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S1 Details of voltage clamp protocol

Figure S1. All voltage clamp protocols used in the study, from A to I are (green) our newly developed staircase protocol,
(blue) the activation current-voltage (I-V) protocol, the steady-state inactivation I-V protocol, the hERG screening protocol, the
delayed afterdepolarization (DAD)-like protocol, the early afterdepolarization (EAD)-like protocol, and the action potential
(AP)-like protocol with beating frequency 0.5 Hz, 1 Hz and 2 Hz. All protocols are shown with the same voltage axes for
comparison; however due to different time scale, each of them has its own time axis.



S1.1 Calibration: Staircase protocol
The full protocol is comprised of a 250 ms step at holding potential of −80 mV, followed by a 50 ms ‘leak step’ at −120 mV,
and a 400 ms ‘leak ramp’ from −120 mV to −80 mV, before a 200 ms back at holding potential. This was followed by a 1 s
‘activation step’ at 40 mV and a 500 ms ‘closing step’ at −120 mV, before returning to holding potential for 1 s. Then the 9.5 s
staircase portion of the protocol (the details is described below), before a return to holding potential for 500 ms. Finally, it was
followed by a reversal potential estimation portion which is composed of a 500 ms step to 40 mV, and a 10 ms step to −70 mV
to remove capacitance effect, then followed by a 100 ms ‘reversal potential ramp’ starting from −70 mV to −110 mV, before a
390 ms step to −120 mV, and return to holding potential for 500 ms.

The staircase portion of the protocol consists of a range of 500 ms steps up and down as discussed in main text. It is
comprised of two sets of steps, the first set alternates between Vstep,1 and Vstep,2, each for 500 ms. There are 5 different Vstep,1
and Vstep,2; Vstep,1 ranged from −40 mV to 40 mV, and Vstep,2 ranged from −60 mV to 20 mV, both in 20 mV increments. The
second set alternates between Vstep,3 and Vstep,4, each for 500 ms. There are 5 different Vstep,3 and Vstep,4; Vstep,3 ranged from
40 mV to −40 mV, and Vstep,4 ranged from 0 mV to −80 mV, both in 20 mV decrements.

This protocol is shown in Figure S1A. A time series version of the full protocol is available at https://github.com/
CardiacModelling/hERGRapidCharacterisation/blob/master/protocol-time-series/protocol-staircaseramp.csv.

S1.2 Validation 1: Activation I-V protocol
From the initial period 100 ms at holding potential of −80 mV, a step to Vstep for 1 s, followed by a 500 ms step to −40 mV,
before a 100 ms step back to holding potential; this was repeated 7 times with a different Vstep on each repeat. Vstep ranged
from −50 mV to 40 mV in 15 mV increments. This protocol is shown in Figure S1B.

S1.3 Validation 2: Steady-state inactivation I-V protocol
From the initial period 100 ms at holding potential of −80 mV, a step to 20 mV for 500 ms, followed by a step to Vstep for
500 ms, before a 100 ms step back to holding potential; this was repeated 10 times with a different Vstep on each repeat. Vstep
ranged from −140 mV to 40 mV in 20 mV increments. This protocol is depicted in Figure S1C.

S1.4 Validation 3: hERG screening protocol
From the initial period 100 ms at holding potential of −80 mV, a step to −40 mV for 50 ms, and a step to 20 mV for 500 ms,
followed by a step to −40 mV for 500 ms, before a 200 ms step back to holding potential. This protocol is shown in Figure S1D.

S1.5 Validation 4-8: DAD-like, EAD-like, APs-like protocols
Details are described in Table S1, and each protocol is shown in Figure S1E-I respectively.

S2 Ramps in the staircase protocol
As discussed in the main text, protocol design, the two ramps implemented in the staircase protocol are designed to estimate the
leak current and to experimentally estimate the EK value. Figure S2 shows an example of using the two ramps to estimate
the leak current and the EK value. The top three panels show the staircase voltage clamp protocol (grey), an example of raw
currents before (blue) and after (orange) E-4031 application, and the corresponding estimated IKr (green; the difference between
the blue and orange traces), respectively. The greyed out sections highlight the two ramps in the staircase protocol. Bottom left
shows the I-V curves of the two raw currents measured under the first ramp. Linear regressions were applied, and the results
are shown as dashed lines, where the fitted slope and y-interception point were used to estimate the leak current parameters
(Eq. 12 in the main text). Bottom right shows the I-V curve of the leak-corrected, E-4031 subtracted IKr measured under the
second ramp. A third order polynomial regression was applied, and the result is shown as dashed line. The EK value was then
estimated as the x-interception point, shown as red vertical line.

S3 Electrophysiology solutions
The compositions of all the electrophysiology solutions, including both the external solutions (bath solutions) and the internal
solution (equivalent to the pipette solution in manual patch clamp), are shown in Table S2. External solutions were added in
the following order: first ‘fill chip’ solution to the measurement chip, and the suspended hERG cells, then the ‘seal enhancer’
solution for enhancing the seal by forming CaF crystal around the cells (note they have extra high concentration of Ca+, so we
need to reduce/dilute it later), followed by adding the extracellular ‘reference’ solution for Ca+ dilution. All the voltage clamp
measurements were performed after adding all these external solutions.

The solutions were added sequentially to the wells, by removing half of the previous solutions from the wells each time.
Therefore, the final ratios of the external (extracellular) solution are 1:1:2 — proportions of 0.25 of the ‘Fill Chip’ concentrations,
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DAD-like protocol EAD-like protocol Single AP-like protocol
Type V [mV] Duration [ms] Type V [mV] Duration [ms] Type V [mV] Duration [ms]

Step -80 50 Step -80 50 Step -80 50
Step 34 3 Step 40 3 Step 34 3
Ramp 30 8 Step 20 3 Ramp 30 8
Ramp 26 15.2 Ramp 30 20 Ramp 26 15.2
Ramp -5 142.6 Step 30 10 Ramp -8 183.6
Ramp -21 38.4 Ramp -10 168 Ramp -21 39
Ramp -70 68.6 Ramp -15.5 50.6 Ramp -68 70.5
Step -20 2 Ramp -20 61.2 Ramp -80 25.2
Ramp -30 20 Step -20 60 Step -80 —
Ramp -40 10 Ramp -10 40
Ramp -65 15 Step -10 10
Ramp -80 12 Ramp -20 50
Step -80 15.2 Ramp -30 20
Step -80 350 Ramp -75 40.5

Ramp -80 50
Step -80 13.7
Step -80 100

Table S1. Details of the DAD-like (validation 4), EAD-like (validation 5), APs-like (validation 6-8) protocols. It shows as a
sequence of steps and ramps that approximates different types of action potential shapes, as these are the only available settings
in the automated machine used. The voltage (V) in the type Ramp represents the final targeted voltage that the ramp finishes,
starting from the previous voltage within the given duration; for example, the first ramp in the EAD-like protocol means it starts
from 34 mV and ramps to 30 mV in 8 ms. The single AP-like protocol shows the protocol for one unit AP-like protocol that
repeats in 0.5 Hz, 1 Hz, and 2 Hz.

0.25 of the ‘Seal Enhancer’ concentrations, and 0.5 of the ‘Reference’ concentrations, as shown in the ‘Final Extracellular’
solution in Table S2. For each well, the volume of the final solution during recording is 80 µl.

Solution Intracellular Fill Chip Seal Enhancer Reference Final Extracellular
pH value (titrated with) pH 7.2 (KOH) pH 7.4 (NaOH) pH 7.4 (HCl) pH 7.4 (HCl)

Osmolarity [mOsm] 260-300 300-330 290-330 290-330

Chemicals Source / Cat# [ ] in mM [ ] in mM [ ] in mM [ ] in mM [ ] in mM

NaCl Merck / K38447104807 10 150 80 80 97.5
KCl Merck / K36782536 10 4 4 4 4
KF Acros Organics / 201352500 100 — — — —
MgCl2 Merck / A914133908 — 1 1 1 1
CaCl2 Acros Organics/ 349615000 — 1.2 5 1 2.05
HEPES Applichem A1069 10 10 10 10 10
Glucose Fluka / 49159 — 5 5 5 5
NMDG Fluka 66930 — — 60 40 35
EGTA Fluka / 03778 20 — — — —
Sorbitol Sigma / S1876 — — — 40 20

Table S2. Electrophysiology solutions for hERG assay on the Nanion SyncroPatch 384PE machine, all solutions are sterile
filtered. All hERG cells were suspended in 1/3 Extracellular Fill Chip Solution + 2/3 Hanks’ Balanced Salt Solution (HBSS).

S4 Recording techniques

All experiments were performed with Nanion SyncroPatch 384PE machine with software PatchControl384PE (v. 1.5.6 Build 22)
and current traces data were exported using their complementary software DataControl384 (v. 1.5.0 Customer Release).
Temperature was controlled by Nanion temperature control unit with software PE384TemperatureControl. The machine comes
with a measurement chip consists of 364 wells, with 16 rows by 24 columns.
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Figure S2. Two ramps (greyed out sections) implemented in the staircase protocols. The first ramp is designed to estimate the
leak current; the second ramp is designed to experimentally estimate the EK value. Top three panels show the staircase voltage
clamp protocol (grey), the raw currents before (blue) and after (orange) E-4031 application, and the estimated IKr (green; the
subtraction between the blue and orange traces), respectively. Below shows the I-V curves measured during the two ramps.
Linear regressions were applied to each of the I-V relation in the first ramp, shown as dashed lines. Third order Polynomial
regression was applied to the I-V curve in the second ramp, shown as dashed lines.

S5 Automated quality control
Here we present a more detailed selection results of our quality control which does not require any manual intervention. The
full details of our automated quality control criteria are summarised in Table 1 in the main text. A well must pass all the listed
criteria in order to be selected.

In Figure S3, we break down the selection results and show the results of each criterion in our automated quality control.
On the left, the bar chart shows the number of wells removed by each quality control criterion. There were 22 ‘no cell’ wells,
where the platform decided there was no valid estimation of Rseal, Cm, and Rseries and it was likely that no cell was clamped
in these wells. Our three QC1 criteria are used as part of the automated high-throughput machine quality control, which can
eliminate up to 46 wells out of the 201 wells that we manually decided to remove. We then added the other criteria to improve
the selection process, which allow us to eliminate a total of 173 wells, and achieved a positive predictive value of >86 %. On
the right, we show the number of wells commonly removed by any pair of criteria. This shows that most of our criteria are
quite independent, and are assessing different features of the recordings.

We note that our automated quality control can achieve a positive predictive value of >86 %. In Figure S4, we show 6 typical
examples of the ‘bad recordings’ that we manually removed. The manually removed bad recordings are compared against the
good recordings. Top panel shows our staircase protocol. Then we show 3 good recordings (green) and 6 manually removed
bad recordings (orange/red). We found our manually removed recordings fall into two main categories, as coloured, orange
and red. For the first category (orange), although they seem to contain IKr, they are heavily ‘contaminated’ by other signals
which are most probably a combination of leak and endogenous currents. For the second category (red), the recordings lack any
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Figure S3. Selection results of each criterion from our automated quality control. (Left.) Showing the number of wells
filtered out by each quality control criterion as bar chart. (Right.) Showing the number of wells filtered out by both the row and
column criteria. The automated high-throughput machine also has some simple quality control implemented, which are our
three QC1 criteria.

characteristic dynamics of IKr, for example during the first big repolarising step from 40 mV to −120 mV, the recordings do
not show any negative spikes that we would associate with hERG opening. Therefore, none of them are considered as good
recordings of IKr.

5/25



Figure S4. A comparison of the good recordings and our manually removed bad recordings. Top panel shows our staircase
protocol. Following are 3 good recordings (green) and 6 manually removed bad recordings (orange/red). We found our
manually removed recordings fall into two main categories, as coloured, orange and red.
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S6 Synthetic data studies

S6.1 Introduction
We perform a synthetic data study prior to implementing the actual experiments for two reasons: design of protocols and test of
analysis.

First, given the mathematical model of the hERG channel, we are able to deduce what would be the best protocols to tease
out the kinetics of the underlying model. This can alleviate a common issue, identifiability when undertaking model fitting.
Because typically one constructs the problem into inverse problems when trying to parameterise mathematical models, however
the identifiability issue arises because of the poorly informed experimental data. Therefore we utilise a synthetic study to design
and optimise protocols to have sufficient information for rapid characterisation.

Second, we are able to test our analysis technique, to ascertain whether it is robust enough for our purpose — to recover the
parameters of the model given the data. Most of our ion channel models can be written as

I = f (V, t;θ, I0), (S1)

where I is the current (output of the model, the observable in experiments), V is the voltage, and θ is the vector of parameters
within the model. The models are usually formulated as differential equations which therefore requires initial conditions I0.
The dependency on initial conditions I0 can usually be eliminated by running the model long enough to reach a (pseudo-)steady
state. Then with our analysis techniques, given the output I with inputs V and t, we aim to infer the values of the parameters θ,
hence the overall process is termed an inverse problem. Therefore, we generate synthetic data (with added synthetic noise) with
some ‘true’ parameters θtrue, and we ask, how confident are we in our inferred parameters?

S6.2 Methods
S6.2.1 Generating synthetic data
We generate synthetic data by simulating the current I, with some fixed known parameter sets {θtrue}, voltage protocol Vprt(t),
initial values I0, and sampling time (time-step) ∆t.

First, the choice of {θtrue} could be arbitrary, but we used the parameters identified from a previous study1 (Table F11 Cell #5),
θlit, to utilise prior knowledge. We generated {θtrue} = {θtrue,1,θtrue,2, · · · ,θtrue,Ne } with each θtrue, j = (θtrue, j

1 , θ
true, j
2 , · · · , θ

true, j
N )T

sampled from

θ
true, j
i ∼ N(θlit

i ,ρ
2
i ), (S2)

where i = 1,2, · · · ,N for N parameters in the model, and (· · · )T represents the transpose. N denotes the normal distribution
and ρ2 is the variance for which we chose a value of ρi = 0.2|θlit

i |. That is, we assume that we performed Ne experiments
(recordings), and there exists variability between experiments. Assuming each experiment was performed identically, then the
variability that we are simulating is cell-to-cell variability.

We can take the notion of variability further, by removing the assumption of independence between model parameters. We
assume there exists an underlying correlation between each model parameter, which can be described by a covariance matrix Σ.
Therefore we can rewrite the underlying distribution of the parameters as being taken from a (covarying) multivariate normal
distribution, that is

θtrue, j ∼ N(θlit,Σ). (S3)

The correlation between parameters using the correlation matrix is then defined as

corr(θ) = diag(Σ)−1/2 Σ diag(Σ)−1/2, (S4)

where diag(·) denotes the matrix of the diagonal entries and its (i, i) entry is chosen to be ρ2
i . We randomly generated the

correlation matrix that satisfies the positive semi-definite condition for this synthetic data study.
Second, we fix the voltage V of the model at Vprt(t), which is the staircase protocol that we developed for the high-throughput

systems. Third, for the initial values I0, we ran the model at V = −80 mV for a long period (100 s), to allow the model to settle
at its steady state at V = −80 mV. Since we are able to mimic this in the actual experiments, we assume the model does not
depend on the choice of I0, that is I ≈ f (V, t;θ).

Finally, we add synthetic noise which follows a normal distribution with a mean of zero and standard deviation σ (i.e.
∼N(0,σ2)) to the simulated traces with ∆t = 0.5ms. We chose σ at a reasonable scale, σ = 11 pA, to mimic the high frequency
noise observed from some of our pilot experiments using the high-throughput system.
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S6.2.2 Inferring parameters
To infer the parameters, we use a two-step approach. Firstly, we use a global optimisation algorithm, CMA-ES2, to identify the
parameters. Secondly, we run Markov-chain Monte Carlo (MCMC) to explore and quantify the uncertainty of the identified
parameters.

In the CMA-ES optimisation, we used the sum of squares error measure of the whole trace as our objective function. To
alleviate any potential issues arising due to a constrained objective function, we applied a transformation g that maps the
positively constrained model parameters {θi}, with θi ∈ [0,∞], to {φi} ∈ R

N , an unconstrained search space for optimisation,
which is simply a log-scale transformation:

θi = g−1(φi) = eφi . (S5)

We then further considered the physical constraints for the rate constants in the kinetics parameters1, which has the form
k = Aexp(BV). For parameters of the form A, [θmin

i , θmax
i ] is chosen to be [10−7,103] ms−1; and for parameters of the form B,

[θmin
i , θmax

i ] is chosen to be [10−7,0.4] mV−1.
For the MCMC, we used a population MCMC3 algorithm with adaptive Metropolis4 algorithm as the base sampler. The

starting point of the population MCMC was chosen to be the CMA-ES inferred parameters. As a good practice, the population
MCMC was repeated 3 times to ensure the convergence of the MCMC chains. We chose the posterior measure to be

p(φ,σ|y) =
p(φ)p(y|φ,σ)

p(y)
∝ p(φ)p(y|φ,σ), (S6)

p(φ) ∼U(φmin,φmax), (S7)

p(y|φ,σ) =
1

√
2πσ2

exp

−∑
k

(
f (Vprt, tk;g−1(φ))−y|tk

)2

2σ2

 . (S8)

Here, y is the data and y|tk denotes the data at time tk. The likelihood, p(x|φ), in Eq. S8 is the Gaussian noise version of the sum
of square difference measure used in the CMA-ES.

S6.2.3 Hierarchical Bayesian model
In order to infer the correlation between model parameters, corr(θ) in Eq. S4, the mean, and the variability between cells,
we used a multi-level modelling technique which works under the Bayesian framework, known as a hierarchical Bayesian
model. This allows us to combine all the results from each individually performed experiment to inform the prediction of future
experiments.

A schematic of our hierarchical Bayesian model structure is shown in Figure S5. The full hierarchical Bayesian model is

L

(
µ,Σ,

{
φ j,σ j

}Ne

j=1
|
{
y j

}Ne

j=1

)
∝

Ne∏
j=1

p
(
y j|φ j,σ j

)
× p

({
φ j,σ j

}Ne

j=1
|µ,Σ

)
× p (µ,Σ)×

Ne∏
j=1

p
(
σ j

)
, (S9)

where all symbols have their usual meaning as defined above, L is the full posterior, and µ,Σ are the hyperparameters
of the hierarchical model which are the means and covariance matrix of the model parameters. We assume the model
parameters follow a multivariate log-normal distribution, thus the hyperparameters define the mean and covariance matrix of
this distribution. The three terms in Eq. S9 are: 1. the likelihood of all the individual (low-level) experiments; 2. the likelihood
of the hyperparameters; and 3. the priors of the hyperparameters (also known as ‘hyper-priors’) and the prior of σ j which we
do not infer its hyperparameters.

For computational ease, we chose the prior of the hyperparameters to be a multivariate normal distribution for the µ and an
inverse-Wishart distributionW−1 for the Σ, which is the respective conjugate prior. Suppose Ne individual parameters {θ j}

Ne
j=1

have been observed, then we have{
lnθ j

}Ne

j=1
∼ N (µ,Σ) , (S10)

and with the conjugate prior

p(µ,Σ) = p(µ|Σ)p(Σ), (S11)
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Figure S5. Hierarchical Bayesian model showing parameter dependency for combining multiple experiments. µ,Σ are the
hyperparameters of the hierarchical model which represent the mean and covariance matrix, respectively, of the individual
‘low-level’ parameters, {θ j,σ j}

Ne
j=1 are the set of individual ‘low-level’ parameters for each of the Ne measurements in the

high-throughput experimental recordings {y j}
Ne
j=1. The parameters in the box repeat for multiple wells and are indexed as the jth

experiment (or dataset). All parameters, and their probability distributions, are inferred from the shaded variable y j, the
experimental data. Prior distributions are required for the parameters with no inward-pointing arrows.

where

p(µ|Σ) ∼ N
(
µ0,

1
m

Σ

)
, and p(Σ) ∼W−1(Ψ, ν). (S12)

µ0,m,Ψ, ν are the prior parameters, where m, ν are respectively the strength of the prior mean µ0 and Ψ which determines the
prior of the covariance Σ. Then the posterior distribution of the hyperparameters becomes

p
(
µ |Σ,

{
lnθ j

}Ne

j=1

)
∼ N

(
Neθ̄+ mµ0

n + m
,

1
m + Ne

Σ

)
, and (S13)

p
(
Σ |

{
lnθ j

}Ne

j=1

)
∼W−1

(
Ψ+ NeS +

Nem
Ne + m

(θ̄−µ0)(θ̄−µ0)T ,Ne + ν

)
, (S14)

where

θ̄ =
1

Ne

Ne∑
j=1

lnθ j, and (S15)

S =
1

Ne

Ne∑
j=1

(θ̄− lnθ j)(θ̄− lnθ j)T . (S16)

We use the Metropolis within Gibbs (MwG)5 sampling method to explore the full hierarchical Bayesian model. The number
of parameters we have in Eq. S9 is N(N + 1)/2 + (Ne + 1)N + Ne. For our choice of hERG model and the size of the dataset, we
are expecting N = 9 and Ne > 100. This gives us more than 1000 parameters for which we wish to infer probability distributions.
It is computationally expensive and infeasible to use other standard algorithms, such as the population MCMC, and even MwG
can be very time consuming. We therefore further simplify the MwG to approximate the full posterior sampling, which we
have termed ‘pseudo-MwG’. We confirm that the pseudo-MwG can approximate the MwG very well in the results below.

Under our pseudo-MwG, we assume that the likelihoods of our individual experiments are unlikely to be affected by the
top-level distribution, due to our information-rich staircase protocol having thousands of data points rather than the ∼ 100
wells. We therefore separate the sampling steps between the likelihood of all the individual experiments and the likelihood of
the hyperparameters. That is, we first independently sample the likelihood of each individual experiment, using population
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MCMC alogrithm. Then we sample the hyperparameters using Eq. S10–S16, where
{
lnθ j

}Ne

j=1
become

{
lnθ j,l

}Ne

j=1
which are the

independently obtained lth samples of the individual experiments j. Note that this is only valid when the individual experiments
are far more information-rich than the number of repeats. We check these assumptions in the results below.

To obtain the posterior predictive distribution p(θ| · · · ) which allows us to make prediction about how the future experiments
would behave, where (· · · ) indicates all other variables appear in Eq. S9, we use

p(θ| · · · ) =

∫
Θ

p(θ|Θ)p(Θ| · · · ) dθ, (S17)

where Θ = (µ,Σ)T . This can be approximated by summing over the probability density functions which are defined by the
samples of Θ.

S6.3 Results/Discussion
S6.3.1 Single synthetic experiment
We start by showing the staircase protocol is information-rich enough to identify the ‘true’ parameter set in a synthetic data
study using our protocol. Figure S6 shows the results of inferring model parameters on a synthetic experiment, where θtrue = θlit

obtained from a previous study1 (Table F11 Cell #5). It shows the three independently sampled marginal posterior distributions
of each parameter (first and third columns), with indications of the ‘true’ parameters θtrue (black dashed lines) which we used to
generate the synthetic data, and the CMA-ES inferred parameters (red lines). Both the traces (second and fourth columns) and
the three independently run posterior distributions show a good indication of the convergence of the MCMC chains. We are able
to recover the ‘true’ parameters θtrue with high accuracy and a narrow credible interval using our inference techniques together
with our developed staircase protocol. Therefore we are confident that, with both the high information-content protocol and the
inference techniques, it is theoretically possible to infer all parameters of the model.

Figure S6. Parameter inference of single synthetic experiment, Ne = 1. First, Third columns: Show the marginal histograms
of the posterior distribution of each parameter. Second, Fourth columns: The trace plots for our MCMC chains indicating
that our MCMC chains have converged. Each panel shows the posterior distribution of 3 independently run MCMC, and their
extremely good agreement assures the chains are well mixed. The true (synthetic) parameters are indicated as black dashed
lines and the CMA-ES inferred parameters are shown as red lines.

S6.3.2 Hierarchical synthetic experiments
Figure S7 shows the results of the synthetic data study using hierarchical Bayesian model with Ne = 120. It shows the marginal
histograms of the model parameters for each individual experiment (left y-axis) and the marginal posterior predictive distribution
(right y-axis, red lines). This synthetic data study is equivalent to have Ne repeats of the same experiment. Unlike the single
experiment study above, the implications of the obtained posterior predictive distribution p(θ| · · · ) are much more powerful and
can be viewed in two ways.

First, we can see this as the underlying distribution that governs the parameters. That is, with this, we can try to understand –
through the model – what the hERG channel is doing in the cells. To do so, we compare it with the ‘true’ underlying distribution
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of parameters (black dashed lines), i.e. the multivariate normal distribution in Eq. S3. The marginal posterior predictive
distributions closely resemble the ‘true’ distribution. This indicates that we are able to recover the underlying distribution of the
parameters with high accuracy too, and therefore we can rely on it to study the behaviour of hERG cells in actual experiments.

Second, as the name implies, this is a predictive distribution. That is, given the observed individual experiments, we infer
a distribution which allows us to predict what might happen in a future experiment. To do this, we can view the posterior
predictive distribution in Eq. S17 as p(θNe+1| · · · ), where θNe+1 is our ‘future’ (Ne + 1)th experiment that we perform. Therefore
the distribution that we construct is able to tell us what is likely to happen in the future experiments — based on the observations
from previous experiments.

Figure S7. Parameter inference using the hierarchical Bayesian model on synthetic data, with Ne = 120. Left y-axis: the
marginal histograms of the model parameters for each individual experiment. Right y-axis: the marginal posterior predictive
distributions and the true probability density function that generates the parameters.

We further investigate the correlation between parameters, by trying to recover the correlation matrix corr(θ) in Eq. S4. The
posterior marginal histograms for each entry of the correlation matrix are shown in Figure S8 (upper triangle). The diagonal
is by definition equal to 1, so they are not shown. All inferred marginal posterior distribution for each entry covers the true
underlying correlation value (dashed black vertical lines). Therefore it shows us with confidence that our method is suitable for
studying the relation between model parameters.

Figure S8 (lower triangle) shows the correlation between each pair of parameters. Each contour ring represents the 95%
credible intervals of the joint distribution of the two parameters, for both the recovered (blue) and the true (black-dashed)
covariance matrices. As long as the main axis of the ellipse is not parallel to the x- or y-axis, it indicates the two parameters
are not pairwise-independent. The diagonal shows the sampled predictive posterior distribution before integrated over to give
p(θ| · · · ) shown in Figure S7. Again, it shows that we are able to recover the general shape of the underlying correlation with
high accuracy.

In this synthetic study, the correlation matrix that we recovered may not make any physical sense – as we randomly
generated it. However, in actual experiments, this correlation matrix tells us which parameters are intrinsically correlated. That
is, if there exists any non-zero values, with a good credible interval, in the off-diagonal entries of the recovered correlation
matrix, then this informs us how the parameters of model are related.
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Figure S8. Parameter correlation inference using the hierarchical Bayesian model on synthetic data, with Ne = 120. All
parameter values shown here are in the natural log-scale. (Lower-triangle) Showing the 95% credible region boundary for
each pair of parameters reconstructed from the sampled hyperparameters (blue) and the true distribution (black-dashed).
(Diagonal) Shows the sampled predictive posterior probably density functions before integrated to give p(θ| · · · ) shown in
Figure S7. The marginal probably density functions of the true distribution are shown in dashed black lines for comparison.
The parameters of our synthetic data are shown as grey. (Upper-triangle) Shows the marginal histograms for each entry of the
correlation matrix. The true correlation values are shown as dashed black vertical lines for comparison. The shadings in the
background indicate how these parameters relate to the model structure: orange box belongs to the gates a in model, green box
gate r, and grey relates to the conductance.
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Comparing Pseudo-MwG to MwG All the results above and those in the main text use pseudo-MwG method. Here we provide
a brief comparison between our pseudo-MwG method and the MwG for approximating the posterior predictive distribution. We
use Ne = 30 to demonstrate their similarity. The value was chosen as it is similar to the minimum cell yield we found in the Part
II of this paper6 and it is computationally tractable.

Figure S9 shows the posterior predictive distribution and the histograms of the individual experiments constructed from
the pseudo-MwG method (solid lines/filled) and the MwG method (dashed lines/unfilled). It has the same style of plot as
in Figure S7, where the left-axes show the marginal histograms and the right-axes show the marginal posterior predictive
distributions. The posterior predictive distributions constructed from the pseudo-MwG and MwG look extremely similar.
Therefore, with our staircase protocol as the likelihood of the low-level experiments, we are able to simplify our procedure to
the pseudo-MwG without losing much accuracy comparing to the MwG algorithm. We expect the agreement to hold for larger
Ne as well.

Figure S9. Comparing the hierarchical Bayesian model parameter inference on synthetic data using the pseudo-MwG (solid
lines/filled) and the MwG (dashed lines/unfilled) methods, with Ne = 30. Left y-axis: the marginal histograms of the model
parameters for each individual experiment. Right y-axis: the marginal posterior predictive distributions.

We also note that we can further simplify our pseudo-MwG, which we shall call it as simplified pseudo-MwG, given our
information-rich staircase protocol. First we can see that the MCMC distributions, see e.g. Figure S9 marginal histograms, are
really narrow relative to spread of each experiment parameters. By approximating these narrow distributions as single points
(i.e. delta functions), we can then sample the hyperparameters using Eq. S10–S16, where

{
lnθ j

}Ne

j=1
become point-estimates of

the parameters of the individual experiments j. Figure S10 shows the posterior predictive distribution constructed from the
simplified pseudo-MwG method (solid lines) and the MwG method (dashed lines). Again, the posterior predictive distributions
constructed from the simplified pseudo-MwG and MwG look extremely similar. Therefore, we can further simplify our
pseudo-MwG sampling scheme to estimate the full posterior-predictive distribution.

Converging to the true distribution We then check the performance of our method with different numbers of experiments/cells
Ne, and confirm that the result converges to the correct answer. We calculate the score with root mean square error (RMSE) for

13/25



Figure S10. Comparing the hierarchical Bayesian model parameter inference on synthetic data using the simplified
pseudo-MwG (solid lines) and the MwG (dashed lines) methods, with Ne = 30. Left y-axis: the marginal histograms of the
model parameters for each individual experiment for the MwG method. Right y-axis: the marginal posterior predictive
distributions.

the correlation matrix, where

RMSE of correlationB
1
N

√√√ N∑
i

N∑
j

(corr− corrtrue)i, j, (S18)

and its slight variant root mean square percentage error (RMSPE) for standard deviation, where

RMSPE of stdB

√√√
1
N

N∑
i

stdi− stdi
true

stdi
true

. (S19)

We used RMSPE, instead of normal RMSE, for standard deviation to avoid different parameter magnitudes from dominating
the calculation.

Figure S11 shows the RMSPE of the standard deviation (left) and RMSE of the correlation (right) as function of the
numbers of experiments/cells Ne. For the RMSPE of the standard deviation, Figure S11 (Left), we repeated the above analysis
with Ne = 20,30, ...,120 and 125. We can clearly see that the RMSPE of the standard deviation decreases as Ne increases.
Hence it is convincing that our method is converging to the true answer in the synthetic data studies.

For the RMSE of the correlation, Figure S11 (Right), we further test the convergence rate of the RMSE value. To run
sufficiently large Ne, we simplified our procedure by running only the top-level of the hierarchical Bayesian model, i.e. the
simplified pseudo-MwG as described above. With this, we ran Ne up to 2×104. We plotted both axes in natural-log scale.
We then applied a linear regression, in which a slope of −0.516 is obtained. Therefore, we conclude that convergence rate of
the RMSE of the correlation is roughly consistent with ∝ 1/

√
Ne. We also expect the likely errors in our experiments, with

Ne = 124, is about 6.4 %, shown as grey lines.
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Figure S11. The RMSPE of standard deviation (left) and RMSE of correlation (right) as function of the numbers of
experiments/cells Ne. Each violin plot and posterior mean is constructed using 104 samples. Grey lines show where Ne = 124,
with an RMSE value of 0.064.

S7 Sweeps comparison
Here, we check the reproducibility of our results in the same cells. We performed the same fitting procedure to the second
sweep of our staircase protocol (calibration protocol) recording. First, to assess, if any, intrinsic (or intra-cell) variability7 in our
recordings; and second, to ensure our results are reproducible and biologically meaningful.

Figure S12 shows the fitted parameters comparison between the first sweep (sweep 1) and the second sweep (sweep 2)
for all N = 124 cells. The line of identity is plotted as grey dashed lines. The two sets of parameters broadly agree, therefore
it is convincing that our results are reproducible within the same cells. The intrinsic variability in our recordings are quite
small, compared to the extrinsic or experiment-to-experiment variability. Therefore, our analyses focus on the observed
experiment-to-experiment variability, and the intrinsic variability are assumed to be negligible.
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Figure S12. Comparison of the fitted parameters between the first sweep (sweep 1) and the second sweep (sweep 2). Grey
dashed lines show the line of identity. The two sets of parameters broadly agree, therefore it is convincing that our results are
reproducible within the same cells.

S8 Posterior predictive quantification
We quantify the goodness of the posterior predictive distribution from our hierarchical Bayesian model, compared to the 124
individual experiments, by means of a quantile-quantile (Q-Q) plot and a probability–probability (P-P) plot. The Q-Q (or P-P)
plot is a graphical method for comparing two probability distributions, in our case the 124 individual experiments and our
posterior predictive distribution p(θ| · · · ), by plotting their quantiles (or cumulative distributions) against each other.

Note that this is a good test of the LogNormal distribution because we used the pseudo-MwG method, and the individual
level parameter fits were not allowed to shift to meet a LogNormal by design as a hierarchical model would generally behave.

Figure S13 and S14 show the Q-Q and P-P plots respectively. In both figures, for each parameter, the marginal posterior
predictive distributions are plotted against the posterior mean of the 124 cells. We applied linear regression, shown as orange
lines, and they all lie very close to the line of identity (grey dashed lines). These analyses support our results and suggest our
posterior predictive distribution, defined by Eq. S17, is a very good description to the distribution of the data.
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Figure S13. Quantile-quantile (Q-Q) plot of the 124 individual experiments and our posterior predictive distribution. For each
parameter, the quantiles of the marginal posterior predictive distribution (theoretical quantiles) are plotted against the quantiles
of the posterior mean of the 124 cells (sample quantiles).
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Figure S14. Probability–probability (P-P) plot of the 124 individual experiments and our posterior predictive distribution. For
each parameter, the cumulative distribution of the marginal posterior predictive distribution (theoretical CDF) are plotted
against the cumulative distribution of the posterior mean of the 124 cells (empirical CDF).

18/25



S9 Remaining relative root mean square error (RRMSE) histograms
Here we include the relative root mean square error (RRMSE, given by Eq. 14 in the main text) histograms for the remaining
validation protocols 1, 2, and 6 that are not included in the main text due to the space limit. See Figure S15.

Figure S15. The relative root mean square error (RRMSE, given by Eq. 14 in the main text) histograms for all 124 cells and
for validation protocols 1, 2, and 6. Markers indicate the best (∗), median (‡) and 90th percentile (#) RRMSE values, and
diamond marker q indicates the error for the reference traces. For each protocol, the raw traces with the best, median and 90th

percentile RRMSE values, for both the model (red) and data (blue) are shown, with the voltage clamp above. Note that the
currents are shown on different scales, to reveal the details of the traces.

S10 Practical identifiability of model parameters
In this section we examine the practical identifiability of cell-specific parameters inferred from the experimental measurements.
We performed a comparison between two cells (B20 and C17) that had parameters p1, p2 at opposite ends of the anti-correlated
pairwise plot in Figure 9 in the main text.

Figure S16 shows that all the parameters are tightly constrained within each cell. We observe both the pairwise plots (below
the diagonal) and marginal histograms (on the diagonal) from the obtained MCMC chains for the two cells (denoted with
purple and brown) within the distributions across cells (denoted with blue and green). Figure S17A shows that these two sets
of cell-specific parameters (purple and brown) each have very good cell-specific fits, which do not overlap with fits from a
different cell. Indeed the best fits to the data are so tightly constrained within each cell that forward simulations with different
samples of the posterior are not distinguishable by eye. Similarly in Figure S17B we see that these cell-specific parameter sets
make good cell-specific validation predictions. This is strong evidence that our results are good cell-specific parameter fits, and
not overly-narrow distributions that should really overlap.
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Figure S16. A comparison of the inferred parameters for two example cells: B20 (purple) and C17 (brown). Both the pairwise
plots below diagonal and the marginal histograms on the diagonal show samples of the posterior from MCMC chains. Blue
ellipses and green distributions (identical to Figure 9 in the main text) are the 95% credible region boundary and posterior
probably density functions obtained from the full hierarchical Bayesian model across all cells, capturing the
experiment-experiment variability.
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Figure S17. A comparison of cell B20 (purple) and C17 (brown) fits and predictions. (A) Shows fits from the posterior (50
samples) from the two cells and corresponding experimental data under the staircase calibration protocol, with corresponding
cell-specific data shown in the background. Note that although there are 50 fits plotted, these appear to be a single line for each
cell as the parameter samples are so close that the forward simulations are indistinguishable at this scale. (B) Predictions based
on 50 samples of the cell-specific posteriors under the activation I-V Validation #1 protocol.
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S11 Mean model parameters
Table S3 shows the mean values of the model parameters µ (in Eq. 7 in the main text), which is equivalent to the mean of the
posterior predictive distribution, and the two set of 95% credible intervals. ‘95th %ile (mean)’ is the 95% credible intervals for
the uncertainty of the top-level mean parameter vector µ, which we describe it as the representative of our uncertainty in the
underlying physiology (see main text Discussion). ‘95th %ile (exp)’ is the 95% credible intervals of the full posterior predictive
distribution, which represents the variability of the experiments.

Table S4 compare the mean values of the steady state activation and inactivation parameters of our model against the
reported values in the literature8; Figure S18 shows the respective predictions.

gKr [pS ] p1 [s−1] p2 [V−1] p3 [s−1] p4 [V−1] p5 [s−1] p6 [V−1] p7 [s−1] p8 [V−1]

mean 3.23e+4 9.48e-2 8.69e+1 2.98e-2 4.69e+1 1.04e+2 2.19e+1 8.05e+0 2.99e+1

95th %ile (mean)
3.e+4 8.43e-2 8.45e+1 2.76e-2 4.60e+1 1.00e+2 2.08e+1 7.77e+0 2.95e+1
3.48e+4 1.06e-1 8.93e+1 3.23e-2 4.78e+1 1.07e+2 2.31e+1 8.34e+0 3.03e+1

95th %ile (exp)
1.42e+4 2.59e-2 6.36e+1 1.24e-2 3.80e+1 7.06e+1 1.2e+1 5.43e+0 2.59e+1
7.36e+4 3.46e-1 1.19e+2 7.18e-2 5.78e+1 1.52e+2 4.01e+1 1.19e+1 3.45e+1

Table S3. The mean values of the model parameters model parameters µ (in Eq. 7 in the main text). The two set of 95th

percentiles are the 95% credible intervals of (mean) the uncertainty of the mean parameter vector µ; and (exp) the full posterior
predictive distribution.

activation V1/2 [mV] activation k [mV] inactivation V1/2 [mV] inactivation k [mV]

Our mean (n=124) -8.6 7.5 -49.3 -19.3
Sanguinetti et al.8 (n=10) -15.0 7.9 -49.0 -28.0

Table S4. A comparison of the mean values of the steady state activation and inactivation parameters of our model against the
reported values in Sanguinetti et al. 19958.

Figure S18. A comparison of the mean value parameter predictions of the steady state activation and inactivation between our
model and Sanguinetti et al. 19958.

S12 Estimated voltage error and other quality control parameters
To investigate the possibility of all the quality control parameters having bearing on the estimated voltage error, we plot scatter
plots of the estimated voltage error ∆V j (see main text Discussion) against Rseal, Cm, Rseries, gleak, and Eleak, as shown in
Figure S19. However, no obvious correlation between these values is observed.
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Figure S19. Scatter plots of the voltage error ∆V j (see main text Discussion) against Rseal, Cm, Rseries, gleak, and Eleak.

S13 Estimated voltage error and parameter variability
Figure S20 shows an extended version of Figure 9 (Lower triangle) in the main text. Each individual well’s parameter set
(originally grey dots) is colour-coded in terms of the ordering of the estimated voltage error ∆V j values, with cyan representing
the wells with the lowest ∆V j values and navy representing the largest ∆V j. The trend in the parameter values as estimated
voltage error ∆V j increases qualitatively agrees with the directions of red lines indicating the predicted effect of ∆V j in
parameters (see Discussion in the main text). This provides further evidence of the hypothesis in the Discussion in the main
text that varying patch clamp artefacts are a leading cause of variability in parameter sets across wells.
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Figure S20. Extension of Figure 9 in the main text. Each individual parameters (originally grey dots) is colour-coded in terms
of the ordering of the estimated voltage error ∆V j (see main text Discussion) values, with cyan representing the wells with the
lowest ∆V j values and navy representing the largest ∆V j.
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