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Four Ways to Fit an Ion Channel Model
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ABSTRACT Mathematical models of ionic currents are used to study the electrophysiology of the heart, brain, gut, and several
other organs. Increasingly, these models are being used predictively in the clinic, for example, to predict the risks and results of
genetic mutations, pharmacological treatments, or surgical procedures. These safety-critical applications depend on accurate
characterization of the underlying ionic currents. Four different methods can be found in the literature to fit voltage-sensitive
ion channel models to whole-cell current measurements: method 1, fitting model equations directly to time-constant, steady-
state, and I-V summary curves; method 2, fitting by comparing simulated versions of these summary curves to their experimental
counterparts; method 3, fitting to the current traces themselves from a range of protocols; and method 4, fitting to a single current
trace from a short and rapidly fluctuating voltage-clamp protocol. We compare these methods using a set of experiments in
which hERG1a current was measured in nine Chinese hamster ovary cells. In each cell, the same sequence of fitting protocols
was applied, as well as an independent validation protocol. We show that methods 3 and 4 provide the best predictions on the
independent validation set and that short, rapidly fluctuating protocols like that used in method 4 can replace much longer con-
ventional protocols without loss of predictive ability. Although data for method 2 are most readily available from the literature, we
find it performs poorly compared to methods 3 and 4 both in accuracy of predictions and computational efficiency. Our results
demonstrate how novel experimental and computational approaches can improve the quality of model predictions in safety-crit-
ical applications.
SIGNIFICANCE Mathematical models have been constructed to capture and share our understanding of the kinetics of
ion channel currents for almost 70 years, and hundreds of models have been developed using a variety of techniques. We
compare how well four of the main methods fit data, how reliable and efficient the process of fitting is, and how predictive
the resulting models are for physiological situations. Themost widely used traditional approaches based on current-voltage
and time constant-voltage curves do not produce the most predictive models. Short, optimized experimental voltage-clamp
protocols are as predictive as ones derived from traditional protocols, opening up possibilities for measuring ion channel
kinetics faster, more accurately, and in single cells.
INTRODUCTION

Computational models of ionic currents have been used to
understand the formation of the cellular action potential
(AP) (1–3), to simulate the effects of genetic mutations
(4), and to study and predict the effects of pharmaceutical
compounds that block various ion channels (5,6). By fitting
mathematical models to experimentally measured currents,
we can learn about the kinetics of the underlying ion chan-
nels in healthy and in pathological situations. The need to
understand voltage-sensitive ion channels’ function is wide-
spread as they are key players in neuronal excitation (1), car-
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diac contraction (7), gastric function (8), insulin secretion
(9), and several other aspects of physiology (10,11). In car-
diac arrhythmia research, models of ionic currents are
routinely integrated into models of the AP and used to inves-
tigate the effects of genetic mutations, predict proarrhyth-
mic risk in drug development, and inform clinical
interventions (12–14). Such safety-critical applications
depend on accurate characterization of the underlying ionic
currents.

Several methods have been proposed to fit (parameterize)
models of ionic currents, covering a range including
pen-and-paper methods of the 1950s, detailed mathematical
analysis specific to Hodgkin-Huxley models, and numerical
‘‘black-box’’ optimization. Data from several sources
have been used, including whole-cell (aggregate) currents
(1), single-channel currents (15), AP recordings (16),
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dynamic-clamp experiments (17), gating currents caused by
the movement of charged parts of the ion channel proteins
themselves (18), and measurements of fluorophores whose
visibility varies with channel conformation (19).

In this manuscript, we focus on the common problem of
fitting a set of predetermined model equations to voltage-
dependent whole-cell ionic currents recorded under voltage
clamp.

We describe four methods of fitting, each representative
of a wider class of methods used in the electrophysiology
literature. Our case study uses data from a previous study,
in which currents were recorded at room temperature in
nine Chinese hamster ovary (CHO) cells stably expressing
hERG1a (20). Each cell was subjected to a series of training
and validation protocols. All protocols were run on every
cell so that we can apply all four methods to each cell,
creating four model parameterizations, and then evaluate
their ability to predict the current measured in the validation
protocol. Finally, we discuss some of the reasons behind the
observed differences in performance and compare the
methods’ repeatability and time efficiency.

The first publication describing and fitting a model of
ionic currents was by Hodgkin and Huxley (1). Using the
idea that ionic conductance depends on some parts of the
membrane being in one of two states, they postulated simple
‘‘gating’’ processes, each with a forward and a backward
transition rate from which a time constant and a steady state
could be deduced. They then set about designing protocols
to measure (or approximate) these time constants and steady
states at several voltages, fitted curves through these mea-
surements, and used the resulting (phenomenological) equa-
tions to encode their transition rates. Similar methods of
fitting the equations directly to experimentally derived
points—using mathematical analysis, least-squares fitting,
or manual adjustment—were employed by subsequent mod-
elers (21–30).

In this work, we describe a version of this method and
refer to it as ‘‘method 1.’’ It is important to note that these
methods rely on particular assumptions: 1) that the underly-
ing biophysics is accurately described by one or more inde-
pendent gating processes, each with their own steady-state
and time-constant variables; and 2) that an experimental
method and analysis procedure exists that will yield accu-
rate values for these variables throughout a range of physi-
ologically relevant voltages. The first assumption underlies
all Hodgkin-Huxley-style models and any Markov models
that have an equivalent Hodgkin-Huxley formulation.
(Hodgkin-Huxley models are a subset of a more general
class of Markov models. See, for example, Beattie et al.
(20), which presents the equivalent Markov formulation of
the Hodgkin-Huxley model used in this study, or Rudy
and Silva (3), which provides examples of Markov models
with and without Hodgkin-Huxley counterparts.) Testing
whether the second assumption is violated can be done us-
ing simulated experiments, but proving it holds is chal-
lenging. A detailed mathematical analysis of two
protocols was performed by Beaumont et al. (31), who
showed that steady states can be obtained from peak cur-
rents only if there is a large difference in the time constants
of the system, and that once these are known, the time con-
stants can be estimated using time-to-peak measurements or
by fitting exponential curves. In a follow-up study, they pre-
sented an iterative procedure to estimate the steady states for
systems with more similar (‘‘nonseparable’’) time constants
(32). In Wang and Beaumont (33), this analysis was taken
further, and a method was derived to estimate steady-state
equations and time constants simultaneously and further
improve the results (the idea to fit both parameters together
had also been used previously by Ebihara and Johnson (34)).
Willms et al. (35) provided another mathematical analysis of
fitting two-gate Hodgkin-Huxley models and concluded that
separate estimation of time constants and steady states (‘‘the
disjoint method’’) can lead to poor results. A further critique
of method 1 was given by Lee et al. (36), who used mathe-
matical analysis and simulation to point out errors arising
for nonseparable time constants, and introduced methods
aimed to combat this effect.

Despite these critiques, method 1 remains highly popular
due of its simplicity. Estimates for time constants and steady
states at different voltages are easily obtainable from the
literature, which is a distinct advantage when multiple cur-
rents must be considered, e.g., when creating full AP models
(7,37–39).

An alternative to method 1, but using the same data
points, is to simulate the voltage protocols and the subse-
quent analysis to obtain a set of simulated steady states
and time constants to match the experimental ones. The pa-
rameters used in the simulation can then be updated in an
iterative fashion (manually or using numerical optimization)
until the simulated values match the experimental ones. This
procedure allows both Hodgkin-Huxley and more generic
Markov models to be fitted to published time-constant and
steady-state data (although a unique fit is not guaranteed).
If the modeler uses the same analysis method that was
applied to the experimental data, any imperfections in the
approximations of the steady states and time constants are
replicated in the simulation so that good results may be
obtainable even when method 1 approximations are poor
(e.g., if time constants are nonseparable). In this manuscript,
we use the name ‘‘method 2’’ to describe a version of this
method based on numerical optimization.

Like method 1, method 2 is prevalent in the AP-modeling
literature (40–47). Further users include Moreno et al. (48),
who mention the prevalence of published summary curve
data as a reason to use method 2 rather than direct fits to cur-
rent traces, as well as Perissinotti et al. (49), who provide a
software package for performing method 2 optimizations. A
tool by Teed and Silva (50) similarly implements a method 2
but also varies model structure when searching. Rather than
manually tuning model parameters, several optimization
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algorithms have been applied to method 2, including simu-
lated annealing (50), a Davidon-Fletcher-Powell optimizer
(51), subspace trust region methods (45), and the Nelder-
Mead simplex method (45,48).

Instead of fitting to processed ‘‘summary data’’ (time con-
stants and steady states), we can also fit simulated currents
directly to measured currents from the same protocols: in
this manuscript we term this ‘‘method 3.’’ Like method 2,
method 3 is applicable to Markov-style models. Because
method 3 does not require calculation of time constants
and steady states, it is insensitive to errors in this process
and can be more computationally efficient. A downside is
that full current traces are more difficult to obtain and
require the experimenter to have published their findings
in digital format rather than printed tables or summary
graphs.

The applicability of method 3 to Markov models was ex-
ploited by Balser et al. (52), who used numerical optimiza-
tion and whole-current fitting to find the parameters of a
model describing a cardiac potassium current. Similarly,
Irvine et al. (53) formulated a Markov model of the cardiac
fast sodium current and fitted it using method 3 (although
they used additional data sources beyond whole-cell cur-
rents). Several algorithms have been used for the optimiza-
tion step in method 3, including the Levenberg-Marquardt
algorithm (52,54), Nelder-Mead (52), simulated annealing
(53), differential evolution (55), and genetic algorithms
(56,57), as well as hybrid methods combining multiple algo-
rithms (58). Willms et al. (35) used simulated data to show
advantages of method 3 over method 1 and provided a soft-
ware tool for method 3 fitting (59).

Several authors have also compared fitting methodologies
using identifiability analysis. A working definition of prac-
tical parameter identifiability is that fitting a particular
data set constrains the parameters of a model to a small re-
gion of parameter space. As such, identifiability can be used
as a tool to compare model complexity, fitting algorithms,
and protocol designs. An extensive analysis of parameter
estimation and identifiability for Markov models of
ligand-gated channels was given by Milescu et al. (60),
while Fink and Noble (61) used a sensitivity-based method
to detect identifiability issues in published models and opti-
mize voltage protocols. Csercsik et al. (62) investigated a
procedure falling somewhere between methods 1 and 3, in
which the parameters underlying voltage-dependence of
steady states were determined, but time constants were fitted
separately for different voltages. Walch and Eisenberg (63)
considered the problem of estimating time constants and
steady states as scalars for several voltages independently
and concluded that in this case, only the time constants
were identifiable. As Csercsik et al. (62) point out, full iden-
tifiability can be obtained by using voltage-dependent func-
tions for the steady-state and time-constant equations.

In method 3, we do not calculate time constants or steady
states, but we still use protocols designed specifically to
2422 Biophysical Journal 117, 2420–2437, December 17, 2019
estimate them. A next natural step, then, is to reconsider
the established protocols and to ask what type of protocol
would work best for method 3. We define ‘‘method 4’’ as
the process of fitting directly to currents from a single pro-
tocol designed to characterize multiple aspects of current ki-
netics at once.

Perhaps the first demonstration of method 4 was by Mill-
onas and Hanck (64), who fit a Markov model of a cardiac
sodium current using a protocol consisting of random fluc-
tuations between two voltages (‘‘dichotomous noise’’).
This method was later applied to design protocols specif-
ically to differentiate between competing models (65–67).
A brief mention also occurs in Gurkiewicz and Korngreen
(56), which discusses the benefits of method 3 for semiauto-
matic ‘‘high-throughput’’ construction of ionic current
models and notes that it could be applied to ‘‘nonstandard
protocols.’’ Fink and Noble (61) used identifiability analysis
and simulation to show that standard voltage protocols can
be considerably shortened while still being sufficient to
parameterize various models. Importantly, they showed
that protocols can be created that provide information on pa-
rameters for multiple cardiac currents so that it may be
possible to formulate protocols without extensive preknowl-
edge of the system (as is typical for standard protocols) and
that protocols might be designed that are robust to changes
induced by, e.g., drugs or mutations. Subsequent work by
Clerx et al. (68) showed that the identifiability analysis em-
ployed by Fink and Noble (61) could be extended to take
into account experimental errors. Finally, a study by Beattie
et al. (20) proposed and tested a protocol design based on
sinusoidal voltage clamps. Their work showed that a model
could reliably be fit to the resulting current measurements
and that models created this way outperformed published
models in predicting the response to conventional voltage-
clamp protocols and an AP waveform protocol.

Having discussed the four methods, we should point out
that many studies do not stick to using a single method
but use different approaches for different model parameters
(69). In the remainder of this work, we formulate the four
methods that characterize the approaches discussed above
and evaluate their performance on a previously published
experimental data set.
Terminology and notation

Concepts such as ‘‘the time constant of activation’’ can be
interpreted either as a property of a (macroscopic) current
through the cell membrane or as a property of (microscopic)
transitions of individual channels. Similarly, they can be
seen either as the results of a particular set of (whole-cell)
experiments or as model variables that may or may not
have a physical counterpart. In this manuscript, we will
use terms such as ‘‘model time constant’’ and ‘‘experimental
time constant’’ to distinguish between model variables and
experimentally derived values where necessary. When using
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mathematical symbols, we will use a tilde notation to denote
experimentally derived values (e.g., ~ta for the experimental
time constant of activation) and a plain notation for model
variables (e.g., ta for the model time constant of activation).
When referring to a vector of values at different voltages, we
use boldface symbols (e.g., ta and ~ta). Finally, when refer-
ring to the full set of experimentally derived measures, we
have tried to consistently use the term ‘‘summary curves’’
(based on the notion of a collection of ‘‘summary statistics’’
or ‘‘biomarkers’’).
MATERIALS AND METHODS

Current model

To model the hERG current, we use a two-gate Hodgkin-Huxley model

found to provide excellent predictions by Beattie et al. (20) (described there

in equivalent Markov model form). The current is defined by

IKr ¼ gKr a r V � EKð Þ; (1)

where gKr is the maximal conductance, a and r are gating variables (defined

below), V is the trans-membrane potential, and EK is the reversal potential

for potassium ions (note that although the measurements we used were from

CHO cells expressing hERG1a, we use the shorthand terms IKr and gKr
throughout this work). The Nernst equation was used to calculate a separate

EK value for each cell:

EK ¼ RT

F
ln
½Kþ�o
½Kþ�i

; (2)

where R is the gas constant, F is the Faraday constant, [Kþ]o and [Kþ]i are
the bath (outside membrane) and pipette (inside membrane) concentrations

of potassium ions, and T is the cell-specific temperature measured by Beat-

tie et al. (20). In the nine cells used in this study, calculated values for EK

ranged from�88.45 to�88.30 mV with the precise value depending on the

temperature at the time of recording.

The two processes represented independently by this Hodgkin-Huxley

model are ‘‘activation’’ (with a representing the fraction of activated chan-

nels) and ‘‘inactivation’’ (with r representing the fraction of channels that

have recovered from inactivation). Both variables a and r are dimensionless

and in the range [0, 1]. Increases in a correspond to ‘‘activation’’ and de-

creases in a to ‘‘deactivation,’’ whereas decreases in r correspond to ‘‘inac-

tivation’’ and increases in r to ‘‘recovery’’ from inactivation. (Note that the

independence assumption means that—somewhat confusingly but perhaps

appropriately—channels can be both ‘‘activated’’ and ‘‘inactivated’’ at the

same time, because the opposite of activation is called deactivation and

the opposite of inactivation is recovery.) We can represent the model as

two independent gating reactions

ð1� aÞ#k1

k2
a r#

k3

k4
ð1� rÞ; (3)

where a is the fraction of channels in the activated state, (1 � a) is the frac-

tion in the deactivated state, r is the recovered fraction, (1 � r) the inacti-

vated fraction, and k1 to k4 are the voltage-dependent transition rates. The

ordinary differential equations governing a and r are then derived with

mass-action kinetics and can be written in the form

da

dt
¼ aN � a

ta
;

dr

dt
¼ rN � r

tr
; (4)
where aN and rN denote the model’s voltage-dependent steady states and ta
and tr denote its voltage-dependent time constants, defined in terms of the

transition rates as

ta ¼ 1=ðk1 þ k2Þ; tr ¼ 1=ðk3 þ k4Þ; (5)

aN ¼ k1ta; rN ¼ k4tr: (6)
The voltage dependencies of the transition rates are defined using an Eyr-

ing-derived exponential formulation (53,70–72) as

k1 ¼ p1expðp2VÞ; k3 ¼ p5expðp6VÞ; (7)

k2 ¼ p3expð�p4VÞ; k4 ¼ p7expð�p8VÞ: (8)
The model parameters to be inferred are therefore the kinetic parameters

p1, p2,., p8 and the conductance p9 ¼ gKr. All model parameters are taken

to be strictly positive: pi > 0 for i ˛ 1, 2, ., 9.
Experimental methods

The experimental data used in this study are taken from Beattie et al. (20).

In short, manual patch-clamp recordings were performed at room tempera-

ture (between 21 and 22�C) in CHO cells stably expressing hERG1a (which

encodes the a subunit of the channel carrying IKr). Recordings were taken

from nine cells and seven protocols in each cell (we will refer to these as

cells #1 to #9 and Pr1 to Pr7, with the numbering matching the original pub-

lication). After the final protocol was completed, the IKr blocker dofetilide

was washed in, and all protocols were repeated. Each cell’s data was then

postprocessed by first leak-correcting the signals recorded both in the pres-

ence and absence of dofetilide and then subtracting the IKr-blocked signal

from the unblocked one to remove any endogenous currents. For this study,

we used the already leak-corrected and dofetilide-subtracted data as pub-

lished on https://github.com/mirams/sine-wave. The first protocol, Pr1,

did not elicit strong currents in any of the cells and so was not used in

this study.

Following Beattie et al. (20), capacitance artifacts were removed from

the experimental data by discarding the first 5 ms after each discontinuous

voltage step. To obtain similar results from simulated protocols, the same

filtering was applied to all simulated data.

The six protocols used in this study are shown in Fig. 1. The first four,

Pr2–5, are adaptations of common step protocols used to characterize IKr.

Specifically, Pr2 is used to estimate a single time constant of activation

(for V ¼ þ40 mV), Pr3 is used to estimate the steady state of activation,

Pr4 is used to estimate time constants of inactivation, and Pr5 provides

data about both time constants, as well as the steady state of inactivation.

Pr7 is a novel sinusoidal protocol introduced by Beattie et al. (20) and is

intended to provide the same information in a much shorter time. It consists

of an initial step toþ40 mV, designed to trigger a large current, followed by

a section consisting of the sum of three sine waves. Finally, Pr6 is a collec-

tion of AP wave forms, representing the membrane potential under physi-

ological and pathological conditions. As in Beattie et al. (20), we used

Pr6 as a validation protocol while either Pr7 or the set Pr2–5 were used

for fitting. Note that the full set of protocols was run on every cell.

A detailed description of all protocols and the associated analysis

methods is given in Supporting Materials and Methods S1, Section S1. In

analyzing these protocols, we found it useful to perform simulations (using

the parameters obtained by Beattie et al. (20)) and plot the model state in a

two-dimensional phase diagram as shown in Fig. 1. A guide to using these

diagrams for analysis is provided in Supporting Materials and Methods,

Section S1.1.

The voltage-step protocols Pr2–5 can be used to derive a set of graphs

that characterize the current, shown in Fig. 2 for all nine cells used in
Biophysical Journal 117, 2420–2437, December 17, 2019 2423
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FIGURE 1 Voltage protocols, currents measured in cell #5, and simulated phase diagrams for all six protocols (Pr2–7) used in this study. Simulations for

the phase diagrams were performed with the cell #5 parameters obtained in Beattie et al. (20). (A) Pr2 is used to measure the experimental time constant of

activation. We show the voltage-step protocol (top left), the resulting current as measured in cell #5 (lower left), and a phase plane diagram (right). The

protocol is repeated six times, with an increasing duration of the P1 step for each repeat. This is indicated in the plots by using a different color for each

repeat. (B) Pr3 is used to measure the experimental steady state activation curve. It is repeated seven times, with a different voltage for the P1 step at

each repeat. (C) Pr4 is used to measure experimental time constants of inactivation; it repeats 16 times with a different voltage for step P3. (D) Pr5 is

used to measure experimental time constants of activation and inactivation, as well as steady-state inactivation. It has nine repeats with a different voltage

for step P2. (E) Pr6 consists of several (healthy and pathological) AP wave forms and was used as an independent validation data set in this study. The colors

in this plot indicate time so that the voltage and current traces can be related to the phase-plane trajectory on the right. (F) Pr7 is the sine wave protocol

introduced by Beattie et al. (20). As in (E), color is used to indicate time information. To see this figure in color, go online.
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this study. They are commonly referred to as the ‘‘steady state of activation’’

(Fig. 2 A), ‘‘steady state of inactivation’’ (Fig. 2 B), ‘‘[Peak/tail] IV curve’’

(Fig. 2 C), ‘‘time constant of activation’’ (Fig. 2 D), and ‘‘time constant of

inactivation’’ (Fig. 2 E). In the remainder of the work, we will refer to the

curves in Fig. 2 as the summary curves.
Four ways of fitting

Method 1: Fitting model equations directly to summary curves

We now describe the four methods of fitting in detail. In method 1, we write

out equations for themodel variables aN(V), rN(V), ta(V), and tr(V) in terms

of the parameters p1, p2,., p8 and then try to fit these directly to the exper-

imental summary curves ãN, ~rN; ~ta, and ~tr . The procedure for doing so
2424 Biophysical Journal 117, 2420–2437, December 17, 2019
closely follows that of Hodgkin and Huxley, and in fact, the procedure for

finding p1 to p8 can be done entirely with pen and paper, and only a single

simulation is needed to estimate the ninth parameter gKr. First, we focus on

the steady state of activation (Eq. 6) and substitute in the parameters p1 to p4:

aNðVÞ ¼ k1ta ¼ k1
k1 þ k2

¼ 1

1þ k2=k1
; (9)

"
�p4V

#�1
¼ 1þ p3e

p1ep2V
; (10)

¼ �
1þ eðlogp3�logp1Þ�ðp2þp4ÞV��1

: (11)
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FIGURE 2 Summary curves calculated from the voltage-step protocols Pr2–5 for all nine cells. The mean for all cells is indicated with a dotted line. Note

how the general trend, not always obvious from the single-cell results, is clearly captured by the line connecting the means. (A) The experimental activation

curve ãN derived from Pr3 is shown. (B) The experimental steady state of inactivation~rN derived from Pr5. (C) The IV curve (peak current during the P2 step

of Pr5) plotted against the P2 voltage. (D) The experimental time constant of activation ~ta. Values for V < 0 mV were estimated from Pr5, the single value at

40 mV from Pr2. (E) The experimental time constant of inactivation ~tr . Values for V < �30 mV were estimated from Pr5, values for �40 mVand upwards

from Pr4. To see this figure in color, go online.

Four Ways to Fit an Ion Channel Model
This can be rewritten as a ‘‘Boltzmann curve’’

aNðVÞ ¼ 1

1þ eðsaha�saVÞ ¼ 1

1þ esaðha�VÞ; (12)

where ha is the ‘‘midpoint of activation’’ (the point at which aN(V ¼ ha) ¼
0.5) and sa is the slope of the activation curve at V ¼ ha. Assuming

ãN(V) z aN(V), values for ha and sa can then be obtained numerically

(optimizing on sum of square error) or by plotting ãN vs. V and reading

the values from the graph. At this stage we have an equation for aN(V)

and two constraints on the parameters p1, p2, p3, p4, namely

sa ¼ p2 þ p4; (13)

log p3 � log p1

ha ¼

sa
: (14)

Next, we rewrite Eq. 6 to find

aNðVÞ
�
taðVÞ ¼ k1ðVÞ ¼ p1e

p2V ; (15)

which allows us to infer values for p1 and p2 by plotting the quantity aN/~ta vs.

V (using the fitted equation for aN(V) rather than the measured values ãN to

reduce noise) and fitting an exponential curve. Note that because aNz 0 for

values below �60 mV, any data points for low voltages will contribute very

little to the final fit. As a simple alternative, we can plot the quantity

log(aN/~ta) andfitwith a linear equation log(p1)þp2V (note that this is equiv-

alent to doing a graphical fit using semilogarithmic graph paper); this pro-

vides us with more reliable values for p1 and p2, after which we can use

p4 ¼ sa � p2 and p3 ¼ p1e
saha to find the remaining activation parameters.

Using a similar procedure (but with a slight change in signs), we plot the

logarithm of k4ðVÞ ¼ rN=~tr ¼ p7e
�p8V , fit to find p7 and p8, and then use

p6 ¼ �sr � p8 and p5 ¼ p7e
srhr to find all four inactivation parameters.
Finally, we find a value for the conductance parameter gKr by performing

a simulation of Pr5, deriving an IV curve, and then calculating the scaling

factor that minimizes the sum-of-squares error between the simulated and

experimental IV curves.

Quantifying goodness of fit

To evaluate the goodness of fit from method 1, we derive an error function

and evaluate it with the obtained parameter values. Wewrite q¼ {p1, p2,.,

p9} for the parameters and introduce symbols representing the experimental

and measured data sets. To denote a cell’s set of experimentally approxi-

mated midpoints of activation, we use ~acellN while amodel
N is used to indicate

the value of the model variable (aN), evaluated at the same voltages. Similar

notation is used for the midpoint of inactivation and both time constants.

Next, we define the root mean-squared error (RMSE) between two data

sets x and y as

Rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i¼ 1

n

ðxi � yiÞ2
s

; (16)

where both data sets have equal length n. Using this notation, we can write

the RMSE between experimental results ~acell and model values amodel as
N N

Rð~acellN ; amodel
N Þ. With this notation, we can now define the error criterion

as a weighted sum of RMSEs:

EM1ðqÞ ¼ R
�
~acellN ; amodel

N

�þ R
�
~rcellN ; rmodel

N

�
þ R

�
~tcella ; tmodel

a

�
max~tcella

þ R
�
~tcell
r ; tmodel

r

�
max~tcell

r

;
(17)

where naN ¼ 7, nrN ¼ 8, nta ¼ 9, and ntr ¼ 17. Note that this is a cell-spe-

cific measure because both time-constant terms are normalized with respect

to the largest value found in the cell data used. This weighting corrects for

differences in the scaling of the four RMSEs, ensuring that none of them
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dominate in the end result. No normalization is needed for the steady states,

which are already constrained to the range [0, 1]. In contrast to measures

introduced below, EM1 is invariant with respect to conductance (p9). Finally,

we note that an alternative method 1 could be created by using numerical

optimization to minimize EM1; this is explored further in Supporting Mate-

rials and Methods, Section S3.6, but did not create a more predictive model

than the method presented here.

Method 2: Fitting simulated summary curves

In method 2, we accept that the summary curves are imperfect approx-

imations of the model variables, and so we base our fitting on simulated

experiments of Pr2–5, analyzed using the same methods as for the exper-

imental data to arrive at simulated versions of the summary statistic

curves. This gives us two sets of summary curves, one simulated and

one experimental, using which we can define an error measure that quan-

tifies the goodness of fit. By varying the parameters and repeating the

simulations, we can then find a set of parameters that minimizes this

error.

To formulate the error measure, we again write ~acellN to denote a cell’s set

of experimentally approximated midpoints of activation, and we introduce

the notation ~asimN for its simulated counterpart (note that we use a tilde no-

tation here to indicate that ~asimN is not a model variable but a result derived

from a simulated experiment). In this measure, we use the IV curve rather

than the steady state of inactivation because 1) it contains the same data

points (albeit with a different scaling); 2) unlike ~rcellN , it does not suffer

from numerical issues near V¼ EK (see Supporting Materials and Methods,

Section S1.5.1); and 3) it contains information about gKr, which is lacking

from the other summary curves. Similar symbols denote the remaining

summary curves: experimental midpoint of inactivation ð~rcellN Þ, time con-

stant of activation ð~tcella Þ, time constant of inactivation ð~tcellr Þ, and the IV

curve from Pr5 (IVcell).

The error to minimize for each cell is defined as a weighted sum of

RMSEs

EM2ðqÞ ¼ R
�
~acellN ; ~asimN

�þ R
�
~tcella ; ~tsima

�
max~tcell

a

þ R
�
~tcellr ; ~tsimr

�
max~tcell

r

þ RðIVcell; IVsimÞ
max IVcell �min IVcell

:

(18)

The number of data points was the same for each cell, with nta ¼ 9,

ntr ¼ 17, naN ¼ 7, and nIV ¼ 9 (for a total of 42 cell-specific data

points). As in EM1, weighting is used here to give every term equal

influence.

Method 3: Fitting current traces from traditional protocols

In method 3, we forgo the summary-curve calculation altogether and simply

perform ‘‘whole-trace fitting’’ on the currents resulting from the ‘‘traditional

protocols’’ Pr2–5. Writing Icelli for the current recorded from protocol i, and

Isimi (q) for the simulated current in protocol i with parameters q, we define

the function to be optimized as a normalized RMSE:

EM3ðqÞ ¼
X
i¼ 2

5 R
�
Icelli ; Isimi

�
max Icelli �min Icelli

: (19)

Note that the weighting here is not strictly necessary for the optimization

procedure but is used to enable EM3 value comparisons between cells.

Method 4: Fitting current traces from an optimized protocol

In method 4, we define a similar normalized RMSE measure based on

fitting only the current under the sinusoidal protocol, Pr7:
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EM4ðqÞ ¼
R
�
Icell7 ; Isim7

�
max Icell7 �min Icell7

: (20)

As inEM3, theweighting used here allows us to compare values between cells.

Validation and cross comparison

To compare the results of the four fitting methods, we applied each method

to each cell, resulting in four parameter sets per cell. Next, we simulated the

AP waveform protocol (Pr6) with all parameter sets and compared these to

the corresponding measurements. Note that Pr6 was not used in any of the

fitting methods, so this constitutes an independent validation. The results

were quantified using a normalized RMSE:

EAPðqÞ ¼
R
�
Icell6 ; Isim6

�
max Icell6 �min Icell6

; (21)

where R is defined by Eq. 16, as before.

In addition to the independent validation, we performed cross-validation

by testing how well models fit with one method could predict the fitting data

used by the others. This was shown visually and was quantified by evalu-

ating EM1, EM2, EM3, and EM4 on the best result found for each cell/method.

Multicell measures of the fitting methods’ performance were defined as

the mean average of the error measure over all nine cells. Writing EAP,k for

the RMSE in cell k on the AP signal, we defined

EAP;all ¼ 1

9

X9

k¼ 1

EAP;k: (22)

Note that EAP,k already contains a term to normalize the error with respect to

the magnitude of the current in cell k so that no further weighting is

required. Combined error measures for EM1 through to EM4 were defined

in the same manner.
Minimizing the error measures

Methods 2–4 all proceed by finding a parameter set that minimizes an error

function. In previous work, we found that the global optimization algorithm

CMA-ES (73) provided good fits for a range of models from the ion channel

to cell scale (20,74–77), and was both fast and behaved reproducibly (re-

turning the same answer when started from different initial guesses in the

parameter space). For methods 2–4, we used a CMA-ES population size

of 10 and halted the optimization only when the objective function changed

by less than 10�11 per iteration for 200 successive iterations. Other impor-

tant aspects of making our optimization strategy reliable were 1) placing

physiologically inspired bounds on the parameter space, 2) searching

(and choosing starting points) in a log-transformed space, 3) reducing

solver tolerances to eliminate numerical noise in simulation output, and

4) testing reliability by running repeated fits from different starting points.

Constraints on the parameter space were set as in Beattie et al. (20) and

included upper and lower bounds for the parameters p1 to p9 but also

restricted the value of the reaction rates k1 to k4. The resulting boundaries

are visualized in Fig. 3, A and B. Details of how the boundaries were defined

are given in Supporting Materials andMethods, Section S2.2. To implement

these constraints, points outside the boundaries were automatically as-

signed an error of N during optimization.

Several studies (78–80) have found that for strictly positive parameters

(i.e., for all nine parameters in our model), optimization performance can

be improved by searching in a log-transformed parameter space. In at least

some cases, this has been shown to turn nonconvex (i.e., hard) problems

into simpler convex ones (81). For methods 2–4, we used a log transform
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FIGURE 3 Boundaries and transforms on the parameter space and the

effect of solver tolerances. (A) Constraining the transition rates k1–k4
(over physiologically relevant voltages) to relevant timescales creates a

two-dimensional boundary on each parameter pair (Supporting Materials

and Methods, Section S2.2). The gray region indicates valid samples,

with an upper rate constraint in orange and a lower rate constraint in

blue. The horizontal and vertical gray lines indicate the lower and upper

bounds for the parameters p1–p8. (B) The same parameter constraints

with a log transform on one of the parameters are shown. Note this increases

the size of the feasible region for off-the-shelf optimizers that know nothing

about the problem, and we later see the objective function becomes reason-

ably convex and symmetric under this transform (see Fig. 11). (C) Using

default tolerances of adaptive solvers can lead to numerical noise in the

function being optimized. This can be remedied by selecting lower toler-

ances. To see this figure in color, go online.

FIGURE 4 Method 1 goodness of fit and cross-validation on cell #5.

Experimental approximations of the steady states (ãN and ~rN) and time

constants (~ta and ~tr) are shown, derived from measurements in cell #5.

The model curves for aN(V), rN(V), ta(V), and t(V) are shown for models

fitted with each of the four methods. Note that only method 1 was trained on

this data, making this a goodness-of-fit figure for method 1, whereas for the

other methods, this figure shows a prediction. To see this figure in color,

go online.

Four Ways to Fit an Ion Channel Model
on parameters p1, p3, p5, and p7. As Fig. 3 B shows, the boundaries on these

parameters allowed them to vary over 10 orders of magnitude, so a log

transform seemed most appropriate. The effects of this strategy are further

explored in Supporting Materials and Methods, Section S2.4.

We used an adaptive step time solver for simulations of Pr6 and Pr7. As

shown in Johnstone (82), simulating with lax tolerance settings can lead to

(seemingly random) fluctuations in the error measure for nearby values of

q, which has the effect of creating several local minima in otherwise smooth

regions. To combat this, we set absolute and relative error tolerances of

10�8. This is shown in Fig. 3 C. For the voltage-step protocols Pr2–5, we

circumvented the issue entirely by using the model’s analytical solution

for fixed voltages to calculate the time course at each step.

When running the optimizations for methods 2–4, each fit was run

several times from different starting points, sampled uniformly from within

the transformed space shown in Fig. 3 B. Fifty repeats were run per cell for

methods 3 and 4 while 80 repeats per cell were run for method 2. The best

result (lowest error) was used as the final fit for each cell/method. We

comment on the reliability of these fits below in the Reliability and Perfor-

mance part of the Results.

We tested our methods by performing a study on synthetic data, described

in Supporting Materials and Methods, Section S2.3, based on parameters

given in Beattie et al. (20) and Gaussian noise comparable to the strongest

noise encountered in our data set. In this in silico study, we saw that our

methods reliably found a point near the known true solution, that solutions

found by repeated fits had very similar parameter values, and that models

fitted to one data set provided good predictions on the other data sets.
Software and algorithms

Simulations were performed in Myokit (83), using CVODE (84) for Pr6 and

Pr7 simulations with tolerances as described above and an analytical solver
for Pr2–5. Further analysis was performed in Python 3.7 using NumPy/

SciPy (85). When deriving experimental time constants, fits to exponential

curves were performed using the Nelder-Mead downhill simplex algorithm

implemented in SciPy. All other fits were performed using CMA-ES (73)

via the PINTS (86) inference framework. When calculating benchmarks,

methods 2–4 were run on a machine with 24 Intel Xeon 2.2 GHz CPU cores

(48 with hyperthreading), with four optimizations running concurrently at

all times. All data, code, results, and figures are available to download

from https://github.com/CardiacModelling/FourWaysOfFitting. A perma-

nently archived version is available on Zenodo at https://doi.org/10.5281/

zenodo.3378030.
RESULTS

We now discuss the results of fitting a model with each of
the four methods, using cell #5 as an example in our
figures. Figures for all nine cells can be found online at
https://github.com/CardiacModelling/FourWaysOfFitting.
For each fit, we discuss the quality of fit but also investigate
whether models made with the other methods do well at pre-
dicting the methods’ fitting data.

In method 1, we equate model variables (e.g., aN) with
experimentally derived values (e.g., ãN). Fig. 4 shows the
experimentally derived values as black squares, whereas
the blue line (fit 1) represents the quality of fit obtained
by method 1. Note that these lines are plotted directly
from Eqs. 5 and 6 and do not involve simulation. Similar
lines are shown for models fit with methods 2–4, labeled
Biophysical Journal 117, 2420–2437, December 17, 2019 2427
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FIGURE 5 Method 2 goodness of fit and cross-validation on cell #5.

The experimental steady state of activation, the IV curve, and both exper-

imental time constants are shown. By simulating the protocols and per-

forming the same analysis, similar summary curves were derived for

each of the four methods. The fit for method 2 is shown, along with the

predictions from models made with methods 1, 3, and 4. To see this figure

in color, go online.
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as ‘‘predictions’’ in the figure. As Fig. 4 shows, the lines
drawn from the method 1 model fit the data well, whereas
the models fitted through simulation (methods 2–4) show
a notable mismatch for both steady states and time con-
stants. However, because the summary curves approximate
but do not equal the model variables, a perfect fit in this
figure is not necessarily desirable. This is discussed further
in Supporting Materials and Methods, Section S1.6.

In Fig. 5, we again plot the experimentally derived data
points (e.g., ~acellN ), but instead of comparing them to model
variables, we compare them to simulation results (e.g.,
~asimN ). Method 2 attempts to minimize the discrepancy be-
tween the two and achieves this well (fit 2 in Fig. 5). By
contrast, the predictions from a model made with method
1 now show a clear shift in the steady state of activation
curve. Interestingly, only the method-2-derived model
shows a close fit to the experimental time-constant data,
although none of the methods are able to match the steep
peak in the ~tr points well, which may be due to the fact
that points left of the peak were derived from Pr5, while
the rightmost points were obtained from Pr4.

Fig. 6 shows selected portions of the currents elicited by
Pr2–5. Method 3 minimizes the discrepancy between simu-
lated and measured currents and provides a good fit (fit 3 in
the figure), although some differences can still be seen.
Models made with methods 1 and 2 do not generally predict
the observed currents well, although the qualitative behavior
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is correct in all cases. Models with method 4 provide better
predictions here, although interestingly, only method 3 gets
the slope of the Pr3 currents during the P2 step right, indi-
cating a difference in the deactivation properties of method
3 parameters compared to the others. The negative currents
in Pr4 appear challenging for all methods, whereas method 3
and 4 results match well on the higher potential steps.

Next, we inspected the capability of the different models
to predict the currents from the sine wave protocol (Pr7), as
shown in Fig. 7. The method 4 model obtained a good fit to
the data, although some differences can be seen in the deac-
tivating part of the initial voltage step. Predictions from the
model made with method 3 were relatively good, whereas
models fitted with method 1 and in particular method 2 per-
formed poorly at predicting Pr7 currents.

Figs. 4, 5, 6, and 7 showed that all four methods achieved
good fits, judged by their own criteria, whereas the quality
of predictions outside of the fitting data varied. The AP
waveform is an attempt to test predictions for the most phys-
iologically relevant IKr behavior. A visual comparison of
predictions made with models from each of the four
methods is shown in Fig. 8, again with the cell #5 results
used as an example. In this cell, the predictions from method
2 were generally poor, whereas methods 3 and 4 provide
much better predictions.

A quantitative view of the validation and cross-validation
results for cell #5 is given in Fig. 9 (top). The top row of this
table shows the RMSE for the independent validation proto-
col. To enable easier comparisons, the RMSEs have been
normalized to the best performing method so that the best
method has relative RMSE 1, whereas a method with a rela-
tive value of 2 has an RMSE that is twice as high. For cell
#5, method 4 provided the best predictions of the indepen-
dent test protocol and also performed well on cross-valida-
tion. As may be expected, each method had the lowest score
on its own fitting data. Data for all nine cells are given in
Supporting Materials and Methods, Section S3.3.

The lower panel in Fig. 9 shows similar relative RMSEs
but now presented as the mean and SD for all nine cells.
Here, method 3 performed best at the AP prediction task,
although method 4 was very close (within SD) and outper-
formed it at cross-validation.

Interestingly, method 2 outperformed method 1 on the
EM1 criterion in the averaged data and also in six out of
nine cells. This indicates the advantage of fitting steady
states and time constants simultaneously (as happens in
method 2) over fitting them sequentially (method 1), as
previously described (33,35). Further illustration is pro-
vided in a figure in Supporting Materials and Methods,
Section S3.6, in which we show that small changes in the
slope of the steady-state curve have a strong effect on the
time constants derived by method 1; method 2 can use
this to its advantage by slightly adjusting the model’s
steady-state curve slope to obtain a better fit to experi-
mental time-constant data.



FIGURE 6 Method 3 goodness of fit and cross-validation on cell #5. The top row shows the voltage protocols Pr2–5, with different colors used for each

sweep. The same colors are used in each of the panels below to show the corresponding experimental data, whereas simulation results are shown in black. In

the top row, the full time span of each protocol is shown, but the plots shown below each zoom in on a specific region, indicated by the shaded area in the top

row. The fit made with method 3 is highlighted with blue borders (fit 3) while the other rows show predictions from models made with methods 1, 2, and 4. To

see this figure in color, go online.
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Reliability and performance

Having inspected the predictive capabilities and quality of
fit of models obtained with each method, we next investi-
gated their reliability. Ideally, a method returns the same
result every time it is applied, and indeed, method 1 lives
up to this ideal. For methods 2–4, however, we used 1)
randomly sampled initial guesses for parameter sets
and 2) a stochastic optimizer. To increase our chances of
finding the best result, we repeated this process 50 times
for methods 3 and 4 and 80 times for method 2. For a reli-
able method, we expect a large number of the methods to re-
turn similar parameter sets, with similar RMSEs.

Fig. 10 gives an indication of each method’s reliability. It
shows that method 3 returned a result similar to the best one
found on 50–84% of the repeats, depending on the cell.
Method 4 appears slightly more reliable, with numbers
ranging from 60 to 94%. For both these methods, results
with a low RMSE value all had parameters clustered in a
small area of the parameter space. For method 2, only a
very small number of repeats returned a result with an
RMSE similar to the lowest one found. In addition, the
method 2 results with the lowest RMSE values were not al-
ways close together in parameter space. Method 1 is a deter-
ministic method and so was omitted from this figure. This is
further explored in Supporting Materials and Methods, Sec-
tion S2.3.2.

To investigate the performance of the different methods,
we measured the computation time for each method and
counted the number of forward simulations that were per-
formed during an optimization. On average, method 2
was much slower than method 3, which itself was slower
than method 4 (shown in Supporting Materials and
Methods, Section S3.4). The number of function evalua-
tions was similar for methods 3 and 4, indicating that
Biophysical Journal 117, 2420–2437, December 17, 2019 2429



FIGURE 7 Method 4 goodness of fit and cross-validation on cell #5. The top panel shows the voltage protocol (Pr7) while the three panels below show the

same current recording (gray line), and each row shows a prediction from a model made with methods 1–3, respectively (colored lines). The bottom panel,

highlighted with blue borders, shows the fit for method 4 (fit 4). To see this figure in color, go online.
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this difference in performance was due to the increased
simulation time needed for method 3 (228 s of simulation
for method 3 vs. 8 s of simulation for method 4). However,
many repeats of method 2 were seen to terminate with a
low number of evaluations, which may indicate these opti-
mizations terminated early in a local optimum. To explore
this hypothesis, we performed a brute-force exploration of
EM2 and EM4 for cell #5 in the region near the optimum re-
turned by methods 2 and 4, respectively, as shown in
Fig. 11. For EM4, we see a clear optimum in each panel,
and the function appears smooth (at least within the optimi-
zation boundaries, indicated by the white lines). For EM2,
however, a lot of discontinuities can be seen. The darkest
areas in these panels are regions where the intermediate
analysis to derive time constants and steady states from
the simulated experiments failed. As the rightmost panels
show, this can occur in otherwise smooth parts of the
slices, which may prove challenging for optimization rou-
tines. In addition, a lot of ‘‘noise’’ can be seen (e.g., in the
2430 Biophysical Journal 117, 2420–2437, December 17, 2019
green areas of the first panel), which may indicate the pres-
ence of many local minima—however, each panel is a two-
dimensional slice of a nine-dimensional space, so this is
not necessarily the case.
DISCUSSION

We defined four methods, each representative of a wider
class, to fit ion current models using whole-cell current re-
cordings. Methods 3 and 4, both based on whole-current
fitting, were found to provide the most accurate predictions,
whereas methods 1 and 2, both based on fitting preprocessed
‘‘summary’’ data, fared poorly. Of the methods in which we
applied a stochastic optimization routine (2–4), methods 3
and 4 were found to provide the most consistent results,
and method 4 was the most time-efficient both in terms of
experimental and computational effort.

To further compare the results from different methods, we
plotted the fits from each method and each cell in Fig. 12.



FIGURE 8 Validation on the AP waveform signal (Pr6). The voltage protocol is shown on the top row, with subsequent rows colored traces showing pre-

dictions from methods 1–4, respectively. The current measured in cell #5 in response to Pr6 is shown in gray (same in each row). None of the models were

trained on Pr6 data, making this an independent validation. The left panels show the full duration of the signal, and the panels on the right zoom in on selected

regions (2.41–2.48, 5.5–7.3, and 7.25–7.9 s). To see this figure in color, go online.
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Even in areas where parameter sets overlap, each method
can be seen to introduce its own small bias. The figure
also points to a difference in deactivation for method 3,
which consistently placed the deactivation parameters p3
and p4 in a different part of the parameter space than the
other methods. We found that models using parameter sets
found by method 3 gave the best AP predictions, although
this was very closely followed by method 4 (see Fig. 9).
Looking at Fig. 6, we can see that many cases in which
method 1, 2, and 4 predictions deviated from the measured
current were during deactivation. This points to an advan-
tage in describing deactivation for method 3 and suggests
an area in which future versions of the sinusoidal protocol
used in method 4 could be improved. In particular, the
slow timescale of activation and deactivation may necessi-
tate the inclusion of long steps similar to those in Pr3/Pr5
or the superposition of a lower frequency sine wave.

For methods 2–4, we observed significant improvements
to the performance of optimization routines by performing a
log transform on some of the parameters, providing appro-
priate constraints on rates and voltage-dependence of the
rates, and refining differential equation numerical solver tol-
erances. At least some of these aspects may address previ-
ous findings that whole-trace fitting is difficult (58), as we
found very consistent results with an ‘‘off-the-shelf’’ opti-
mizer after adopting these simple approaches.

The optimization surface for method 2 is considerably
more ragged than methods 3 and 4, making this a difficult
optimization problem. As method 2 is very common in the
literature on ionic model fitting, this result has some implica-
tions for the cardiac modeling community: its reputation as a
hard problem requiring special methods may be due to the
choice of summary data rather than any intrinsic mathemat-
ical or computational difficulty with the models. Since the
choice of method 2 is typically based on data availability
(48), increased sharing of whole-cell current data is a more
promising way forward than developing and applying novel
optimization algorithms. For experimenters, as well as
Biophysical Journal 117, 2420–2437, December 17, 2019 2431



FIGURE 9 Validation and cross-validation results. (Top) Results for cell

#5 are shown. Each row shows the relative RMSE for a fitting method,

scaled so that the best performing method is indicated by 1, whereas a

method with a relative score of, e.g., 1.2 had an RMSE that was 1.2 times

larger. The top row shows the relative EAP for each method, with the re-

maining rows showing EM1, EM2, EM3, and EM4, respectively. (Bottom)

Mean results over all nine cells are shown, with SDs given in parentheses.

To see this figure in color, go online.

FIGURE 10 The percentage of optimizations from different starting

points that found the ‘‘best result.’’ Darker bars in the background indicate

the percentage of optimizations that returned a result with an RMSE within

1% of the best result found. The lighter bars in the foreground indicate the

percentage that was also close in parameter space, (such that no single

parameter varied by more than 1% from the best result found). Note that

for methods 3 and 4, the bars overlap exactly, but the method 2 results

for some cells contain ‘‘‘best’’ points with similar low RMSEs

but different parameter values. To see this figure in color, go online.
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universities, journals, and other publishers of scientific data,
our findings re-emphasize the need for sharing of raw data,
for example, in online repositories or data supplements (87).

In cases in which full currents are not available (i.e., when
using historical data), some steps may be taken to alleviate
the problems associated with method 2. Reviewing Fig. 11,
some of the high error parts of the EM2 surface arise from
numerical issues during the derivation of summary curves
from simulated experiments (for instance, in deriving time
constants from almost-flat current traces). It may be possible
to standardize and improve these analysis methods and so
remove some of the discontinuities in EM2.

Another approach we tried to improve methods 2 and 3 is
to use method 1 to propose an initial guess parameter set for
methods 2 and 3 instead of sampling a point from randomly
within the parameter constraints, as hinted at previously
(88). In initial tests, this gave very similar results to the
‘‘full’’ methods but with only a single optimization repeat
needed. The full results are shown in Supporting Materials
and Methods, Sections S3.7 and S3.8.

A reason sometimes given to continue using experimental
steady-state and time-constant curves as a summary of cur-
rent kinetics is that they allow comparison to published
data and previous results from the same lab. So, method 3
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may be seen to have an advantage over method 4 in that it
contains the traditional protocols needed to derive these
curves. However, as Vandenberg et al. (89) point out, it is
important to realize that these values can be highly sensitive
to the (occasionally unpublished) details of the protocols and
analysis methods so that making these comparisons is not
without danger. We have seen, though, that method 4 can pro-
vide excellent simulations of these protocols, so comparisons
to previous data could be made by 1) running an experiment
with a novel optimized protocol, 2) quickly and reliably
fitting a model to the raw current data, and 3) simulating
the previously used protocols and performing the analysis.
Indeed, this method could be used to compare data sets
(via modeling) from protocols with slight discrepancies (90).
Limitations and further work

In this work, we characterized four methods of fitting an ion
current model and proceeded to analyze and critique these
methods based on our characterization. Although we tried
not to misrepresent any method, it is therefore important
to highlight any areas in which our efforts may become sub-
jective or otherwise fall short.

Firstly, running both a full set of conventional protocols,
as well as Pr6 and Pr7, in a single cell is experimentally
infeasible. For that reason, the study by Beattie et al. (20)
used truncated version of the conventional protocols (e.g.,
with fewer voltage sweeps) and omitted Pr2 variants with
different P1 voltages. We must therefore admit the possibil-
ity that methods 1 or 2, performed with a larger data set,
would lead to improved results. In particular, the experi-
mental time constants of activation are ‘‘missing’’ in the
range (�30 mV, 30 mV), which is exactly where the peak
value should occur. However, given the excellent perfor-
mance of method 3 in our study, it seems the required infor-
mation was present in the recordings, so the limited
efficiency of both methods still stands.



FIGURE 11 An exploration of two-dimensional slices of the objective functions. (Top) EM2 for cell #5 is shown, near the optimum found by method 2

(indicated by an orange ‘‘�’’). Each panel shows the result of varying two parameters, with the other seven held constant. The parameters varied in the left-

most panels determine the rate of activation, followed by deactivation in the second panel, inactivation in the third, and finally, the rate of recovery. The white

lines indicate the boundaries used during optimization. (Lower) An exploration of EM4 for cell #5 is shown, near the optimum found by method 4. The darkest

purple color in the figure represents areas where either summary curve derivation (top panel) or simulation (lower panel) failed. To see this figure in color,

go online.
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Another limitation stemming from the cell-specific nature
of our measurements is that we cannot benefit from averaging
as a noise-reduction strategy. As Fig. 2 shows, the mean sum-
mary curves over all nine cells often showqualitative behavior
that is more like the expected results than our individual cell
measurements. However, it has also been shown that aver-
aging in cellular electrophysiology can lead to erroneous re-
sults (91), and there is a clear benefit of having methods that
work on a single cell, thereby allowing investigations of
cell-to-cell variability, heterogeneity, and measurements of
cells only available in limited quantities (e.g., human tissue).

In our method 1, we did not use time-to-peak information
(as suggested by (31)) and used what Willms et al. (35) refer
to as the ‘‘disjoint method’’ rather than estimating time con-
stants and steady states simultaneously. We did not, unfortu-
nately, find much mention of such improved methodologies
in the applied literature and so believe that our method 1 is
still a good representation of a commonly followed
approach. Similarly, the derivation of the summary curves
might be improved in other ways, which would lead to bet-
ter results for methods 1 and 2. As a counterpoint, we note
that methods 3 and 4 do not require these complex interme-
diate analyses, are easier to implement, and do not rely on
the assumption that the summary curves provide an accurate
representation of the raw current data.

In deriving methods 2 and 3, subjective choices had to be
made regarding weightings of the individual protocols, and
changing these may alter the results. For example, similar
error measures could be derived that do not normalize ac-
cording to the length of each protocol or that use fixed
weightings per protocol instead of the cell-specific maximal
current ones we used. As it is based on a single protocol,
method 4 does not require a weighting per protocol, which
could be seen as an advantage because it means there are
fewer subjective choices to be made during optimization.
However, the lack of scalings could also be viewed as a
weakness because it may be desirable (for method 4 but
also 2 and 3) to scale different parts of the protocol(s) differ-
ently. Such an approach could, for example, compensate for
varying current amplitudes (which otherwise cause the error
function to emphasize fitting regions of the protocol that
elicit stronger currents) or even weight ‘‘important’’ (in
some sense) parts of the currents more strongly than others.
For our study, we thought it advisable to avoid such ‘‘tweak-
ing,’’ hopefully leading to a result that is representative of
standard approaches and easily applicable.

Relatedly, error measures other than RMSE could have
been used for the optimization objective. Using a statistical
likelihood instead of an RMSE has an advantage in that it
opens the door to Bayesian analysis, which would allow
prior information to be used in fitting and could be used
to shed more light on the origins of observed cell-to-cell dif-
ferences (92). However, the assumption of independent and
identically distributed Gaussian noise may not be the most
appropriate one if there are significant drifts in the system
or if the high sampling rate used in recording captures single
Biophysical Journal 117, 2420–2437, December 17, 2019 2433
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FIGURE 12 Best solutions returned by the four methods for all cells. The

activation rate parameters p1 and p2 are shown in (A), deactivation in (B),

and inactivation and recovery in (C) and (D), respectively. To see this figure

in color, go online.
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bursts of noise in several adjoining time points. Different
‘‘noise models,’’ e.g., autoregressive or autoregressive mov-
ing average, might be used, but whether these are more
appropriate models of voltage-clamp error is an open ques-
tion that warrants further research. Because such error
measures are not commonly used in the literature, our com-
parison here was restricted to RMSE.

Various models of hERG and IKr currents have been pro-
posed and compared in the literature (20,93), and so far, a
consensus has not been reached. All four methods in this
study used the same two-gate Hodgkin-Huxley model and
so share the common limitation that this model may not
be the optimal choice. Studies such as Bett et al. (93)
have shown that some experiments are better fitted with a
five-state Markov model (94), which suggests that the
method 3 and 4 fits shown in Figs. 6 and 7 could be further
improved. The study by Beattie et al. (20) investigated this
question (section H in its Appendix) and confirmed that the
model by Wang et al. (94) provided better fits to the sine
wave data. However, predictions of the AP waveform
(Pr6) response (as well as the metrics derived from Pr2–5)
were no more accurate than those made with the simpler
four-state model. This finding suggests there is still a trade-
off to make between fitting training data precisely and pre-
dictive power in new situations, and the choice of an optimal
model depends on the expected ‘‘context of use’’ (95). How-
ever, we expect that further refinements to either models or
fitting protocols could produce better fits and predictions, an
area in which further work is needed.
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Conversely, one might question whether the model used in
this study is already more complex than the data warrant,
commonly termed ‘‘overfitting’’: when a model is fitted to
(some of the) noise in the training data, leading to an
improved fit but a loss of predictive power in new situations.
Using methods 3 and 4, however, we found we could accu-
rately predict the response to the independent validation
data of Pr6 (Fig. 8) and that models trained on Pr7 could pre-
dict the response to Pr2–5 (Fig. 6) and vice versa (Fig. 7), so
we do not believe overfitting is an issue for this simple model.

Finally, it is worth discussing how our results may be
generalized beyond Hodgkin-Huxley-style independent
gating models. As noted in the introduction, method 1 re-
quires a model for which analytic expressions for steady
states and time constants are available, which means it
does not generalize to arbitrary Markov models. For Markov
models of intermediate complexity—but with dependent
gating—we expect our results for methods 2–4 will gener-
alize well, although more complex models with many states
and transition parameters to capture may require more com-
plex ‘‘method-4-style’’ protocols to be devised. We believe
this is an exciting area for future work.
CONCLUSIONS

We presented and compared four methods to fit an ion cur-
rent model, each based on a common class of methods used
in the literature. By performing these methods on a set of
CHO-cell hERG1a measurements, we found that methods
based on whole-current fitting provided both the most accu-
rate and the most reproducible results. Models fitted using a
recently developed sinusoidal protocol were found to have
similar predictive ability as those fitted to conventional
voltage-step protocols while having a lower experimental
and computational cost. Further analysis showed that using
numerical optimization to fit a model to experimental
steady-state and time-constant data was potentially hazard-
ous, and we point toward increased sharing and use of raw
current traces as a viable solution to this problem. Our re-
sults highlight some of the remaining challenges to make
truly predictive models of ionic currents and the possibilities
for novel experimental protocols to enable faster and more
reliable fitting.
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S1 UNDERSTANDING VOLTAGE PROTOCOLS
In this section we analyse the protocols used in this study (and in Beattie et al. (1)), using phase plane analysis. The first four
protocols, Pr2–5, are adaptations of common voltage clamp protocols used to characterise IKr, while Pr7 is a novel sinusoidal
protocol intended to provide the same information in a much shorter time. Pr6 is a collection of (regular and irregular) action
potential wave forms to measure the behaviour of IKr under physiological and pathological conditions.1 As in Beattie et al. (1),
we used Pr6 as a validation protocol, while either Pr7 or the set Pr2–5 were used for model fitting. Note that the full set of
protocols was run on every cell.

There are some similarities between the protocols. Pr2–5 are all periodic protocols, repeated several times (with each repeat
shown in a different colour in the figures) with a change either in one step’s duration (Pr2) or voltage (Pr3–5). All protocols in
this study start with a constant holding potential of −80mV followed by a brief step down −120mV. Because IKr is mostly
inactive at these potentials, this allows the IKr-independent leak current to be estimated and subtracted from the signal (1). The
protocols end with another step down to −120mV, which is intended to rapidly bring the channels into a closed state, thereby
reducing the time needed to settle back to steady state between repeats or between experiments.

S1.1 Phase plane analysis
Using a two-dimensional model (see main manuscript) allows us to represent each possible state as a point on a phase plane, in
which we plot activation a on the x-axis and recovery r on the y-axis. By running simulations and plotting the trajectories of a
and r in the plane we can show the motivation behind different voltage-clamp protocols in terms of the types of behaviour they
provoke.

Held at any given voltage V , the model will eventually converge to a steady state a = a∞(V), r = r∞(V) known as a stable
node, see Figure S1.A. When V is changed abruptly, the stable node instantaneously moves to a new position, to which the
states then converge with speeds dictated by τa(V) and τr (V). With typical parameters for IKr, inactivation/recovery is orders of
magnitude faster than activation/deactivation so that many trajectories through the phase space will start with fast vertical
movement followed by a slower horizontal drift. The model conductance at any point (a, r) in the plane is proportional to the
product a · r . Connecting points with an equal a · r leads to the iso-conductance lines shown in Figure S1.B, which indicate the
fraction of maximal conductance gKr in different regions. Using these two graphs an intuitive idea of IKr behaviour may be
developed, and we will use these phase planes to analyse different voltage protocols throughout the text. An example of a phase
plane trajectory is shown in Figure S2.
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Figure S1: A guide to interpreting phase portraits. (A) At any voltage V , the point (a∞(V), r∞(V)) forms a stable node to which
the system, if held at this V , will converge. The grey line in the figure is formed by plotting these stable nodes for a wide range
of voltages, based on a simulation with the parameters for Cell #5 identified in Beattie et al. (1). (B) Different points in the
phase plane correspond to different fractions of the maximal conductance (given by the product a · r). When all the points for a
given fraction are connected they form the iso-conductance lines shown here. Combining these two figures we can see that the
channel’s steady-states have low conductance while any larger currents are necessarily transient.

1Although we measured current through a hERG1a channel in a CHO cells, we will occasionally use the shorthand IKr to describe the current in this
manuscript
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Figure S2: A simulated phase plane trajectory for the final repeat of protocol Pr2. In the first panel, the cell is being held
at −80mV, and the system is in its steady state a∞(V = −80), r∞(V = −80). In the next panel, a voltage step (P1) is applied,
causing an instantaneous jump of the stable point towards the bottom right of the graph. The system now starts to rapidly
inactivate, resulting in a downward trajectory in the phase plane. After a few milliseconds, inactivation is nearly complete, and
activation begins to dominate the trajectory, resulting in the horizontal trajectory shown in the third panel. At the end of P1, the
system is at (or very close to) its new stable state. Now, a new step (P2) is applied, again leading to an instantaneous jump of the
stable state, followed by a vertical-then-horizontal trajectory of the system through phase space. In the final panel, the original
membrane potential is restored, causing the system to revert to its original stable state.
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S1.2 Pr2: A time constant of activation

Figure S3: Simulated analysis of Pr2, approximating the time constant of activation at V2 = 40mV. The protocol and current are
shown in the left-most panel, with the peak currents during each repeat highlighted. The same highlighting is applied in the
phase diagram, which shows that all peaks occur at almost the same level of recovery, r ≈ r̃ . Next, the peak current is plotted
against the P1 duration and fit with a single exponential. This results in a single time constant, which is shown in the final panel
along with the underlying model variable.

Pr2 (6 repeats of 5.2s each, 31.2s in total) is used to obtain an approximation of the time constant of activation at V = 40mV.
Its main feature is a variable-duration step (P1) at +40mV. In the phase diagram this corresponds to a movement from top-left
(the steady-state for −80mV) down to the stable node for +40mV in the lower-right part of the plane. Note that only the longest
step (darkest red) actually reaches the stable node, while in the other repeats the step ends before the it is reached. During
this time, the model is inactivated (r ≈ 0) to approximately the same degree for each repeat, while the activation level varies
depending on the time spent at 40mV — it is this activation level that we wish to measure. To that end, P1 is followed by a step
(P2) down to −120mV, triggering a rapid recovery and a measurable current.

We now inspect the peak currents during P2, Ipeak. From the phase diagram we can observe that the level of recovery at the
peak is roughly the same for each repeat, so that we can approximate it by some constant (but unknown) value r̃ , and write

Ipeak ≈ gKr · a(tpeak) · r̃ · (V2 − EK ), (S1)

where V2 is the voltage during the P2 step, and a(tpeak) is some unknown activation level. We can also see that the trajectory
from the end of P1 (a point near the x-axis) up to the point where peak current occurs (blue squares) is near-vertical, so that the
level of activation at the peak, a(tpeak), is approximately equal to the level at the end of P1, a1, so that we can write

Ipeak ≈ gKr · a1 · r̃ · (V2 − EK ), (S2)

Next, we solve the differential equation for a under a fixed voltage, to find

a(t) = a∞(V) − (a∞(V) − a0)e−t/τa (V ) (S3)

where V is the voltage during the step, t is the time since the start of the step, and a0 is the level of activation at the start of the
step. Adapting this for the activation at the end of P1, we fill in V = V1 and set t equal to the step duration t1 to find

a1 = a∞(V1) − (a∞(V1) − a0)e−t1/τa (V1) (S4)

which we combine with the equation for Ipeak to find

Ipeak ≈ gKr · r̃ · (V2 − EK ) ·
(
a∞(V1) − (a∞(V1) − a0)e−t1/τa (V1)

)
(S5)

= c1 + c2e−t1/τa (V1). (S6)

In other words, Ipeak should (approximately) be a function of the P1 duration t1 and three unknowns c1, c2, and τa(V1). As a
result, we can plot Ipeak against the P1 duration t1, and fit a single exponential to find the time constant τa(V = V1).

In a typical run of experiments, this protocol would be repeated with different P1 voltages, resulting in time constants for
several voltages. As the data set from (1) does not include these, we will instead obtain further time constants of activation from
Pr5. Finally, a slight variation of this protocol was used in cells 7 and 8, details of which can be found in the code published
with this manuscript at https://github.com/CardiacModelling/FourWaysOfFitting.
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S1.3 Pr3: The steady state of activation

Figure S4: Simulated analysis of Pr3, approximating the steady state activation curve. The protocol and current are shown in the
left-most panel, with the peak currents during each repeat highlighted. The same highlighting is applied in the phase diagram,
which shows that all peaks occur at almost the same level of recovery. Next, the peak current is plotted against the P1 voltage.
Because each repeat had approximately the same recovery level, V = V2 for each repeat, and because the highest voltage leads
to a∞ ≈ 1, we can normalise the peak currents by dividing through the highest obtain value to find the approximation of the
steady state of activation shown in the final panel. Note the difference between the true model variable and the approximation,
which is due to the incomplete approach to the steady state for voltages around 0mV, which can be seen in the phase diagram.

Pr3 (7 repeats of approx. 8.3s each, 58s in total) is intended to characterise IKr’s steady state of activation for several voltages.
Its main feature is a 5 s long variable-voltage step, P1, followed by a step P2 down to a fixed voltage, during which current is
measured. In the phase plane, P1 is visible as a downwards movement from the steady state at −80mV (top left for all repeats)
to a new steady state lower on the plot. This steady state is close to a = 1 for high positive voltages (but notice that lower
voltages have not yet quite reached the stable point after 5 s, which will be important later). Due to the large difference in the
time constants of activation and recovery the P1 currents show a rapid downward movement, followed by a slower horizontal
drift. At the end of P1, the system is close to the steady state of activation for the tested voltage, so that measuring the current
at this point in time would provide us with clear information about the voltage-dependence of activation. Unfortunately, the
level of inactivation at this point makes this current very small, so that it cannot be measured with a reasonable signal-to-noise
ratio. The P2 step to a fixed voltage of −40mV elicits a much stronger IKr current by causing rapid recovery from inactivation.
This is visible in the phase plane as a rapid upward movement, which abruptly stops and turns into a slow leftward drift. Two
interesting things happen near this abrupt ‘corner’ in the graph: (1) as this point is the furthest top-right of any point in P2, this
is where the P2 peak current occurs; (2) recovery reaches its steady-state for the P2 voltage (r∞(V2) ≈ 0.23), which is the same
for every test voltage repeat. Since there has been very little change in activation a when the peak current is reached, we can
approximate the peak current by

Ipeak(V1) ≈ gKr · a∞(V1) · r∞(V2) · (V2 − EK ) (S7)

where V1 and V2 are the voltages during P1 and P2 respectively. At the highest voltage tested V1 = Vmax, we can assume that
a∞(Vmax) ≈ 1, so that we can write

Imax = Ipeak(V1) ≈ gKr · r∞(V2) · (V2 − EK ) (S8)

As a result, we can divide by Imax to obtain

Ipeak
Imax

≈ a∞(V1). (S9)

This can be plotted to give the summary curve shown in Figure S4, and is commonly known as the ‘activation curve’.
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S1.4 Pr4: Time constant of inactivation

Figure S5: Simulated analysis of Pr4, approximating the time constant of inactivation. The protocol and current are shown in
the left-most panel. Next, a phase diagram is shown with the start of P3 highlighted with a blue square, and the end of P3
for every repeat shown with a green square. Simulated currents during P3 are shown in the third panel, and are well-fitted by
a single exponential. This yields the time constants shown in the final panel. The values obtained this way are accurate for
higher voltages but contaminated by activation for lower voltages. Looking back to the phase diagram, the low voltages (blue
lines) have trajectories with a strong horizontal (activation) component, while only the higher voltages (dark red lines) have
trajectories determined mostly by recovery.

Pr4 (16 repeats of approx. 2.9s each, 46s in total, can be used to approximate the time constant of inactivation, and consists of a
long step (P1) at +50mV, followed by a quick step (P2) down to −90mV and finally a variable-voltage step P3. During P1
the model quickly inactivates and then activates, which is visible in the phase plane as a movement from top-left down to the
lower-right corner. P2 then causes a rapid recovery (and a large current), and only minor deactivation: an upwards movement in
the phase plane that is deflected left, to a point near the phase-plane coordinates (a = 0.75, r = 0.7).

Next, the short variable-voltage step P3 is applied. Since P2 left the channels both activated and recovered, large currents can
be recorded throughout P3. Due to P3’s short duration and the large difference between the rates of activation and inactivation,
the decays of most of these currents are characterised almost entirely by inactivation (vertical versus horizontal movements on
the phase plane). As a result, we can fit exponential curves to these decays to approximate a time constant of inactivation for
every tested voltage. Note however, that this assumption is increasingly invalidated for lower potentials, so that Pr4 can only be
used to approximate time constants for higher voltages. The resulting time constant approximations are shown in Figure S5.

Note: Some of the most striking parts of the phase plane diagram for Pr4 correspond to the step after the very short P3. To
trace the movements of the system through the phase plane it may be helpful to consult the 3-dimensional phase diagrams given
in Figure S10 or the videos at https://github.com/CardiacModelling/FourWaysOfFitting.
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S1.5 Pr5: Time constants, IV curve, and steady state of inactivation

Figure S6: Simulated analysis of Pr5, approximating the time constants of activation and inactivation. The protocol and current
are shown in the left-most panel, with the start and end of the P2 step indicated with blue and green squares respectively. The
same highlighting is applied in the phase diagram, which shows all P2 currents start with rapid recovery, followed by slow
deactivation. In the next panel, the P2 currents are plotted and shown to be well fitted by a double exponential. This results in
two time constants, which are shown in the final panels along with the underlying model variables.

Pr5 (9 repeats of approx. 10.3s each, 93s in total) is used to estimate time constants of both activation and inactivation, as well
as providing a graph of voltage-dependent peak currents (the ‘IV curve’) from which the steady states of inactivation can be
approximated. The main part of Pr5 consists of a step to +50mV (P1) followed by a variable-voltage step (P2). As before, the P1
step of Pr5 can be seen in the phase plane as a movement from top-left to a stable point in the lower-right of the plane where the
channels are almost entirely activated (a ≈ 1) and inactivated (r ≈ 0). Next, a much lower voltage is applied during P2, causing
the channels to rapidly recover and resulting in a strong current. This is shown as an upward movement in the phase plane,
which then gradually turns into a horizontal movement as the system begins to deactivate. As a result, P2 is characterised by a
very rapid deflection (positive or negative depending on the sign of V2 − EK ) caused by recovery-from-inactivation, followed by
a much more gradual decay as deactivation sets in.

We can use this two-phase character of the current by fitting one exponential to the start of the P2 current (pre-peak)
to estimate the time constant of inactivation (τr ), and fitting a second exponential to the end of the current (post-peak) to
estimate the time constant of activation (τa) for each test voltage V2. These estimates can be improved by fitting the sum of both
exponentials directly to the currents, using the independently acquired values as initial guesses. The resulting values are plotted
in Figure S6.
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IV Curve and steady state of inactivation

Figure S7: Simulated analysis of Pr5, approximating the steady state of inactivation. The protocol and current are shown in the
left-most panel, with the peak currents during each repeat highlighted. The same highlighting is applied in the phase diagram.
Next, the peak current is plotted against the P2 voltage, resulting in a (commonly referred to as ‘the’) IV curve. By dividing the
peak current through V2 − EK we obtain gKr · a(t) · r(t). We then use the approximations a(t) ≈ 1 and r(t) ≈ r∞(V2), to find
gKr · a(t) · r(t) ≈ gKr · r∞(V2). Finally, we assume that the peak r measured is ≈ 1, so that gKr ≈ max [gKr · r∞(V2)], and we can
divide by this value to find r∞(V2) for every tested V2. The resulting values are shown in the final panel, and can be seen to differ
from the underlying model variable. Looking at the phase diagram, we see that the final assumption (peak r ≈ 1) does not hold,
but also that low-voltage peaks do not occur exactly at r(t) = r∞.

In the second application of Pr5, the steady-state of inactivation (r∞) is approximated in a similar manner to Pr3. First, we
extract the peak current during P2 and plot it as a function of voltage. The result is known as an IV curve, and is shown in
Figure S7. Again, note that the peak current occurs when the trajectory in the phase plane changes from vertical (upwards) to
horizontal (leftwards) movement, and that — especially for the higher voltages — there is relatively little deactivation at this
point. As a result, the peak current can be approximated as

Ipeak ≈ gKr · a∞(V1) · r∞(V2) · (V2 − EK ) (S10)

where (V2−EK ) is known and a∞(V1) ≈ 1 at +50mV. Dividing by these two quantities, we find an approximation for gKr · r∞(V2).
If we further assume that for the lowest voltage r∞(Vmin) ≈ 1 (again, note for later that it is actually closer to 0.9 in this
parameterisation of the model) we can divide by gKr · r∞(Vmin) to find an approximation of r∞(V2) for every tested V2. The result
is shown in Figure S7
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S1.5.1 A note on calculating steady-state of inactivation
Calculating steady states of activation and inactivation requires a division by (V − EK ), creating a singular point at V = EK

where conductance cannot be calculated, but more importantly a region around the point V = EK where any small error is
amplified. Looking at Figure S7, we can see that many of the most rapidly changing (and therefore most informative) parts of
the inactivation curve occur in this region.

In Figure S8.A, we have plotted the peak currents during the P2 step of Pr5 for all cells. A clear and regular trend can be
seen for each cells, and all cells show qualitatively similar behaviour. In the next panel (Figure S8.B) we show the multiplication
factor (V − EK )−1 (blue line) that is applied to the panel A data to obtain the steady-state curve (using EK = −88.4mV). To
illustrate what will happen if the term V −EK is imperfectly known we also plot the 10-th and 90-th percentile of the distribution
1/N(V − EK ,σ), where N is a normal distribution and a (somewhat arbitrary) estimate σ = 2mV. This type of error could
easily arise if the calculated EK differs from the true reversal potential, or if the true transmembrane voltage differs from the
command potential.

The summary curves for all cells in Figure S8.C show that this is not just a hypothetical concern, with most cells showing a
dramatic deviation at -90mV (and even a change of sign for cells 5 and 6). As a result, we had to omit the data from V = −90mV
from the summary curves for the steady state of inactivation. In Figure S8.D we plot the same data with a rescaled y-axis, and
omit the -90mV points, but now it becomes clear that the wide region of error predicted by panel B is also borne out in practice,
as several of the point at -100mV and -80mV also show a strong deviation from the expected sigmoid voltage-dependence.

In the summary curves used in this work, we omitted the -90mV point for both the steady state of inactivation and the
time constant of inactivation (where nearness to -90mV caused problems when fitting an exponential curve). Finally, we point
out that these issues (caused in part by experimental noise) can be somewhat reduced by averaging the values for all cells (a
common noise-reduction technique): the mean value shown is not perfect, but displays a clearer sigmoid form than the data for
the individual cells. This means that this issue, although present in all studies that use a similar summary curve, becomes more
apparent when aiming for cell-specific results (see also (2)).2
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Figure S8: Approximating the steady state of inactivation. (A) The calculation of the steady state of inactivation starts from the
IV curve data from Pr5. This data is smooth, and has the same qualitative nature for every cell. (B) Next, the data is multiplied by
a term 1/(V − EK ). As shown by the blue line, this term has a large magnitude near V = EK , resulting in a strong amplification
of measurement error. The effect of small errors can also be seen by the red lines, which indicate the 10-th and 90-th percentile
of the distribution 1/N(V − EK , 2mV). (C) As expected, a major disruption is visible in the experimental data, especially near
V = −90mV ≈ EK . (D) Omitting the data points for V = −90mV removes the largest errors, but strong effects can still be seen
for −100, −80, and −70mV.

2It may be possible to deal with this issue by introducing a suitable noise model, and performing a weighted fit that assigns lower importance to the affected
points. However, as we did not see this approach in our literature review we did not include such a method in this work.
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S1.6 The summary curves are not the model variables
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Figure S9: (Black lines) The model variables a∞, r∞, τa, and τr , all drawn using the parameters for Cell #5 given in Beattie
et al. (1). (Coloured lines) Simulated summary curves, obtained by using the same model parameters, running simulations
for Pr2–5 and performing exactly the same analysis as on the experimental data. The protocol from which each data point
originates is indicated in the legend.

In explaining the rationale behind Pr2–5, we have relied heavily on the idea that they are designed to approximate the model
variables a∞, r∞, τa, and τr . Historically, this certainly seems to how these protocols originated (see e.g. Hodgkin and Huxley
(3)). However, as theories and models of IKr (and other currents) have grown in complexity the strong connection of protocols
like Pr2–5 to their modelling origins has increasingly been lost. The analysis methods have, however, remained important as
biomarkers in their own right, and many physiologists (aware of the shortcomings and pitfalls we discuss below) have chosen to
interpret them as such. However, even if we take this view, the best interpretation we have of what these biomarkers signify is
still that they resemble the variables of a two-state Hodgkin-Huxley model fit to the data. In addition, Method 1 relies on the
assumption that these procedures accurately approximate the model variables, so that it’s worthwhile pointing out some of the
issues in their calculation below.

Steady-state of activation: The central idea of Pr3 was to reach the steady state of activation (i.e. reach the stable point for
the P1 voltage) and quickly measure a current during P2. Inspecting the phase diagram for Pr3 we can see that this objective is
not met for the voltages around 0mV (e.g. the blue and green lines). This leads to an underestimation of the activation at these
voltages, which causes the rightward shift of the estimated steady state of activation observable in Figure S9. Less clear from
this graph, is that the voltage-dependency of the effect will have caused a change in the slope of the estimated steady state
curve. Note that using a longer variable voltage step would have brought the system closer to the stable point and reduced
the apparent shift, while a shorter step would have caused an even stronger rightward shift. This time-dependency has been
recognised by e.g. Vandenberg et al. (4), who warn only to compare data from protocols with an equal P1 duration, which they
term ‘isochronal activation data’. Similar issues have been recognised for other currents. For example, in a 1992 publication on
INa, Sakakibara et al. (5) consistently avoid the term ‘steady state of activation’ in favour of ‘normalized conductance-voltage
relation’, which much more cautiously describes what the ‘activation’ protocol has actually measured.

Steady-state of inactivation: The method to obtain a steady-state of inactivation from Pr5 relied on the assumptions that
(1) the peak currents measured were not strongly affected by deactivation and (2) that the lowest voltage tested induced an
inactivation level r∞(Vmin) ≈ 1. As can readily be seen from the phase diagram, the first assumption is violated increasingly at
lower P2 potentials. This leads to both an underestimation of the steady state of inactivation (visible as a rightward shift) and a
change in the apparent slope of the inactivation curve (as lower voltages are affected more than higher ones). Looking back at
the phase diagram, it is clear that the second assumption is violated too, and as a result the normalisation of the estimated
curve will be off, again leading to changes in both midpoint and slope of inactivation. This second problem could be perhaps
addressed by adding even lower potentials to the protocol, but notice that this would exacerbate problem 1. Staying with Pr5, it
seems from the phase diagram that for lower voltages the separation between the recovering and deactivating parts of the P2
current becomes increasingly less clear. However, the strategy of fitting both at once appears to have paid off, as the Pr5 time
constants in both right-hand panels of Figure S9 overlap well with the model variables.

Time constants: Finally, as already noted Pr4 fails to estimate good time constants for lower potentials (see the right-most
panel in Figure S9, but this limitation can be overcome by using the Pr5 derived points instead. However, the curves from both
protocols don’t quite line up, indicating further issues with one or both analyses.

Previous work: Please note that the above demonstrations are not novel, but reaffirmations of (much) earlier work by e.g.
Beaumont et al. (6, 1993), Willms et al. (7, 1999), and Lee et al. (8, 2006).
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S1.7 Pr6: AP validation protocol
An action potential voltage clamp protocol (Pr6) is used in this study and in Beattie et al. (1) as a validation protocol: instead of
fitting to data from these measurements we use it to evaluate predictions from models fit to the other data sets. Unlike Protocols
2–5, Pr6 does not contain any repeats. The bulk of Pr6 is a sequence of realistic action potentials, so that validation happens
against physiologically relevant situations including pathological after-depolarisations. Looking at the phase diagram in the
main paper (which has been coloured through time to match Pr6’s voltage and current traces) we can see a secondary effect: the
short time between the APs causes a build-up of activation, so that the early parts of Pr6 are a proxy for IKr during low heart
rates, while the latter parts elicit IKr behaviour during periods of prolonged higher rates.

S1.8 Pr7: Sinusoidal protocol
Pr7 (single run of 8s) is a novel sinusoidal protocol introduced in Beattie et al. (1). Like Pr6, it does not contain any repeats but
instead consists of a single eight second sweep. The protocol starts with a step to +40mV followed by a step down to −120mV,
eliciting high conductance and a strong negative current. In the phase diagram shown in the main paper, this corresponds to the
blue trajectory from lower-right to top-left. Note how the blue line goes close to the top-right corner of the plane (high a and r).
This appears to be crucial in the protocol design for estimating the conductance parameter p9 = gKr accurately: at the point
(1, 1) in the phase plane the current would be given by IKr = gKr(V − EK ) allowing gKr to be estimated directly. By including a
step that approaches this point, we gain a lot of information about gKr.

The remainder of the protocol consists of three sine waves of varying frequencies added together. In the phase diagram,
this induces rapid near-vertical movements from which we can infer the properties of inactivation, but also slower horizontal
movements that tell us about activation, across the full physiological range of voltages. Importantly, many changes in the
trajectory happen far from the x and y-axis – in other words – many of the dynamical changes induced by Pr7 occur while
strong IKr is being generated and the current is experimentally observable.
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S1.9 Three-dimensional phase diagrams
The voltage-dependence of the steady state can be made more clear by plotting the phase diagrams in three dimensions, with
voltage on the third axis.

Figure S10: Three-dimensional phase diagrams for Pr2–7.
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S1.10 Improving experimental protocols
Hints for improved protocol design can be found in the phase plane diagrams shown above. Inspecting the phase plane diagrams
in Figure S10, we can see that large parts of Pr2–5 are concerned with setting up the system for a measurement, e.g. waiting to
get into a certain steady-state, and subsequently with restoring the original state again. These steps were necessary for manual
analysis, but have less use for Method 3. Following the trajectory of the system for these parts of the protocols, we see it is
mostly near the x-axis and y-axis. From Figure S1.B we can see that these are areas where the system has low conductance,
leading to very small currents and a poor signal-to-noise ratio. For Method 3, these parts provide information about the noise in
the signal, but not about the current’s dynamics. By contrast, Pr7 spends a large proportion of its time away from axes, in the
‘measurable area’.

Looking at the phase planes further, it is tempting to think that exploring the full plane is a desirable property of the protocol.
However, our goal in parameterising a model is not to visit every state, but to observe the kinetic parameters (p1 to p8) in
action for as many voltages as possible. In other words, we want to observe the current while the system makes each of its four
transitions (activation, deactivation, inactivation, and recovery), for all physiologically relevant voltages. (Note that if we had
full confidence in our model, a few voltages per parameter would suffice, as the equations constrict the system once a few points
are known.) The three-dimensional phase planes shown in Figure S1 demonstrate how the sine wave protocol comes close to
realising this ideal. It visits a wide range of physiological voltages, and makes seemingly arbitrary transitions throughout the
voltage range. Note however, that it still has relatively low conductance throughout, so that adapting the protocol to start with
greater levels of activation may be advantageous. To improve the protocol’s performance on predicting deactivation, it may also
be useful to add a lower frequency sine wave, causing greater activation while the existing higher frequencies stop the system
from inactivating and reducing the amount of observable current.

Figure S11: Three-dimensional phase diagrams for Pr5 and Pr7. The relative sparsity of the Pr5 can clearly be seen in this plot,
sticking mostly to the walls (where no current is observable) and making only brief controlled forays into observable space.
This careful setting up of the right conditions before measuring anything is highly advantageous for traditional analysis, but is
not the most efficient strategy for whole-current fitting methods. By contrast the chaotic nature of Pr7 looks very difficult to
interpret, but induces all four transitions (activation, deactivation, inactivation, and recovery) at several voltages, all the while
producing measurable current.
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S2 SUPPLEMENTARY METHODS
S2.1 Experimental data for all 9 cells
Figures showing the data for all 9 cells can be found at https://github.com/CardiacModelling/FourWaysOfFitting.

S2.2 Boundaries on the parameter space
Boundaries were defined on the parameter space, based on physiological constraints. This is similar to the concept of a prior in
Bayesian inference, as it encodes our prior knowledge about the parameter values. As in Beattie et al. (1), we constrained (i) the
maximum conductance gKr (parameter p9); (ii) the values of the kinetic parameters p1 to p8; and (iii) the reaction rates k1 to k4.

Lower and upper bounds for the maximum conductance in each cell were estimated by Beattie et al. (1), and are shown
in Table S1. The lower conductance for each cell was estimated in Beattie et al. (1) by assuming that the current was fully
conducting (a = r = 1) at some point after the initial +40mV step of the sine wave protocol (see Beattie et al. (1) for details).
An upper bound was then derived by assuming that a · r > 0.1 at this point.

Table S1: Cell-specific limits on the conductance parameter

Cell # glower (mS) gupper (mS)
1 0.0478 0.478
2 0.0255 0.255
3 0.0417 0.417
4 0.0305 0.305
5 0.0612 0.612
6 0.0170 0.170
7 0.0886 0.886
8 0.0434 0.434
9 0.0203 0.203

Wide bounds for the kinetic parameters were set based on expected physiological ranges of the resulting reaction rates, as
well as their expected voltage sensitivity (1):

10−7 ms−1 6 pi 6 103 ms−1, i ∈ 1, 3, 5, 7, (S11)
10−7 mV−1 6 pj 6 0.4mV−1, j ∈ 2, 4, 6, 8. (S12)

Additionally, we set lower and upper bounds for the maximum transition rates, representing timescales of a minute to a
microsecond, using

1.67 · 10−5 ms−1 6 ki(V = +60) 6 1000ms−1, i ∈ 1, 3, (S13)

1.67 · 10−5 ms−1 6 k j(V = −120) 6 1000ms−1, j ∈ 2, 4. (S14)

Here, the values for the lower and upper bounds, again taken from Beattie et al. (1), are chosen to yield (very wide) limits on
what can be considered a physiologically realistic maximum reaction rate during the sine wave protocol, which is restricted to a
voltage range from −120mV to +60mV. The additional rate constraints in Eq. (S13–S14) are functions of two parameters, so
they effectively specify 2-dimensional constraints on the parameter pairs (p1, p2), (p3, p4), (p5, p6), and (p7, p8), which are
shown in Figure S16. When running optimisations, parameter sets that violated any of the boundary conditions were assigned
an error of∞.
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S2.3 Cell S: synthetic data study
To test the reliability of the different fitting methods in a setting where the ground truth is known, we conducted a synthetic
data study. Synthetic data sets were created by simulating Pr2–5 and Pr7 using the ‘Cell #5’ parameters given by Beattie et al.
(1). Independent identically-distributed Gaussian noise samples were added to these signals, using mean of 0 and a standard
deviation of 0.025, which was comparable with the noisiest signal in our data set (for which we estimated a standard deviation
of approximately 0.0247). We refer to the resulting traces as ‘Cell S’ data.

S2.3.1 Synthetic data fits provide excellent predictions

Figure S12: Method 3 goodness-of-fit and cross validation on the synthetic Cell S. As in the main manuscript, the top row
shows the voltage protocols Pr2–5, with different colours used for each sweep. The rows below show predictions of (1, 2, and 4)
and a fit to (3) the synthetic data from Cell S.

Figure S12 shows a fit to Pr2–5 using Method 3, and the predictions of the Method 3 data using methods 1, 2, and 4. As
expected, the row labelled ‘Fit 3’ now shows an excellent fit, indicating that the fitting methods are able to find a good solution
to the optimisation problem — although this does not yet prove this solution is unique. The prediction made by a model fit
using Method 4 is also shown to provide a good fit: this shows that models made using this method have a good predictive
abilities (and is an indicator that we are not overfitting but have captured an underlying trend in the data). Interestingly, the
prediction from the Method 2 model is good, but not as good as the prediction from Method 4. Finally, as expected from the
analysis of the protocols in the first section of this supplement, the issues with Method 1 show up in the synthetic data study too,
leading to poor predictions.

These findings are confirmed in the validation results shown in Figure S13.
A quantitative view of this data is presented in Figure S14. For methods 2–4 we now see that methods 3 and 4 perform very
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Figure S13: Validation on the AP-waveform signal (Pr6) in the synthetic Cell S

well when predicting each others’ training data, as well as the AP validation data. Method 2 fits well to its own data set, but the
resulting model has less predictive power than the models made with methods 3 and 4.

As was visible in the previous figures, Method 1 performs poorly. Notably, the result for ‘Method 1’ is not the best in the
row for ‘Method 1 RMSE’. This is possible because, unlike methods 2–4, the evaluation method for Method 1 (an RMSE
measure defined in equation 17 of the main manuscript) is not minimised directly by Method 1.

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 10
5.77 1.17 1.00 1.00

1.60 1.00 1.00 1.00

35.59 1.00 1.57 1.72

3.59 1.17 1.00 1.00

4.67 1.12 1.00 1.00

Figure S14: Validation and cross-validation results for the synthetic Cell S. Note that Method 1 here is being applied to the
simulated data from Cell S, rather than the idealised summary curves underlying the model, mimicking the experimental
situation.
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S2.3.2 Points with a low RMSE were clustered in a tight region
Identifiability problems can occur if, instead of having one best solution, multiple disparate points in parameter space result in
similar ‘best’ fits. To investigate if this was the case in our data, we looked at the parameters and RMSEs returned from each
repeat of methods 2–4 (80 repeats were run for Method 2, versus 50 repeats for Method 3 and Method 4). From these results,
we selected the subset with an RMSE within 1% of the best RMSE returned for each cell and each method. Next, we defined the
variation in an obtained parameter value pi as

vi =
|pi j − pi,1 |

pi,1
· 100% (S15)

where pi j is the pi value obtained in the j-th repeat, and the repeats are ordered from best to worst (so that pi,1 are the parameters
leading to the highest score). We then defined the maximum variation in each subset as:

vmax = max
i

max
j

|pi j − pi,1 |
pi,1

· 100% (S16)

The results per method per cell are shown in Table S2. For the synthetic data of Cell S, all results with a low RMSE are
clustered in a small region of the parameter space. For methods 3 and 4, this also holds true for the real data. For Method 2
however, the best results from some cells show considerable variation. To further investigate this, we counted how many of the
‘best RMSE’ results were within 1% parameter variation of the best result. The results, displayed in Table S3, show that the
large spread observed for some cells’ Method 2 results is typically due to a small number of outliers. For Cell #9 however,
only 2 in 80 repeats gave a good result, and neither result was close to the other. These results indicate there may be some
identifiability problems for Method 2.

Table S2: Maximum variation vmax in the parameters with a low RMSE per method, per cell

Method Cell S Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9
2 6e-5 0.01 11.520 14.184 5.227 1.262 0.91 16.997 10.160 3.251
3 1e-6 3e-6 5e-6 3e-6 4e-6 5e-6 5e-6 4e-6 4e-6 8e-6
4 0.04 0.19 0.27 0.11 0.09 0.10 0.07 0.14 0.13 0.13

Table S3: The number of results with an RMSE within 1% of the best result (right), and the number that were also with 1%
maximum variation of the best result’s parameters (left). Note that 80 repeats were run for Method 2, but only 50 repeats for
Method 3 and Method 4.

Method Cell S Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9
2 8 / 8 2 / 2 9 / 10 5 / 7 8 / 10 5 / 9 3 / 3 5 / 7 11 / 12 1 / 2
3 40 / 40 42 / 42 39 / 39 34 / 34 26 / 26 36 / 36 34 / 34 29 / 29 40 / 40 25 / 25
4 41 / 41 47 / 47 39 / 39 30 / 30 36 / 36 40 / 40 40 / 40 43 / 43 42 / 42 37 / 37
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S2.3.3 Fits were accurate, but had a small noise-induced bias
In the synthetic study, the ground truth is known, and so we can also assess the accuracy of the obtained parameters. However,
as we purposely created a noisy data set, we should expect this noise to have created a bias in our data (similar to the standard
error of the mean, when estimating the mean from a finite sample). Furthermore, this bias should diminish with the number of
data points used to calculate the error measures, so that method 2 should have the largest bias (42 data points), followed by
method 4 (79,600 points after capacitance filtering), followed by method 3 (2,271,442 points after capacitance filtering). This
prediction is borne out in Figure S15, which shows a lower RMSE was found by the optimiser for methods 2, 3, and 4, with the
difference in RMSE being greatest in method 2 and smallest in method 3.

0.5 0.0 0.5 1.0 1.5
Cross-section from xtrue to xbest
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E M
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True parameters
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Error function

0.5 0.0 0.5 1.0 1.5
Cross-section from xtrue to xbest

0.02153540

0.02153545

0.02153550
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Error function

0.5 0.0 0.5 1.0 1.5
Cross-section from xtrue to xbest

0.0058442

0.0058444

0.0058446

E M
4

True parameters
Best obtained
Error function

Figure S15: Noise in the synthetic data causes a shift in the point with the lowest RMSE, so that the best parameter set found by
the optimiser deviates slightly from the ground truth. This effect diminishes when the number of data points increases, so that it
is greatest in EM2 and smallest in EM3 (note the different y-axis scales).
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S2.4 Using transformed parameter spaces
The transition rates in our model are of the form k = a exp(±bV), with bounds on k, a and b to keep behaviour in physiologically
relevant timescales as explained in Section S2.2.

When running optimisations for the main manuscript, we used a log-transformation on all ‘a parameters’, that is p1, p3, p5,
and p7, in that both:

1. Initial guesses for each optimisation were chosen by sampling uniformly across this transformed space; and

2. The optimiser itself worked with parameters in the transformed space (de-transforming before every simulation).

In this section of the Supporting Materials, we outline how we made this choice by using the synthetic data of Cell S.
The result of sampling uniformly in the different spaces is visualised in Figure S16, which shows the boundaries described

in Section S2.2, drawn with two linear axes (top), a logarithmic x-axis (middle), or two logarithmic axes (bottom). We have
denoted these transforms as:

• n-space— no transform on either a or b parameters.

• a-space — log transform on a parameters (p1,3,5,7), no transform on b parameters.

• f -space— fully log transformed, for both a and b parameters (as well as the conductance parameter p9).

Initial guesses were sampled uniformly within the boundaries in each space, as shown in Figure S16.
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Figure S16: Sampling from within the boundaries A visualisation of the boundaries on the kinetic parameters is shown,
drawn with two linear axes (A & B), a logarithmic x-axis (C & D), or two logarithmic axes (E & B). In each panel, the lower
and upper bound for the parameters are shown as grey lines, the constraints imposed via the rate constant restrictions are shown
in blue and orange, and the region fully within the boundaries is indicated with grey shading. Points sampled uniformly in the
untransformed space (labelled the ‘n-space’) are shown, indicated with green ‘−’ marks. The ‘+’ marks indicate points sampled
from a space where p1, p3, p5, and p7 are log-transformed (the ‘a-space’), and points sampled uniformly from within a space
where all parameters are log-transformed (the ‘ f -space’) are shown as purple ‘×’ marks.
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S2.4.1 Effects of transformations on reliability
To investigate the effects of sampling initial points and searching in transformed spaces, we performed 50Method 4 optimisations
in different configurations on the synthetic data of Cell S, and calculated the percentage of results with an RMSE within 1% of
the best result in each configuration. We used the notation (search space, sampling space) to denote each configuration, where
‘search space’ is the space presented to the optimiser, and ‘sampling space’ is the space from which we sampled uniformly
to pick the starting point. The results, shown in Figure S17, suggest that changing the either the search-space or the choice
of initial point in isolation only has a small effect on the reliability of the method. In contrast, changing both has a drastic
influence, with the (a, a) configuration strongly outperforming the (n, n) and (f, f) configurations.
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Figure S17: The percentage of Method 4 results with an RMSE within 1% of the best result found, for 50 repeats in different
configurations, all for the synthetic data of Cell S. The first bar shows the baseline configuration (a,a) where searching and
choosing initial points were performed in the a-space. The next two bars show the influence of changing the search space
without changing the way initial points were chosen: (n, a) searching in the untransformed n-space, but choosing starting
positions in a-space; and (f, a) searching in the p1−9 log-transformed f -space but sampling in a-space. Next, to see the effect of
the starting position without changing the searching method we tested: (a, n) searching in a-space but choosing the first point
from n-space; and (a, f) searching in a-space but choosing a point from a distribution uniform in f -space. And finally, we
varied both simultaneously: (n, n) searching and sampling in n-space; and (f, f) searching and sampling in f -space.

Next, we repeated the experiment using Method 3. Here, the effects of changing the search space or initial point selection
in isolation were larger. When changing both, the performance of the ( f , f ) configuration was much closer to the (a, a)
configuration, but the (n, n) configuration still proved very unreliable.

a,a n,a f,a a,n a,f n,n f,f
0

20

40

60

80

100

R
es

ul
ts

 w
ith

in
 1

%
 o

f b
es

t (
%

)

Figure S18: The percentage of Method 3 results with an RMSE within 1% of the best result found, for 50 repeats in different
configurations, for the synthetic data of Cell S.
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S2.4.2 Effects of transformations on performance
Next, we investigated the effects of parameter transformations on optimisation performance, by plotting the number of
evaluations required in each optimisation for Method 3 and Method 4 in several configurations in Figure S19. These results
show that (1) searching in a transformed space is more efficient than in an untransformed space; (2) the starting position has less
influence on the performance, although choosing a distribution that favours points near the true solution reduces the number of
evaluations needed; (3) that choosing bad starting points can negate the positive effects of using a transformed search space.
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Figure S19: The number of evaluations per optimisation on the synthetic data of Cell S, for 50 optimisations in different
configurations. (Top) Method 4 results for different search spaces (left), choosing starting points uniformly in different spaces
(centre), or varying both (right). Note that the centre of each panel shows the same data (the baseline (a, a) configuration).
(Bottom) A similar exploration for Method 3.

S2.4.3 Recommendations
In conclusion, our synthetic data study indicates that for transition rates of the form a exp(±bV) a parameter transform of
‘ln a’ and linear ‘b’ is a good choice for both reliability (reproducible best fits from different initial guesses) and performance
(number of function evaluations to minimise with CMA-ES). These results may generalise to other model structures with
voltage-dependent rates of the form a exp(±bV). The findings perhaps suggest rewriting the model equations in the form
exp(a′ ± bV) and removing the need for parameter transforms entirely by performing optimisation on a′ and b.
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S3 SUPPLEMENTAL RESULTS
S3.1 Obtained parameters
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Figure S20: The best parameters returned by all four methods, for all nine cells. Only the eight kinetic parameters are shown.
Parameters p1 and p2, shown in panel A, together determine the activation rate, while p3 and p4 in panel B determine
deactivation. Similarly, inactivation and recovery are determined by the parameters in panels C and D respectively.

S3.2 Validation and cross-validation figures for all cells
Validation and cross-validation figures for all cells can be found at
https://github.com/CardiacModelling/FourWaysOfFitting.
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S3.3 Relative RMSE tables for all cells

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 1
1.53 1.35 1.00 1.36

1.14 1.00 3.21 1.59

2.53 1.00 4.31 2.27

1.99 1.75 1.00 1.92

3.15 2.30 1.84 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 2
2.26 3.00 1.00 1.19

1.12 1.00 2.34 1.60

2.85 1.00 3.99 2.91

2.33 2.46 1.00 2.07

3.20 4.85 1.65 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 3
1.14 2.10 1.00 1.37

1.00 1.07 2.85 1.94

1.83 1.00 3.48 2.18

1.29 1.46 1.00 1.54

1.66 4.92 1.77 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 4
2.03 1.87 1.22 1.00

1.01 1.00 2.94 2.64

2.18 1.00 3.67 3.21

1.35 1.77 1.00 1.73

3.04 4.16 2.20 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 5
1.82 4.25 1.29 1.00

1.00 1.11 4.64 1.99

2.58 1.00 6.33 2.48

2.46 3.88 1.00 2.13

3.78 13.54 1.70 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 6
2.92 1.00 1.07 1.32

2.33 1.00 3.74 2.06

4.47 1.00 5.20 3.17

2.41 1.79 1.00 2.29

3.82 2.15 1.60 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 7
2.04 1.85 1.12 1.00

1.00 1.21 5.85 3.03

2.23 1.00 6.74 3.38

1.36 1.52 1.00 1.47

2.71 3.25 2.09 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 8
2.09 1.56 1.00 1.09

1.35 1.00 4.79 2.28

2.64 1.00 7.07 2.87

1.61 1.50 1.00 1.47

2.90 2.35 1.93 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 9
1.42 1.70 1.00 1.25

1.00 1.01 2.21 1.81

2.34 1.00 3.36 3.59

1.57 1.61 1.00 1.52

1.66 1.94 1.43 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4All cells
1.7 (0.3) 1.9 (0.8) 1.0 (0.1) 1.1 (0.2)

1.2 (0.5) 1.0 (0.2) 3.3 (0.6) 1.9 (0.2)

2.6 (0.7) 1.0 (0.1) 4.8 (1.0) 2.9 (0.4)

1.7 (0.4) 1.8 (0.4) 1.0 (0.4) 1.7 (0.4)

2.8 (0.9) 3.8 (1.8) 1.8 (0.5) 1.0 (0.3)

Figure S21: Relative RMSE for all cells.
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S3.4 Performance
The experimental and computational effort that goes into each method is illustrated in Figure S22.
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Figure S22: Experimental duration and optimisation duration. (A) The duration of the protocols needed for each method: 228s
for methods 1–3 (which are based on Pr2–5), and 8 s for Method 4 (based on Pr7). (B) The time taken for a single optimisation,
with 50 points shown per method per cell. (C) The number of evaluations per optimisation for methods 2–4. (D) The mean time
per evaluation, calculated for 50 optimisations for each cell. Orange arrows indicate hidden outliers from Method 2.
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Figure S22.A shows that the experiments required for Method 4 are considerably faster than those needed for methods 1–3,
with only 8 seconds needed for Pr7, compared to 228 seconds for the Pr2–5 combination. The time for a single optimisation
(one of the 50 repeats we ran per method) is shown for methods 2–4 in Figure S22.B. Method 1 is deterministic and runs almost
instantaneously, so is omitted here. Method 2 takes far longer than the other methods, and Method 3 is slower than Method 4.
Inspecting the number of evaluations (simulations) performed by each method, shown in Figure S22.C we see that Method 2 is
much more similar to methods 3 and 4 in this respect. A large number of Method 2 optimisations terminated with a low number
of evaluations, which indicates that they stopped exploring early, e.g. due to hitting a local minimum.

The time spent per optimisation (Figure S22.D) is largest in Method 2, followed by Method 3, followed by Method 4.
Figure S23 shows this difference is due to the time per evaluation, rather than the number of evaluations. Method 3 evaluations
take longer than Method 4 evaluations, as they require the simulation of multiple, long protocols (see Figure S22.A). The
time per evaluation for Method 2 is larger still, since Method 2 not only runs a simulation every evaluation, but also needs to
post-process the results to extract time constants and steady states.
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Figure S23: Time per optimisation versus number of evaluations per optimisation.
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S3.5 Cross-sections of the optimisation surfaces
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Figure S24: Cross-sections of all optimisation criteria for Cell #5, for EAP (Top), and EM1 to EM4. The surfaces were drawn by
performing a brute-force mapping (256x256 evaluations) around a fixed point. For EAP this fixed point was chosen by first
running an optimisation to find its optimum. For EM1 to EM4 the fixed point was the result returned by methods 1–4. Note that
for EM1 this point does not correspond exactly to EM1’s minimum.
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S3.6 Method 1b: Minimising EM1
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Figure S25: In Method 1, the steady-state approximations are used in deriving the approximations of the time constants. The
time constants are relatively robust against shifts in the midpoints of (in)activation, but react more strongly to changes in the
steady state slopes. For Method 1, this implies that a small error in estimating the slope (for example due to having points near
the reversal potential) can cause a large error in the time constants. For Method 2, it shows that a better fit on the time constants
can be obtained by slightly tweaking the steady state curves.
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Figure S26: Minimising EM1 directly allows for a trade-off between goodness-of-fit in the steady states and the time constants.
This results in improved time-constant fits, without much change to the steady-state fits. Data is shown for Cell #5.
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AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1 Method 2 Method 3 Method 4Cell 5
1.82 4.25 1.29 1.00

1.00 1.11 4.64 1.99

2.58 1.00 6.33 2.48

2.46 3.88 1.00 2.13

3.78 13.54 1.70 1.00

AP validation

Method 1 RMSE

Cross-validation M2

Cross-validation M3

Cross-validation M4

Method 1b Method 2 Method 3 Method 4Cell 5
1.85 4.25 1.29 1.00

1.00 1.43 5.96 2.56

1.98 1.00 6.33 2.48

3.46 3.88 1.00 2.13

6.84 13.54 1.70 1.00

Figure S27: Using Method 1b (Right) leads to E1 RMSEs that outperform Method 1 (Left). However, this improvement does
not necessarily translate to better predictions, as the fundamental idea — that the model equations should be overlaid on their
experimental approximates — is still flawed. Data is shown for Cell #5.
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S3.7 Method 2b: Minimising EM2 starting from Method 1 result
A Method 2 variant (“Method 2b”) can be created by adapting Method 2 to only perform a single run, starting from the
parameters returned by Method 1. In the experiments we ran, this gave very similar results to Method 2, but at a lower
computational costs. However, these results will only generalise if the function EM2 is smooth and easy to navigate between the
Method 1 and Method 2 results.

Table S4: Method 2 and Method 2b results

Cell EM2 Method 2 EM2 Method 2b
1 0.1842753785 0.1900501636
2 0.1807762308 0.1827848996
3 0.2155275628 0.2155275628
4 0.1648576405 0.1648576405
5 0.1583982474 0.1584057577
6 0.1664606846 0.1669911494
7 0.1335628150 0.1335628150
8 0.1654924563 0.1654924564
9 0.1846339139 0.1880672499

S3.8 Method 3b: Minimising EM2 starting from Method 1 result
A similar adaptation can be used to create a Method 3 variant, “Method 3b”.

Table S5: Method 3 and Method 3b results

Cell EM3 Method 3 EM3 Method 3b
1 0.0448121214 0.0448121214
2 0.0479263275 0.0479263275
3 0.0613629021 0.0613629021
4 0.0801896081 0.0801896081
5 0.0394435210 0.0394435210
6 0.0666019884 0.0666019884
7 0.1164911334 0.1164911334
8 0.1005265480 0.1005265480
9 0.0683642823 0.0683642823
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