mV (e.g. the blue and green lines). This leads to an underestimation of the activation at these
voltages, which causes the rightward shift of the estimated steady state of activation observable in Figure S9. Less clear from
this graph, is that the voltage-dependency of the effect will have caused a change in the slope of the estimated steady state
curve. Note that using a longer variable voltage step would have brought the system closer to the stable point and reduced
the apparent shift, while a shorter step would have caused an even stronger rightward shift. This time-dependency has been
recognised by e.g. Vandenberg et al. (4), who warn only to compare data from protocols with an equal P1 duration, which they
term ‘isochronal activation data’. Similar issues have been recognised for other currents. For example, in a 1992 publication on
INa, Sakakibara et al. (5) consistently avoid the term ‘steady state of activation’ in favour of ‘normalized conductance-voltage
relation’, which much more cautiously describes what the ‘activation’ protocol has actually measured.

Steady-state of inactivation: The method to obtain a steady-state of inactivation from Pr5 relied on the assumptions that
(1) the peak currents measured were not strongly affected by deactivation and (2) that the lowest voltage tested induced an
inactivation level r∞(Vmin) ≈ 1. As can readily be seen from the phase diagram, the first assumption is violated increasingly at
lower P2 potentials. This leads to both an underestimation of the steady state of inactivation (visible as a rightward shift) and a
change in the apparent slope of the inactivation curve (as lower voltages are affected more than higher ones). Looking back at
the phase diagram, it is clear that the second assumption is violated too, and as a result the normalisation of the estimated
curve will be off, again leading to changes in both midpoint and slope of inactivation. This second problem could be perhaps
addressed by adding even lower potentials to the protocol, but notice that this would exacerbate problem 1. Staying with Pr5, it
seems from the phase diagram that for lower voltages the separation between the recovering and deactivating parts of the P2
current becomes increasingly less clear. However, the strategy of fitting both at once appears to have paid off, as the Pr5 time
constants in both right-hand panels of Figure S9 overlap well with the model variables.

Time constants: Finally, as already noted Pr4 fails to estimate good time constants for lower potentials (see the right-most
panel in Figure S9, but this limitation can be overcome by using the Pr5 derived points instead. However, the curves from both
protocols don’t quite line up, indicating further issues with one or both analyses.

Previous work: Please note that the above demonstrations are not novel, but reaffirmations of (much) earlier work by e.g.
Beaumont et al. (6, 1993), Willms et al. (7, 1999), and Lee et al. (8, 2006).
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S1.7 Pr6: AP validation protocol
An action potential voltage clamp protocol (Pr6) is used in this study and in Beattie et al. (1) as a validation protocol: instead of
fitting to data from these measurements we use it to evaluate predictions from models fit to the other data sets. Unlike Protocols
2–5, Pr6 does not contain any repeats. The bulk of Pr6 is a sequence of realistic action potentials, so that validation happens
against physiologically relevant situations including pathological after-depolarisations. Looking at the phase diagram in the
main paper (which has been coloured through time to match Pr6’s voltage and current traces) we can see a secondary effect: the
short time between the APs causes a build-up of activation, so that the early parts of Pr6 are a proxy for IKr during low heart
rates, while the latter parts elicit IKr behaviour during periods of prolonged higher rates.

S1.8 Pr7: Sinusoidal protocol
Pr7 (single run of 8s) is a novel sinusoidal protocol introduced in Beattie et al. (1). Like Pr6, it does not contain any repeats but
instead consists of a single eight second sweep. The protocol starts with a step to +40mV followed by a step down to −120mV,
eliciting high conductance and a strong negative current. In the phase diagram shown in the main paper, this corresponds to the
blue trajectory from lower-right to top-left. Note how the blue line goes close to the top-right corner of the plane (high a and r).
This appears to be crucial in the protocol design for estimating the conductance parameter p9 = gKr accurately: at the point
(1, 1) in the phase plane the current would be given by IKr = gKr(V − EK ) allowing gKr to be estimated directly. By including a
step that approaches this point, we gain a lot of information about gKr.

The remainder of the protocol consists of three sine waves of varying frequencies added together. In the phase diagram,
this induces rapid near-vertical movements from which we can infer the properties of inactivation, but also slower horizontal
movements that tell us about activation, across the full physiological range of voltages. Importantly, many changes in the
trajectory happen far from the x and y-axis – in other words – many of the dynamical changes induced by Pr7 occur while
strong IKr is being generated and the current is experimentally observable.
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S1.9 Three-dimensional phase diagrams
The voltage-dependence of the steady state can be made more clear by plotting the phase diagrams in three dimensions, with
voltage on the third axis.

Figure S10: Three-dimensional phase diagrams for Pr2–7.
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S1.10 Improving experimental protocols
Hints for improved protocol design can be found in the phase plane diagrams shown above. Inspecting the phase plane diagrams
in Figure S10, we can see that large parts of Pr2–5 are concerned with setting up the system for a measurement, e.g. waiting to
get into a certain steady-state, and subsequently with restoring the original state again. These steps were necessary for manual
analysis, but have less use for Method 3. Following the trajectory of the system for these parts of the protocols, we see it is
mostly near the x-axis and y-axis. From Figure S1.B we can see that these are areas where the system has low conductance,
leading to very small currents and a poor signal-to-noise ratio. For Method 3, these parts provide information about the noise in
the signal, but not about the current’s dynamics. By contrast, Pr7 spends a large proportion of its time away from axes, in the
‘measurable area’.

Looking at the phase planes further, it is tempting to think that exploring the full plane is a desirable property of the protocol.
However, our goal in parameterising a model is not to visit every state, but to observe the kinetic parameters (p1 to p8) in
action for as many voltages as possible. In other words, we want to observe the current while the system makes each of its four
transitions (activation, deactivation, inactivation, and recovery), for all physiologically relevant voltages. (Note that if we had
full confidence in our model, a few voltages per parameter would suffice, as the equations constrict the system once a few points
are known.) The three-dimensional phase planes shown in Figure S1 demonstrate how the sine wave protocol comes close to
realising this ideal. It visits a wide range of physiological voltages, and makes seemingly arbitrary transitions throughout the
voltage range. Note however, that it still has relatively low conductance throughout, so that adapting the protocol to start with
greater levels of activation may be advantageous. To improve the protocol’s performance on predicting deactivation, it may also
be useful to add a lower frequency sine wave, causing greater activation while the existing higher frequencies stop the system
from inactivating and reducing the amount of observable current.

Figure S11: Three-dimensional phase diagrams for Pr5 and Pr7. The relative sparsity of the Pr5 can clearly be seen in this plot,
sticking mostly to the walls (where no current is observable) and making only brief controlled forays into observable space.
This careful setting up of the right conditions before measuring anything is highly advantageous for traditional analysis, but is
not the most efficient strategy for whole-current fitting methods. By contrast the chaotic nature of Pr7 looks very difficult to
interpret, but induces all four transitions (activation, deactivation, inactivation, and recovery) at several voltages, all the while
producing measurable current.
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S2 SUPPLEMENTARY METHODS
S2.1 Experimental data for all 9 cells
Figures showing the data for all 9 cells can be found at https://github.com/CardiacModelling/FourWaysOfFitting.

S2.2 Boundaries on the parameter space
Boundaries were defined on the parameter space, based on physiological constraints. This is similar to the concept of a prior in
Bayesian inference, as it encodes our prior knowledge about the parameter values. As in Beattie et al. (1), we constrained (i) the
maximum conductance gKr (parameter p9); (ii) the values of the kinetic parameters p1 to p8; and (iii) the reaction rates k1 to k4.

Lower and upper bounds for the maximum conductance in each cell were estimated by Beattie et al. (1), and are shown
in Table S1. The lower conductance for each cell was estimated in Beattie et al. (1) by assuming that the current was fully
conducting (a = r = 1) at some point after the initial +40mV step of the sine wave protocol (see Beattie et al. (1) for details).
An upper bound was then derived by assuming that a · r > 0.1 at this point.

Table S1: Cell-specific limits on the conductance parameter

Cell # glower (mS) gupper (mS)
1 0.0478 0.478
2 0.0255 0.255
3 0.0417 0.417
4 0.0305 0.305
5 0.0612 0.612
6 0.0170 0.170
7 0.0886 0.886
8 0.0434 0.434
9 0.0203 0.203

Wide bounds for the kinetic parameters were set based on expected physiological ranges of the resulting reaction rates, as
well as their expected voltage sensitivity (1):

10−7 ms−1 6 pi 6 103 ms−1, i ∈ 1, 3, 5, 7, (S11)
10−7 mV−1 6 pj 6 0.4mV−1, j ∈ 2, 4, 6, 8. (S12)

Additionally, we set lower and upper bounds for the maximum transition rates, representing timescales of a minute to a
microsecond, using

1.67 · 10−5 ms−1 6 ki(V = +60) 6 1000ms−1, i ∈ 1, 3, (S13)

1.67 · 10−5 ms−1 6 k j(V = −120) 6 1000ms−1, j ∈ 2, 4. (S14)

Here, the values for the lower and upper bounds, again taken from Beattie et al. (1), are chosen to yield (very wide) limits on
what can be considered a physiologically realistic maximum reaction rate during the sine wave protocol, which is restricted to a
voltage range from −120mV to +60mV. The additional rate constraints in Eq. (S13–S14) are functions of two parameters, so
they effectively specify 2-dimensional constraints on the parameter pairs (p1, p2), (p3, p4), (p5, p6), and (p7, p8), which are
shown in Figure S16. When running optimisations, parameter sets that violated any of the boundary conditions were assigned
an error of∞.
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S2.3 Cell S: synthetic data study
To test the reliability of the different fitting methods in a setting where the ground truth is known, we conducted a synthetic
data study. Synthetic data sets were created by simulating Pr2–5 and Pr7 using the ‘Cell #5’ parameters given by Beattie et al.
(1). Independent identically-distributed Gaussian noise samples were added to these signals, using mean of 0 and a standard
deviation of 0.025, which was comparable with the noisiest signal in our data set (for which we estimated a standard deviation
of approximately 0.0247). We refer to the resulting traces as ‘Cell S’ data.

S2.3.1 Synthetic data fits provide excellent predictions

Figure S12: Method 3 goodness-of-fit and cross validation on the synthetic Cell S. As in the main manuscript, the top row
shows the voltage protocols Pr2–5, with different colours used for each sweep. The rows below show predictions of (1, 2, and 4)
and a fit to (3) the synthetic data from Cell S.

Figure S12 shows a fit to Pr2–5 using Method 3, and the predictions of the Method 3 data using methods 1, 2, and 4. As
expected, the row labelled ‘Fit 3’ now shows an excellent fit, indicating that the fitting methods are able to find a good solution
to the optimisation problem — although this does not yet prove this solution is unique. The prediction made by a model fit
using Method 4 is also shown to provide a good fit: this shows that models made using this method have a good predictive
abilities (and is an indicator that we are not overfitting but have captured an underlying trend in the data). Interestingly, the
prediction from the Method 2 model is good, but not as good as the prediction from Method 4. Finally, as expected from the
analysis of the protocols in the first section of this supplement, the issues with Method 1 show up in the synthetic data study too,
leading to poor predictions.

These findings are confirmed in the validation results shown in Figure S13.
A quantitative view of this data is presented in Figure S14. For methods 2–4 we now see that methods 3 and 4 perform very
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Figure S13: Validation on the AP-waveform signal (Pr6) in the synthetic Cell S

well when predicting each others’ training data, as well as the AP validation data. Method 2 fits well to its own data set, but the
resulting model has less predictive power than the models made with methods 3 and 4.

As was visible in the previous figures, Method 1 performs poorly. Notably, the result for ‘Method 1’ is not the best in the
row for ‘Method 1 RMSE’. This is possible because, unlike methods 2–4, the evaluation method for Method 1 (an RMSE
measure defined in equation 17 of the main manuscript) is not minimised directly by Method 1.

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 10
5.77 1.17 1.00 1.00

1.60 1.00 1.00 1.00

35.59 1.00 1.57 1.72

3.59 1.17 1.00 1.00

4.67 1.12 1.00 1.00

Figure S14: Validation and cross-validation results for the synthetic Cell S. Note that Method 1 here is being applied to the
simulated data from Cell S, rather than the idealised summary curves underlying the model, mimicking the experimental
situation.
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S2.3.2 Points with a low RMSE were clustered in a tight region
Identifiability problems can occur if, instead of having one best solution, multiple disparate points in parameter space result in
similar ‘best’ fits. To investigate if this was the case in our data, we looked at the parameters and RMSEs returned from each
repeat of methods 2–4 (80 repeats were run for Method 2, versus 50 repeats for Method 3 and Method 4). From these results,
we selected the subset with an RMSE within 1% of the best RMSE returned for each cell and each method. Next, we defined the
variation in an obtained parameter value pi as

vi =
|pi j − pi,1 |

pi,1
· 100% (S15)

where pi j is the pi value obtained in the j-th repeat, and the repeats are ordered from best to worst (so that pi,1 are the parameters
leading to the highest score). We then defined the maximum variation in each subset as:

vmax = max
i

max
j

|pi j − pi,1 |
pi,1

· 100% (S16)

The results per method per cell are shown in Table S2. For the synthetic data of Cell S, all results with a low RMSE are
clustered in a small region of the parameter space. For methods 3 and 4, this also holds true for the real data. For Method 2
however, the best results from some cells show considerable variation. To further investigate this, we counted how many of the
‘best RMSE’ results were within 1% parameter variation of the best result. The results, displayed in Table S3, show that the
large spread observed for some cells’ Method 2 results is typically due to a small number of outliers. For Cell #9 however,
only 2 in 80 repeats gave a good result, and neither result was close to the other. These results indicate there may be some
identifiability problems for Method 2.

Table S2: Maximum variation vmax in the parameters with a low RMSE per method, per cell

Method Cell S Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9
2 6e-5 0.01 11.520 14.184 5.227 1.262 0.91 16.997 10.160 3.251
3 1e-6 3e-6 5e-6 3e-6 4e-6 5e-6 5e-6 4e-6 4e-6 8e-6
4 0.04 0.19 0.27 0.11 0.09 0.10 0.07 0.14 0.13 0.13

Table S3: The number of results with an RMSE within 1% of the best result (right), and the number that were also with 1%
maximum variation of the best result’s parameters (left). Note that 80 repeats were run for Method 2, but only 50 repeats for
Method 3 and Method 4.

Method Cell S Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9
2 8 / 8 2 / 2 9 / 10 5 / 7 8 / 10 5 / 9 3 / 3 5 / 7 11 / 12 1 / 2
3 40 / 40 42 / 42 39 / 39 34 / 34 26 / 26 36 / 36 34 / 34 29 / 29 40 / 40 25 / 25
4 41 / 41 47 / 47 39 / 39 30 / 30 36 / 36 40 / 40 40 / 40 43 / 43 42 / 42 37 / 37
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S2.3.3 Fits were accurate, but had a small noise-induced bias
In the synthetic study, the ground truth is known, and so we can also assess the accuracy of the obtained parameters. However,
as we purposely created a noisy data set, we should expect this noise to have created a bias in our data (similar to the standard
error of the mean, when estimating the mean from a finite sample). Furthermore, this bias should diminish with the number of
data points used to calculate the error measures, so that method 2 should have the largest bias (42 data points), followed by
method 4 (79,600 points after capacitance filtering), followed by method 3 (2,271,442 points after capacitance filtering). This
prediction is borne out in Figure S15, which shows a lower RMSE was found by the optimiser for methods 2, 3, and 4, with the
difference in RMSE being greatest in method 2 and smallest in method 3.
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Figure S15: Noise in the synthetic data causes a shift in the point with the lowest RMSE, so that the best parameter set found by
the optimiser deviates slightly from the ground truth. This effect diminishes when the number of data points increases, so that it
is greatest in EM2 and smallest in EM3 (note the different y-axis scales).
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S2.4 Using transformed parameter spaces
The transition rates in our model are of the form k = a exp(±bV), with bounds on k, a and b to keep behaviour in physiologically
relevant timescales as explained in Section S2.2.

When running optimisations for the main manuscript, we used a log-transformation on all ‘a parameters’, that is p1, p3, p5,
and p7, in that both:

1. Initial guesses for each optimisation were chosen by sampling uniformly across this transformed space; and

2. The optimiser itself worked with parameters in the transformed space (de-transforming before every simulation).

In this section of the Supporting Materials, we outline how we made this choice by using the synthetic data of Cell S.
The result of sampling uniformly in the different spaces is visualised in Figure S16, which shows the boundaries described

in Section S2.2, drawn with two linear axes (top), a logarithmic x-axis (middle), or two logarithmic axes (bottom). We have
denoted these transforms as:

• n-space— no transform on either a or b parameters.

• a-space — log transform on a parameters (p1,3,5,7), no transform on b parameters.

• f -space— fully log transformed, for both a and b parameters (as well as the conductance parameter p9).

Initial guesses were sampled uniformly within the boundaries in each space, as shown in Figure S16.
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Figure S16: Sampling from within the boundaries A visualisation of the boundaries on the kinetic parameters is shown,
drawn with two linear axes (A & B), a logarithmic x-axis (C & D), or two logarithmic axes (E & B). In each panel, the lower
and upper bound for the parameters are shown as grey lines, the constraints imposed via the rate constant restrictions are shown
in blue and orange, and the region fully within the boundaries is indicated with grey shading. Points sampled uniformly in the
untransformed space (labelled the ‘n-space’) are shown, indicated with green ‘−’ marks. The ‘+’ marks indicate points sampled
from a space where p1, p3, p5, and p7 are log-transformed (the ‘a-space’), and points sampled uniformly from within a space
where all parameters are log-transformed (the ‘ f -space’) are shown as purple ‘×’ marks.
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S2.4.1 Effects of transformations on reliability
To investigate the effects of sampling initial points and searching in transformed spaces, we performed 50Method 4 optimisations
in different configurations on the synthetic data of Cell S, and calculated the percentage of results with an RMSE within 1% of
the best result in each configuration. We used the notation (search space, sampling space) to denote each configuration, where
‘search space’ is the space presented to the optimiser, and ‘sampling space’ is the space from which we sampled uniformly
to pick the starting point. The results, shown in Figure S17, suggest that changing the either the search-space or the choice
of initial point in isolation only has a small effect on the reliability of the method. In contrast, changing both has a drastic
influence, with the (a, a) configuration strongly outperforming the (n, n) and (f, f) configurations.
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Figure S17: The percentage of Method 4 results with an RMSE within 1% of the best result found, for 50 repeats in different
configurations, all for the synthetic data of Cell S. The first bar shows the baseline configuration (a,a) where searching and
choosing initial points were performed in the a-space. The next two bars show the influence of changing the search space
without changing the way initial points were chosen: (n, a) searching in the untransformed n-space, but choosing starting
positions in a-space; and (f, a) searching in the p1−9 log-transformed f -space but sampling in a-space. Next, to see the effect of
the starting position without changing the searching method we tested: (a, n) searching in a-space but choosing the first point
from n-space; and (a, f) searching in a-space but choosing a point from a distribution uniform in f -space. And finally, we
varied both simultaneously: (n, n) searching and sampling in n-space; and (f, f) searching and sampling in f -space.

Next, we repeated the experiment using Method 3. Here, the effects of changing the search space or initial point selection
in isolation were larger. When changing both, the performance of the ( f , f ) configuration was much closer to the (a, a)
configuration, but the (n, n) configuration still proved very unreliable.
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Figure S18: The percentage of Method 3 results with an RMSE within 1% of the best result found, for 50 repeats in different
configurations, for the synthetic data of Cell S.
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S2.4.2 Effects of transformations on performance
Next, we investigated the effects of parameter transformations on optimisation performance, by plotting the number of
evaluations required in each optimisation for Method 3 and Method 4 in several configurations in Figure S19. These results
show that (1) searching in a transformed space is more efficient than in an untransformed space; (2) the starting position has less
influence on the performance, although choosing a distribution that favours points near the true solution reduces the number of
evaluations needed; (3) that choosing bad starting points can negate the positive effects of using a transformed search space.
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Figure S19: The number of evaluations per optimisation on the synthetic data of Cell S, for 50 optimisations in different
configurations. (Top) Method 4 results for different search spaces (left), choosing starting points uniformly in different spaces
(centre), or varying both (right). Note that the centre of each panel shows the same data (the baseline (a, a) configuration).
(Bottom) A similar exploration for Method 3.

S2.4.3 Recommendations
In conclusion, our synthetic data study indicates that for transition rates of the form a exp(±bV) a parameter transform of
‘ln a’ and linear ‘b’ is a good choice for both reliability (reproducible best fits from different initial guesses) and performance
(number of function evaluations to minimise with CMA-ES). These results may generalise to other model structures with
voltage-dependent rates of the form a exp(±bV). The findings perhaps suggest rewriting the model equations in the form
exp(a′ ± bV) and removing the need for parameter transforms entirely by performing optimisation on a′ and b.
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S3 SUPPLEMENTAL RESULTS
S3.1 Obtained parameters
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Figure S20: The best parameters returned by all four methods, for all nine cells. Only the eight kinetic parameters are shown.
Parameters p1 and p2, shown in panel A, together determine the activation rate, while p3 and p4 in panel B determine
deactivation. Similarly, inactivation and recovery are determined by the parameters in panels C and D respectively.

S3.2 Validation and cross-validation figures for all cells
Validation and cross-validation figures for all cells can be found at
https://github.com/CardiacModelling/FourWaysOfFitting.
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S3.3 Relative RMSE tables for all cells

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 1
1.53 1.35 1.00 1.36

1.14 1.00 3.21 1.59

2.53 1.00 4.31 2.27

1.99 1.75 1.00 1.92

3.15 2.30 1.84 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 2
2.26 3.00 1.00 1.19

1.12 1.00 2.34 1.60

2.85 1.00 3.99 2.91

2.33 2.46 1.00 2.07

3.20 4.85 1.65 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 3
1.14 2.10 1.00 1.37

1.00 1.07 2.85 1.94

1.83 1.00 3.48 2.18

1.29 1.46 1.00 1.54

1.66 4.92 1.77 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 4
2.03 1.87 1.22 1.00

1.01 1.00 2.94 2.64

2.18 1.00 3.67 3.21

1.35 1.77 1.00 1.73

3.04 4.16 2.20 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 5
1.82 4.25 1.29 1.00

1.00 1.11 4.64 1.99

2.58 1.00 6.33 2.48

2.46 3.88 1.00 2.13

3.78 13.54 1.70 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 6
2.92 1.00 1.07 1.32

2.33 1.00 3.74 2.06

4.47 1.00 5.20 3.17

2.41 1.79 1.00 2.29

3.82 2.15 1.60 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 7
2.04 1.85 1.12 1.00

1.00 1.21 5.85 3.03

2.23 1.00 6.74 3.38

1.36 1.52 1.00 1.47

2.71 3.25 2.09 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 8
2.09 1.56 1.00 1.09

1.35 1.00 4.79 2.28

2.64 1.00 7.07 2.87

1.61 1.50 1.00 1.47

2.90 2.35 1.93 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 9
1.42 1.70 1.00 1.25

1.00 1.01 2.21 1.81

2.34 1.00 3.36 3.59

1.57 1.61 1.00 1.52

1.66 1.94 1.43 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4All cells
1.7 (0.3) 1.9 (0.8) 1.0 (0.1) 1.1 (0.2)

1.2 (0.5) 1.0 (0.2) 3.3 (0.6) 1.9 (0.2)

2.6 (0.7) 1.0 (0.1) 4.8 (1.0) 2.9 (0.4)

1.7 (0.4) 1.8 (0.4) 1.0 (0.4) 1.7 (0.4)

2.8 (0.9) 3.8 (1.8) 1.8 (0.5) 1.0 (0.3)

Figure S21: Relative RMSE for all cells.
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S3.4 Performance
The experimental and computational effort that goes into each method is illustrated in Figure S22.
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Figure S22: Experimental duration and optimisation duration. (A) The duration of the protocols needed for each method: 228s
for methods 1–3 (which are based on Pr2–5), and 8 s for Method 4 (based on Pr7). (B) The time taken for a single optimisation,
with 50 points shown per method per cell. (C) The number of evaluations per optimisation for methods 2–4. (D) The mean time
per evaluation, calculated for 50 optimisations for each cell. Orange arrows indicate hidden outliers from Method 2.
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Figure S22.A shows that the experiments required for Method 4 are considerably faster than those needed for methods 1–3,
with only 8 seconds needed for Pr7, compared to 228 seconds for the Pr2–5 combination. The time for a single optimisation
(one of the 50 repeats we ran per method) is shown for methods 2–4 in Figure S22.B. Method 1 is deterministic and runs almost
instantaneously, so is omitted here. Method 2 takes far longer than the other methods, and Method 3 is slower than Method 4.
Inspecting the number of evaluations (simulations) performed by each method, shown in Figure S22.C we see that Method 2 is
much more similar to methods 3 and 4 in this respect. A large number of Method 2 optimisations terminated with a low number
of evaluations, which indicates that they stopped exploring early, e.g. due to hitting a local minimum.

The time spent per optimisation (Figure S22.D) is largest in Method 2, followed by Method 3, followed by Method 4.
Figure S23 shows this difference is due to the time per evaluation, rather than the number of evaluations. Method 3 evaluations
take longer than Method 4 evaluations, as they require the simulation of multiple, long protocols (see Figure S22.A). The
time per evaluation for Method 2 is larger still, since Method 2 not only runs a simulation every evaluation, but also needs to
post-process the results to extract time constants and steady states.
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Figure S23: Time per optimisation versus number of evaluations per optimisation.
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S3.5 Cross-sections of the optimisation surfaces
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Figure S24: Cross-sections of all optimisation criteria for Cell #5, for EAP (Top), and EM1 to EM4. The surfaces were drawn by
performing a brute-force mapping (256x256 evaluations) around a fixed point. For EAP this fixed point was chosen by first
running an optimisation to find its optimum. For EM1 to EM4 the fixed point was the result returned by methods 1–4. Note that
for EM1 this point does not correspond exactly to EM1’s minimum.
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S3.6 Method 1b: Minimising EM1
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Figure S25: In Method 1, the steady-state approximations are used in deriving the approximations of the time constants. The
time constants are relatively robust against shifts in the midpoints of (in)activation, but react more strongly to changes in the
steady state slopes. For Method 1, this implies that a small error in estimating the slope (for example due to having points near
the reversal potential) can cause a large error in the time constants. For Method 2, it shows that a better fit on the time constants
can be obtained by slightly tweaking the steady state curves.
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Figure S26: Minimising EM1 directly allows for a trade-off between goodness-of-fit in the steady states and the time constants.
This results in improved time-constant fits, without much change to the steady-state fits. Data is shown for Cell #5.
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AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 5
1.82 4.25 1.29 1.00

1.00 1.11 4.64 1.99

2.58 1.00 6.33 2.48

2.46 3.88 1.00 2.13

3.78 13.54 1.70 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1b Method 2 Method 3 Method 4Cell 5
1.85 4.25 1.29 1.00

1.00 1.43 5.96 2.56

1.98 1.00 6.33 2.48

3.46 3.88 1.00 2.13

6.84 13.54 1.70 1.00

Figure S27: Using Method 1b (Right) leads to E1 RMSEs that outperform Method 1 (Left). However, this improvement does
not necessarily translate to better predictions, as the fundamental idea — that the model equations should be overlaid on their
experimental approximates — is still flawed. Data is shown for Cell #5.
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S3.7 Method 2b: Minimising EM2 starting from Method 1 result
A Method 2 variant (“Method 2b”) can be created by adapting Method 2 to only perform a single run, starting from the
parameters returned by Method 1. In the experiments we ran, this gave very similar results to Method 2, but at a lower
computational costs. However, these results will only generalise if the function EM2 is smooth and easy to navigate between the
Method 1 and Method 2 results.

Table S4: Method 2 and Method 2b results

Cell EM2 Method 2 EM2 Method 2b
1 0.1842753785 0.1900501636
2 0.1807762308 0.1827848996
3 0.2155275628 0.2155275628
4 0.1648576405 0.1648576405
5 0.1583982474 0.1584057577
6 0.1664606846 0.1669911494
7 0.1335628150 0.1335628150
8 0.1654924563 0.1654924564
9 0.1846339139 0.1880672499

S3.8 Method 3b: Minimising EM2 starting from Method 1 result
A similar adaptation can be used to create a Method 3 variant, “Method 3b”.

Table S5: Method 3 and Method 3b results

Cell EM3 Method 3 EM3 Method 3b
1 0.0448121214 0.0448121214
2 0.0479263275 0.0479263275
3 0.0613629021 0.0613629021
4 0.0801896081 0.0801896081
5 0.0394435210 0.0394435210
6 0.0666019884 0.0666019884
7 0.1164911334 0.1164911334
8 0.1005265480 0.1005265480
9 0.0683642823 0.0683642823
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