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ABSTRACT Predicting how pharmaceuticals may affect heart rhythm is a crucial step in drug development and requires a deep
understanding of a compound’s action on ion channels. In vitro hERG channel current recordings are an important step in eval-
uating the proarrhythmic potential of small molecules and are now routinely performed using automated high-throughput patch-
clamp platforms. These machines can execute traditional voltage-clamp protocols aimed at specific gating processes, but the
array of protocols needed to fully characterize a current is typically too long to be applied in a single cell. Shorter high-information
protocols have recently been introduced that have this capability, but they are not typically compatible with high-throughput plat-
forms. We present a new 15 second protocol to characterize hERG (Kv11.1) kinetics, suitable for both manual and high-
throughput systems. We demonstrate its use on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform,
by applying it to Chinese hamster ovary cells stably expressing hERG1a. From these recordings, we construct 124 cell-specific
variants/parameterizations of a hERG model at 25�C. A further eight independent protocols are run in each cell and are used to
validate the model predictions. We then combine the experimental recordings using a hierarchical Bayesian model, which we use
to quantify the uncertainty in the model parameters, and their variability from cell-to-cell; we use this model to suggest reasons for
the variability. This study demonstrates a robust method to measure and quantify uncertainty and shows that it is possible and
practical to use high-throughput systems to capture full hERG channel kinetics quantitatively and rapidly.
SIGNIFICANCE We present a method for high-throughput characterization of hERG potassium channel kinetics via
fitting a mathematical model to results of over 100 single-cell patch-clamp measurements collected simultaneously on an
automated voltage-clamp platform. The automated patch-clamp data are used to parameterize amathematical ion channel
model fully, opening a new era of automated and rapid development of mathematical models from quick, cheap, and
reliable experiments. The method also allows ample data for independent validation of the models and enables us to study
experimental variability and its origins. The method can be applied to characterize different conditions, e.g., temperatures
(see Part II), mutations, or the action of pharmaceuticals, and could be adapted to study many other currents.
INTRODUCTION

The human Ether-à-go-go-Related Gene (hERG) is of
great importance in cardiac electrophysiology and safety
pharmacology. hERG encodes the pore-forming a subunit
of the ion channel Kv11.1, which conducts the rapid de-
layed rectifier potassium current, IKr (1). Reduction of IKr
by pharmaceutical compounds or mutations can prolong
the ventricular action potential (2), can increase the QT in-
terval on the body-surface electrocardiogram, and is asso-
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ciated with elevated risk of Torsade de Pointes (3). Current
pharmaceutical regulatory guidelines require the evalua-
tion of effects on the hERG channel as part of preclinical
drug development (4).

High-throughput automated patch-clamp screening for
ion current inhibition by pharmaceutical compounds has
been widely used to inform proarrhythmic safety in early
drug discovery. Inhibition data from multiple ion channels
can be integrated together using a mechanistically detailed
in silico electrophysiology model to predict proarrhythmic
risk (5). Such a strategy, combining high-throughput
in vitro and in silico approaches, is being advocated by a
Food and Drug Administration-led initiative, the Compre-
hensive in vitro Proarrhythmia Assay (6), as a core pillar
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Rapid Characterization of hERG Kinetics
of future proarrhythmic safety assessment. High-throughput
automated patch-clamp has also been used to characterize
the kinetics of a large number of KCNQ1 mutants that
were previously variants of unknown significance (7).

Mathematical modeling of ion channel kinetics provides
a quantitative summary of our current understanding, and
can serve as a powerful predictive tool. The parameters in
ion current models can be biophysically and physiologically
meaningful and are therefore of interest in their own right.
Parameterization (or calibration) of mathematical models
is a concise way to characterize ion current kinetics and
can also be used to quantify variability between experiments
(8). Awide range of models have been proposed to describe
IKr, with varying levels of biophysical detail and numbers of
parameters (see Beattie et al. (9), Appendix A)). Until we
have a full and clear understanding of the underlying mech-
anisms, simple models that capture the most relevant char-
acteristics with a small number of parameters may be
preferred.

Voltage-clamp experiments are a common source of data
for calibrating ion channel models. The first models of ionic
currents were proposed by Hodgkin and Huxley (10), who
used stepwise voltage protocols to isolate and measure
different aspects of ionic currents (e.g., time constants and
voltage-dependent steady states). Following in their foot-
steps, many voltage step protocols have been designed to
highlight particular current kinetics. Typically, these proto-
cols involve long sections, during which the channels are
brought into a particular steady state before a brief interval,
during which a current is measured and then summarized us-
ing either a peak current or by fitting an exponential curve
and deriving a time constant. By design, these protocols focus
on a single aspect of an ion current, so several such protocols
are needed to parameterize a model fully. For the hERG
channel, for example, in (11), examining voltage dependence
of hERG activation lasted at least 10 min before examining
deactivation, inactivation, and recovery from inactivation;
hence, these protocols are typically too long for a single-
cell recording. More recently, simulation experiments have
shown that condensed voltage-clamp protocols can be used
to provide the required information in a much shorter time
(12,13). A study by Beattie et al. (9) demonstrated in vitro
that sinusoidal protocols can be used to rapidly (8 s) charac-
terize hERG kinetics on a manual patch-clamp setup.
Because of hardware limitations, some automated high-
throughput systems can only perform square wave or ramp
voltage-clamp protocols. Here, we extend the approach of
Beattie et al. (9) to make it applicable to such automated
high-throughput patch-clamp systems.

Efforts have been made to address the variability observed
in measurements of the hERG channel (14). However, the
variability of baseline hERG characteristics remains incom-
pletely understood. Understanding and quantifying this vari-
ability, whether it is due to cell-to-cell variability (also known
as ‘‘extrinsic variability’’ or ‘‘population variability’’) or to
observational errors/uncertainties, is crucial in establishing
the credibility and applicability of model predictions (15).
Quantifying the variability in hERG channel kinetics requires
a large number of high-quality patch-clamp measurements
and an appropriate statistical framework. The duration of a
standard combination of protocols makes it difficult to use
them to fully characterize the current in a single cell, so
that reaching the required number of cells for a thorough
statistical analysis would be a very difficult and time-
consuming task.

We present a new approach to overcome this problem by
using a novel protocol and a high-throughput system to
rapidly record many cells’ kinetics in parallel. Using these
methods, we construct 124 cell-specific parameterizations
of a hERG model and validate all of our model predictions
against a set of independent protocols that have not been
used in training or fitting the model. To ensure the stability
and reproducibility of our results within the same cells, we
repeat all of our measurements twice. We employ a hierar-
chical Bayesian framework (a multilevel statistical
modeling technique) to describe the variability of hERG
channel conductance and kinetics between cells and to infer
the covariance between the model parameters across
different cells. This study greatly increases the utility of
automated high-throughput systems and provides robust
tools for the uncertainty quantification that comprise an
essential component of an in silico assay.
MATERIALS AND METHODS

We began our work with a synthetic data study to inform the experimental

design of the voltage protocols, and applied inference techniques to assess

the amount of information such protocols can provide. The motivation and

rationale of our newly designed protocol are discussed in the Experimental

Methods. Experiments using this new protocol were performed on the Nan-

ion SyncroPatch 384PE platform (Nanion Technologies, Munich, Ger-

many) with a temperature control unit. We then applied global

optimization, Markov chain Monte Carlo (MCMC), and hierarchical

Bayesian techniques to recover parameters for a mathematical ion current

model for each individual cell, as described below.
Mathematical model

We used a recently published hERG model by Beattie et al. (9), which has a

Hodgkin and Huxley-style structure. This model structure has been widely

used in many studies with slight modifications: the root of the model traces

back to Zeng et al. (16), in which the same model structure was used but

with the inactivation gate modeled as an instantaneous steady-state

response. Later, in the ten Tusscher et al. (17) model, the same model struc-

ture was used, but extra parameters were introduced to make the time con-

stant independent of the steady state. In the model that we use, the current,

IKr, is modeled with a standard Ohmic expression,

IKr ¼ gKrarðV � EKÞ; (1)

where gKr is the maximal conductance, a is a Hodgkin and Huxley (10) acti-

vation gate, and r is an inactivation gate. V is the transmembrane voltage

and EK is the reversal potential, also known as the Nernst potential. EK

was not inferred but was calculated directly using
Biophysical Journal 117, 2438–2454, December 17, 2019 2439
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EK ¼ RT

zF
ln

�½Kþ�o
½Kþ�i

�
; (2)

where R is the ideal gas constant, T is the absolute temperature, F is the

Faraday constant, and z is the valency of the ions (equal to 1 for Kþ).

[Kþ]o and [Kþ]i denote the extracellular and intracellular concentrations

of Kþ, respectively, which were determined by the experimental solutions

as 4 and 110 mM, respectively. The model structure is shown in Fig. 1,

where

da

dt
¼ aN � a

ta
;

dr

dt
¼ rN � r

tr
;

aN ¼ k1
k1 þ k2

; rN ¼ k4
k3 þ k4

;

ta ¼ 1

k1 þ k2
; tr ¼ 1

k3 þ k4
;

where
k1 ¼ p1 expðp2VÞ; k3 ¼ p5 expðp6VÞ;
k2 ¼ p3 expð�p4VÞ; k4 ¼ p7 expð�p8VÞ:

Our model consists of nine positive parameters q ¼ {gKr, p1, ..., p8},

where the units of the parameters are {pS, s�1, V�1, s�1, V�1, ...}. All

model parameters must be inferred from the experimental data.
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FIGURE 1 (A) The Hodgkin-Huxley model structure shown in equivalent Mar

sitions described on the right. The probabilities of each state are given next to the

protocol composed of an 8 s voltage-clamp protocol designed for rapid characte

15 s protocol, which we term the ‘‘staircase protocol,’’ is shown, designed for any

similarly able to characterize the full kinetics of our hERG channel model. Both

lated current using the room temperature parameters from the work of Beattie et a

panel). To see this figure in color, go online.
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Simulations were run using Myokit (18), with tolerance settings for the

CVODE solver (19) set to abs_tol ¼ 10�8 and rel_tol ¼ 10�10. All codes

and data are freely available at https://github.com/CardiacModelling/

hERGRapidCharacterisation.

Statistical model and parameter inference

To infer model parameters from experimentally observed data under a prob-

abilistic and Bayesian framework, we specified a statistical model to relate

the mathematical model and the observed experimental data:

IdataKr ¼ Imodel
Kr þ e: (3)

We assumed that noise arises from a normal distribution e � Nð0;s2Þ.
This is equivalent to writing IdataKr � NðImodel

Kr ; s2Þ, which allows us to

formulate the likelihood of observing the data y ¼ {yk} given parameters

f ¼ ln(q) as

p yjf; sð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp �
X
k

zk fð Þ � ykð Þ2
2s2

 !
; (4)

where z ¼ {zk} is the model simulation of Imodel
Kr given q. We chose the

parameter transformation f ¼ ln(q) to turn our positively
constrained physical model parameters to be unconstrained

optimization variables. Using Bayes’ theorem, we can now write an equa-

tion for the likelihood of a parameter set given the observed data (the pos-

terior) as
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kov state diagram format. Four states are linked with arrows, with rate tran-

m in terms of the Hodgkin-Huxley gates a and r. (B) A manual patch-clamp

rization of ion channel kinetics by Beattie et al. (9) is shown. (C) Our novel

patch-clamp set-up, including high-throughput automated systems, which is

(B) and (C) show the voltage protocol (top panel), an example of the simu-

l. (9) cell #5 (middle panel), and the corresponding state occupancy (bottom
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pðf;s j yÞ ¼ pðfÞpðy jf; sÞ
pðyÞ ;

fpðfÞpðy jf; sÞ;
(5)

with the prior
pðfÞ � U�fmin;fmax
�
; (6)

where Uð ,Þ represents a uniform distribution.

Here, ywas assumed to be the Idata in Eq. 3 after leak correction and E-4031
Kr

subtraction have been applied as part of the data processing. We chose a uni-

form prior and expected our posterior to be dominated by the observed data.

The details of the choice of fmin, fmax are given in Supporting Materials

and Methods, Section S6.2.2. Such a formulation extends our model parame-

ters to {q, s} to fully describe both the biophysical and statistical models.

We used a two-step approach to infer themodel parameters. Firstly,we used

a global optimization algorithm (20) to identify the parameters. Secondly, we

utilized a Monte-Carlo-based sampling scheme to obtain the posterior distri-

bution, using a population MCMC (21) algorithm with adaptive Metropolis

(22) as the base sampler. The benefits of this approach are twofold. First, using

a Bayesian framework allows us to incorporate prior knowledge. Second, we

construct a probability (posterior) distribution to quantify uncertainty in the

parameter set due to noise in the data. All inference and sampling were

done via our open-source Python package, PINTS (23).
Hierarchical Bayesian model

We combined multiple experimental recordings using a multilevel

modeling technique known as a hierarchical Bayesian model. Under

this framework, we assume the vector of the transformed parameters f

for a particular cell follows a multivariate normal distribution that de-

scribes how these parameters are distributed between all cells, namely

f � N m;Sð Þ. Given our choice of parameter transformation, this is

equivalent to writing q � LogNormal(m, S), that is, the vector of param-

eters q for a particular cell follows a multivariate log-normal distribution.

Then, we used the hierarchical Bayesian model to infer the mean vector

m and covariance matrix S across cells and hence determined any corre-

lation in model parameter sets between cells. The parameter dependency

for this hierarchical Bayesian model is shown in Fig. S5.

The full hierarchical Bayesian likelihood L was specified as the product

of 1) the probability of producing data yj on each cell j given the parameter

vector for each cell qj and noise sj; 2) the probability of obtaining each in-

dividual well parameter set qj from the ‘‘top-level’’ LogNormal distribution

across wells defined by the hyperparameters; and 3) the priors—the prior of

the hyperparameters (also known as the ‘‘hyperprior’’) and the prior of sj.

That is,

L m;
X

; qj; sj

� �Ne

j¼ 1

			 yj
� �Ne

j¼ 1


 �
f
QNe

j¼ 1

p yj
		qj; sj

� �
� p qj

� �Ne

j¼ 1

			m;S
 �
� p m;Sð Þ � QNe

j¼ 1

p sj

� �
;

(7)

where m, S are the hyperparameters of the hierarchical model represent-

ing the mean vector and covariance matrix of the individual ‘‘low-level’’
parameters and fqj ;sjgNe

j¼1 are the set of individual ‘‘low-level’’ parame-

ters for each of the Ne repeats of the experimental recordings fyjgNe

j¼1
.

We sampled the full hierarchical Bayesian model using a simplified

version of the Metropolis within Gibbs (24) method, which we have termed

‘‘pseudo-Metropolis within Gibbs’’ (see Fig. S9; Supporting Materials and
Methods, Section S6, but note this simplification is only applicable for our

particular setting, in which the number of data points in the time traces

vastly outweighs the number of cells). We also describe the details of the

choice of likelihoods and priors and sampling algorithms in Supporting

Materials and Methods, Section S6, and we test the LogNormal distribution

assumption in Supporting Materials and Methods, Section S8.

We used the inferred covariance matrix S to study the correlation

(corr(q)) between the model parameters, which are related by

corrðqÞ ¼ diagðSÞ�1=2
S diagðSÞ�1=2

; (8)

where diag(.)�1/2 denotes the square root of the matrix of the diagonal

entries. The posterior predictive distribution p(qj...) allows us to make pre-

dictions about how future experiments will behave, where (...) indicates all

other variables appearing in Eq. 7. It can be computed using

pðq j/Þ ¼
Z
Q

pðq jQÞpðQ j/Þ dQ; (9)

where Q ¼ {m, S}, a concatenation of all the individual hyperparameters

within m and S. The integration was approximated by summing over the
probability density functions, which are defined by the samples of Q.
Synthetic data studies

Before implementing experiments, we confirmed the identifiability of

model parameters using our protocols and parameter inference algorithms

through a synthetic data study. We generated synthetic data (with added

synthetic noise) with some known ‘‘true’’ parameters qtrue. First, we used

the synthetic data to design and optimize our protocols and to ensure that

the protocols give access to sufficient information for parameter character-

ization. Second, we assessed our inference methods, described in the previ-

ous section, by asking how confident we are in our inferred parameters. In

Supporting Materials and Methods, Section S6.3.1, we show that our newly

designed protocol, the ‘‘staircase protocol’’ (see Fig. 1 C), is information-

rich, in that we are able to fully recover the ‘‘true’’ parameter in a synthetic

data study using our protocol.

We also tested our hierarchical Bayesian model to ensure that it is

possible to infer the underlying distribution of the parameters. We gener-

ated our individual synthetic data from a predefined multivariate normal

distribution, in which parameters are correlated. In Supporting Materials

and Methods, Section S6.3.2, we applied our hierarchical Bayesian model

analysis to the synthetic data, assuming we did not know the underlying

covariance between parameters, and we were able to reconstruct the corre-

lation matrix of our predefined distribution with very high accuracy. This

provides us with confidence that our method is able to correctly infer the

underlying correlation between parameters. We describe the rationale and

procedure of the synthetic data study in detail in Supporting Materials

and Methods, Section S6.
Experimental methods

Whole-cell patch-clamp voltage-clamp experiments were performed on

Chinese hamster ovary (CHO) cells stably transfected with hERG1a

(Kv11.1), with temperature control set to 25�C, using the Nanion Syncro-

Patch 384PE platform (Nanion Technologies). The temperature of the

system’s ‘‘cell hotel’’ was set to �15�C. The machine is an automated

high-throughput platform, in which each run (or chip) is able to measure

up to 384 wells (with one cell per well) simultaneously. Single-hole chips

with medium resistance (Nanion order number #221102) were used. Solu-

tions used in all measurements are provided in Table S2.

A schematic of the experimental procedure is shown in Fig. 2, which

shows the voltage-clamp protocols used in the experiments. A total of

nine voltage-clamp protocols were used, including (green) our newly
Biophysical Journal 117, 2438–2454, December 17, 2019 2441



FIGURE 2 A schematic of the experimental procedure showing the sequence of voltage-clamp protocols used. A total of nine voltage-clamp protocols

were used, and each of them was performed four times: twice before E-4031 addition and twice after to ensure stability and reliability of the recordings.

Only the staircase protocol (green, 15 s) was used for fitting (or calibrating) the mathematical model. All of the other eight protocols (blue) were used

for validation only. White sections indicate a nonmeasurement region, where cells were held at �80 mV to allow the cells to settle to steady state between

protocols (>5 s) or were continuously stimulated by the hERG screening protocol to allow the drug to wash in (>5 min). For details of the protocols, please

refer to Supporting Materials and Methods, Section S1. To see this figure in color, go online.
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developed staircase protocol, (blue) an activation current-voltage (I-V) pro-

tocol, a steady-state inactivation I-V protocol, a hERG screening protocol, a

delayed afterdepolarization (DAD)-like protocol, an early afterdepolariza-

tion (EAD)-like protocol, and action-potential-like protocols with beating

frequency 0.5, 1, and 2 Hz, as shown in Fig. 2. Note that, because of

the automated platform, the action-potential-like protocols have to be

composed of a series of linear ramps and steps rather than curves. Details

of the protocols are given in Supporting Materials and Methods, Section

S1. Every protocol (the entire procedure in Fig. 2) was applied to every

well. Because our quality control (see next section) is primarily based on

the calibration recording, we decided to apply the calibration protocol at

the end such that we can check the cell is stable for the entire experiment,

including the validation protocols.

Only the staircase protocol (green) was used in fitting (or calibrating) the

mathematical model. We show that we can fully characterize IKr for each

cell using just this one protocol because our staircase protocol is informa-

tion-rich. A comparison between the staircase protocol and a previously

developed protocol (9) is shown in Fig. 1, B and C. However, because of

hardware limitations, the previous protocol does not work in most high-

throughput automated systems because they cannot perform clamps to arbi-

trary time-varying functions and are restricted to ramps and steps. Hence, a

similar idea from Beattie et al. (9)—using an information-rich protocol—

was adapted, and the rationale of our staircase protocol is discussed below.

We designed the staircase protocol with only voltage steps and ramps such

that it is applicable to any patch-clamp machine, including the high-

throughput automated systems.

A demonstration that a mathematical model is able to reproduce the exper-

imental training data is not sufficient to conclude that it is a good representa-

tion of ion channel kinetics—in particular, we may be uncertain how well the

model performs under physiological conditions. The fitted models for each

cell were therefore validated by comparison with experimental data from

each of the other eight protocols (blue in Fig. 2). Our validation set consists

of 1) two traditional I-V protocols together with a simple hERG activation

step and 2) five physiologically inspired protocols that mimic cardiac action

potentials. The first set allows us to compare with the traditional approach.
2442 Biophysical Journal 117, 2438–2454, December 17, 2019
More importantly, the second set allows us to have confidence in predictions

of IKr responses, which is particularly useful when an ion channel model is

embedded in a cardiac action potential model. This series of validations

allows us to demonstrate that the models fitted using this new protocol yield

trustworthy cell-specific predictions.
Protocol design

The underlying rationale of the staircase protocol shown in Fig. 2 is to force

the protocol to explore the full dynamics of the system at different voltage

values, over a physiologically relevant voltage range. By observing the

changes in the current after each step, the voltage dependency of the chan-

nel at that particular voltage can be deduced. Each voltage step is held for

500 ms, which is chosen to be long enough to observe the characteristic

decay of IKr. Therefore, by going through different step-ups and downs,

the protocol explores the dynamics at different voltage values, and hence

our statistical inference method is able to infer the underlying model

parameters.

Two ramps are implemented before and after the main staircase. The

ramp at the beginning, termed the ‘‘leak ramp,’’ is used to estimate the

leak current; see the next section for more details. The second one,

happening after 14 s and termed the ‘‘reversal ramp,’’ is designed to esti-

mate experimentally the reversal potential EK by having a ramp over

100 ms that quickly crosses the expected EK, which we expect to be in

the range of �70 to �100 mV. We therefore implemented a large step up

to þ40 mV before the ramp to open the channel so that we can record a

high signal-to-noise ratio (SNR) IKr trace that goes from positive to negative

before the channel closes. Examples of currents during the two ramps are

shown in Fig. S2.
Postprocessing experimental data

We assumed that our observed current from hERG CHO cells under control

conditions is
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Icontrolobserved ¼ IKr þ Iendogenous þ Ialeak: (10)

To ensure the currents we analyze are predominantly IKr, we performed a

series of offline postprocessing corrections. First, leak corrections were

applied to all measurements to eliminate the leak current Ialeak. Second,

E-4031 subtraction was applied to remove Iendogenous (the sum of any native

voltage-dependent ion currents that were present in CHO cells alongside the

overexpressed hERG). These corrections are described in detail below, as

well as our partially automated quality control criteria.
E-4031 subtraction

To eliminate any endogenous voltage-dependent background currents

within the hERG CHO cells (Iendogenous in Eq. 10), we measured the full

set of nine voltage protocols twice (see Fig. 2); once with dimethyl vehicle

conditions, in which Icontrolobserved in Eq. 10 was measured, and once under the

addition of 0.5 mM E-4031, a hERG channel selective blocker with IC50

value (10 nM, so that

IE�4031
observed ¼ Iendogenous þ Ibleak: (11)

As shown in Fig. 2, a period of�5 min was allowed for the E-4031 block

to reach equilibrium, and multiple hERG screening protocols were applied

to allow opening of the hERG channel (25). We denoted the new leak cur-

rent as Ibleak, and we assumed leak current changed over time; hence, in

general, IbleaksIaleak. All currents shown or used in this study are the leak-

corrected currents measured in control conditions minus the leak-corrected

currents that remained after E-4031 addition, which we assume yields

uncontaminated IKr.
TABLE 1 A Summary of the Fully Automated Quality Control

Criteria for the Staircase Protocol, QC1–QC6

QC Name Criterion Description

QC1.Rseal Check Rseal within [0.1, 1000] GU.

QC1.Cm Check Cm within [1, 100] pF.

QC1.Rseries Check Rseries within [1, 25] MU.

QC2.raw Check raw trace recording SNR is over 25 (SNR

defined as var(trace)/var(noise)).
Leak correction

We used the common assumption that leak current is linear in voltage to

estimate its magnitude along the whole current trace

Iest:leak ¼ gleakðV � EleakÞ; (12)

where gleak is the leak current conductance and Eleak is the leak current

reversal potential. If we subtract an estimated leak off both Icontrol and

QC2.subtracted Check subtracted trace SNR > 25.

QC3.raw Check 2 sweeps of raw trace recording are similar

by comparing the RMSD of the two

sweeps < mean(RMSD to zero of the two

sweeps) � 0.2.

QC3.E4031 Check 2 sweeps of E-4031 trace recording are similar

(same comparison as QC3.raw).

QC3.subtracted Check 2 sweeps of subtracted trace recording are

similar (same comparison as QC3.raw).

QC4. Check Rseal, Cm, Rseries, respectively, before and after

E-4031 change (defined as std/mean) < 0.5.

QC5.staircase Check the maximum current during the second half of

the staircase changes by at least 75% of the raw

trace after E-4031 addition.

QC5.1.staircase Check RMSD to zero of staircase protocol changes by

at least 50% of the raw trace after E-4031 addition.

QC6.subtracted Check the first step up toþ 40 mV, before the staircase,

in the subtracted trace is bigger than�2� estimated

noise level.

QC6.1.subtracted Check the firstþ 40 mV during the staircase, with the

same criterion as QC6.subtracted.

QC6.2.subtracted Check the secondþ 40 mV during the staircase, with

the same criterion as QC6.subtracted.

RMSD, root mean-square difference; SNR, signal-to-noise ratio; std, stan-

dard deviation; var, variance.
observed

IE�4031
observed, then our final IKr can be given by

where Iest: aleak ; Iest: bleak are leak currents estimated using Eq. 12. Depending on

the protocol, we estimate the parameters gleak, Eleak in one of two ways:

either by using a step between two voltages or by using a linear ramp, as

discussed below.

We assumed that at�80 mV, IKr is fully closed and will not be opened by

going to a voltage below �80 mV. We therefore implemented the leak

ramp: a linear ramp from �120 to �80 mVover 400 ms, as seen in the first

second of the staircase protocol (green) in Fig. 2. All nonzero current

measured during the leak ramp was assumed to be leak current in the

form of Eq. 12, and a linear regression was used to fit its I-V relation and

to obtain the leak model parameters. We show in detail the use of our

leak ramp to infer the leak model parameters in Fig. S2, in which we can

see that the recorded current during the ramp shows a reliably good linear

relation. Therefore, this leak ramp can be used to check the linearity of the

leak current, that is, the linearity in its I-V relation, which cannot be

achieved using the standard voltage step method for leak estimation.

In a similar fashion, for all validation protocols, instead of a linear

ramp, a traditional step method was used. A 20 ms leak step from �80

to �100 mV was used to leak-correct the experimental data. This method
was implemented and performed automatically by the platform we used

before every protocol to correct the recording that followed. However, we

noticed that some of these leak corrections can ‘‘overcorrect’’ or ‘‘undercor-

rect’’ the current. For example, IKr should only be negative when the voltage

is below its reversal potential, approximately �85.2 mV; if the leak-

corrected current showed a negative current at voltages substantially larger

than the reversal potential, then we concluded that the automated system

had overestimated the leak current. Such overcorrection or undercorrection

was most noticeable during the highest voltage step during the protocol, at

which Ileak was at its maximum. For each validation protocol, we then spec-

ified a time window during which we believe IKr should be almost zero

(please refer to our GitHub repository for detail). To rectify the over- or

undercorrection, we re-estimated the leak correction by adding an extra

linear leak current of the form g�leak(V þ 80 mV), where g�leak was chosen

such that the average of the final leak-corrected current during the specified

time window was zero. Because of the linearity, the final leak correction

remains equivalent to Eq. 12 with different parameters.
Partially automated quality control

After the experiments, we applied a strict set of criteria as an automated

selection process for quality control of our experimental data. The details

of our criteria are summarized in Table 1. We applied a strict cutoff for

seal resistance (Rseal), cell capacitance (Cm), and series resistance (Rseries)

through the whole set of measurements, set by our first quality control crite-

rion (QC1). QC2 required a high signal-to-noise ratio (SNR) recording, such

that our measurements contained enough useful information for model infer-

ence. We also compared the stability of the recordings in QC3, in which each

protocol consisted of two measurements recorded in the same cell that must
Biophysical Journal 117, 2438–2454, December 17, 2019 2443
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be similar and stable. QC4 required Rseal, Cm, and Rseries to be stable before

and after E-4031 addition. QC5 required that the addition of hERG blocker

E-4031 must reduce a certain amount of the recorded current to ensure that

our recordings consisted mainly of IKr even before adding the blocker.

Finally, overcorrection of leak can occur during high voltage steps, as dis-

cussed in the previous section; QC6 ensured that no negative current occurred

at voltages substantially larger than the reversal potential. Note that QC1 to

QC4 are general criteria that are advocated to be used in all whole-cell patch-

clamp voltage-clamp experiments, whereas QC5 and QC6 contain prior

knowledge of IKr and are tailored to hERG measurements.

Using our automated high-throughput system, we recorded a total of 384

well recordings. Our automated quality control removed 173 wells, leaving

211 well recordings. We then manually checked all the recordings and sub-

sequently removed a further 28 wells that did not look anything like the rest

of the 183 cells; six typical examples are shown in Fig. S4. Therefore, our

automated quality control has achieved >86% positive predictive value.

The machine’s ‘‘standard’’ quality control selects wells based mainly on

the Rseal, Cm, and Rseries values, and it was configured to use the same values

as our automated QC1 in Table 1. The machine removed only 46 of the

wells (which were all within our 173 discarded wells). Further comparisons

and details of our automated quality control results are shown in Supporting

Materials and Methods, Section S5. Our automated quality control is avail-

able at our GitHub repository.

Ourmostly automated quality control was applied only to the staircase cali-

bration protocol. In this study, we further require our validation data to contain

high-quality validation recordings. We therefore manually selected 124 cells

within our 183 cells that passed our quality control and hence have good

recordings for both calibration and validation protocols; this ensures the

quality of the experimental data used in this study. The overall success rate

of recording our staircase protocol is 183 of 384 wells and for the full set of

protocols is 124 of 384 wells, which can be performed within 1 h.
RESULTS

High-throughput experimental recordings

Fig. 3 shows the voltage-clamp recordings measured with
the nine different protocols and the corresponding voltage
protocols. All results shown are the first of the two repeats
of our recordings. Our analysis was repeated for the second
of the two repeats to ensure the reproducibility of our results
in the same cells: the intrinsic (within-cell) variability is suf-
ficiently small to appear negligible (see Fig. S12).

Fig. 3 A shows the staircase protocol (black) and the cor-
responding experimental recordings (blue). The middle
panel shows the raw current recording of a single cell; the
bottom panel shows the normalized current recordings
from all 124 wells that passed quality control. Normaliza-
tion is applied for visual comparison only because each
hERG-transfected CHO cell is expected to have a different
total conductance, hence giving a different magnitude of the
current recorded. Currents are normalized by scaling them
to minimize the absolute difference between each trace
and a reference trace (middle panel). Because the reference
trace is used only to normalize other traces for visualization,
we simply picked a representative trace from our data that
had reasonably low noise. Our recordings show a very
similar result to the IKr simulation shown in Fig. 1, which
used parameters calculated completely independently by
Beattie et al. (9).
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Fig. 3, B–I show the recordings of the other eight valida-
tion protocols from the same cells. The activation step in
Fig. 3 D recorded a typical IKr response, in which the
step-down of voltage to�40 mV largely opens the channels.
Fig. 3, G–I also show typical IKr responses to the action-
potential clamp at different pacing frequencies, at which
IKr is active during repolarization of the action potential.
Also note the sharp opening of IKr at the upstroke that
changes with pacing frequencies and increases dramatically
but very consistently across all the recorded cells.
Individual cell fitting and validation

Fig. 4 shows the same voltage-clamp recordings (blue) in
Fig. 3, measured under the nine different protocols (black),
together with model fitting and validation results. All re-
cordings shown were performed on a single cell. The math-
ematical model, shown as red lines, is fitted only to the
data recorded under the staircase protocol that is shown in
Fig. 4 A. The result of the fitting for a single cell is shown
in the middle panel of Fig. 4 A, demonstrating an excellent
fit between experimental measurement and simulated cur-
rent. The inferred parameters are shown and studied in detail
in the next three sections.

In Fig. 4, B–I, we show the results of the validation predic-
tions under eight other protocols. We validated our trained
model by testing its ability to predict independent experi-
mental outcomes under different protocols, which were
measured in the same cell. All validation predictions were
performed by using the inferred parameters in the fit to the
staircase protocol (Fig. 4 A) to simulate the other eight pro-
tocols (Fig. 4, B–I). The predictions of all the protocols match
very well to the experimental data, with the simulated cur-
rents giving a close match to the experimental recordings.

The physiologically inspired voltage-clamp protocols
(Fig. 4, E–I) mimic the membrane voltage of the cardiac ac-
tion potential at normal conditions at different beating rate
and EAD/DAD-like conditions. The ability to predict the
current response under these physiologically inspired
voltage-clamp protocols is particularly important for use
in physiological or pharmacological studies. This shows
the reliability of the hERG ion channel model predictions
at different physiological conditions, for example, when it
is embedded in a whole-cell cardiac model for further
predictions.

In Fig. 5, we present our model fitting and validation re-
sults for all 124 cells, compared against the experimental re-
cordings measured under the nine different protocols. We
applied the same fitting and validation procedure as used
for the single cell discussed above to all 124 cell measure-
ments. To visualize the variability in only hERG kinetics
(and not maximum conductance), we plotted all currents
normalized as described in the previous section.

We quantified the fits and predictions using relative root
mean-square error (RRMSE), defined as the rootmean-square



FIGURE 3 Whole-cell patch-clamp voltage-clamp recordings under nine different protocols, which were all measured in each cell. (A) shows the staircase

protocol (top panel) in black and the corresponding recording on a single cell (middle panel) and normalized recordings from all 124/384 wells that passed

quality control (bottom panel) in blue. Conductance normalization was done by multiplying each current by a scaling factor to minimize the absolute dif-

ference between each trace and a reference trace (middle panel). (B–I) The eight different protocols used as validation of the model calibration, which are the

activation current-voltage (I-V) protocol, the steady-state inactivation I-V protocol, the hERG screening protocol, the DAD-like protocol, the EAD-like pro-

tocol, and the cardiac action-potential-like protocol at 0.5, 1, and 2 Hz, respectively, are shown. All experimental recordings, both the single-cell (middle) and

124 cells (bottom), are shown in blue, which were measured under the protocol (black) shown in the panels immediately above. In (B) and (C), validation 1

and 2 show the I-V relations extracted from the currents. To see this figure in color, go online.

Rapid Characterization of hERG Kinetics
error between themodel simulation and the experimental data,
divided by the root mean-square distance of the data to a zero-
current trace:

RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX�

Imodel
Kr � IdataKr

�2.X�
IdataKr

�2r
: (14)
Using this RRMSE quantification, the difference in the
absolute size of the current across cells due to varying
conductance is eliminated, and RRMSE scores are compa-
rable between cells. Fig. 6 shows the RRMSE histograms
for all cells and for six of the protocols. Markers indicate
the best (*), median (z), and 90th percentile (#) RRMSE
values, and corresponding raw traces are shown in the three
Biophysical Journal 117, 2438–2454, December 17, 2019 2445



FIGURE 4 Whole-cell patch-clamp voltage-clamp recordings under nine different protocols that were measured on a single cell and the model fitting and

validation results. (A) shows the staircase protocol (black) and the corresponding recording (blue). The mathematical model is calibrated using this recorded

data, and shown as a red line. (B–I) The eight different protocols used as validation of the calibrated model, which are the activation I-V protocol, the steady-

state inactivation I-V protocol, the hERG screening protocol, the DAD-like protocol, the EAD-like protocol, and the cardiac action-potential-like protocol at

0.5, 1, and 2 Hz, respectively, are shown. All experimental recordings are shown in blue, which were measured under the protocol (black) shown in the panels

immediately above, and the validation predictions of the model are shown in red. Zoomed-in image of the green shaded regions are shown underneath each

panel to reveal the details of the spikes, in which our model also shows excellent predictions of the faster timescale behavior. In (B) and (C), validation 1 and 2

show I-V relations extracted from these protocols. To see this figure in color, go online.
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panels above. The solid diamond marker (A) indicates the
reference cell shown in Figs. 3 and 4. The same analysis
applied to the remaining three protocols is shown in
Fig. S15. There are some small discrepancies in the predic-
tions, for example, in Fig. 6 B in the 90th percentile predic-
tions. But overall, these results demonstrate that all our 124
models make very good predictions for the recorded cur-
rent kinetics.
2446 Biophysical Journal 117, 2438–2454, December 17, 2019
Next, we first qualitatively inspect the variability in the
hERG kinetics measurements. Because we measured the IKr
using exactly the same experimental setup for each cell, we
can clearly see the variability between measurements in all
of the recordings, as illustrated in Fig. 5. Different protocols
demonstrate different levels of variation. It is clear that among
the six protocols, the staircase protocol and the two I-V proto-
cols show the strongest variation between measurements.



FIGURE 5 Normalized whole-cell patch-clamp voltage-clamp recordings for 124 cells under nine different protocols and the model fitting and validation

results. All currents are normalized by scaling them to minimize the absolute difference between each trace and a reference trace. From (A) to (I): the staircase

protocol which is used as the calibration protocol, the activation I-V protocol, the steady-state inactivation I-V protocol, the hERG screening protocol, the

DAD-like protocol, the EAD-like protocol, and the cardiac action-potential-like protocol at 0.5, 1, and 2 Hz, respectively, are shown. All the model calibra-

tion results and validation predictions are shown in the top panels (red) and are compared against the experimental recordings shown in the bottom panels

(blue). Magnifications of the green shaded regions are shown underneath each panel to reveal the details of the spikes, in which our models show extraor-

dinarily good predictions to the details. The normalized current for all protocols is shown except for the activation I-V protocol and the steady-state inac-

tivation I-V protocol, in which the summary statistic I-V relationships are shown. To see this figure in color, go online.

Rapid Characterization of hERG Kinetics
To investigate this further, we have used our mathemat-
ical model to study the variability in the parameter values
that could drive the observed variability in the outputs.
Fig. 7 shows the inferred parameter values which
are used in the model predictions in Fig. 5. Because
we assume all cells share the same mechanistic model
underlying the hERG currents our inferred cell-specific
model parameters capture the cell-to-cell variability, or
rather, experiment-to-experiment variability. In Fig. 7,
our inferred parameters are plotted against manual patch
parameters (shown as orange dots/red squares), measured
at a slightly lower (room) temperature, from Beattie et al.
(9); our identified parameters are broadly in alignment
with manual patch results. This agreement gives us
Biophysical Journal 117, 2438–2454, December 17, 2019 2447



FIGURE 6 The relative root mean-square error (RRMSE, given by Eq. 14) histograms for six protocols (A–F). Each histogram represents the same 124 cells

with a different protocol and RRMSE each time. Markers indicate the best (*), median (z), and 90th percentile (#) RRMSE values, and the solid diamond

marker (A) indicates the error for the reference traces shown in Figs. 3 and 4. For each protocol, the raw traces with the best, median, and 90th percentile

RRMSE values for both the model (red) and data (blue) are shown, with the voltage clamp above. Note that the currents are shown on different scales to reveal

the details of the traces. The same analysis applied to the remaining three protocols is shown in Fig. S15. To see this figure in color, go online.
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further confidence that our high-throughput method is
reproducible and biophysically meaningful. We can also
see that there is more variability in some parameters
than others, also seen in the previous study (9). In partic-
ular, p1, p3, and p6 show stronger variability that
varies over an order of magnitude, whereas the others
vary only within an order of magnitude. Conductance
gKr also varies significantly, but this might be expected
given different sizes and expression levels for individual
cells.
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A hierarchical Bayesian modeling approach to
characterize well-to-well variability

We applied the hierarchical Bayesian model to analyze the
variability within the experimental recordings and correla-
tions between inferred well-to-well parameter sets. The
result of applying our hierarchical model is shown in
Fig. 8. The measurement uncertainty for the parameters of
each individual well is shown with a marginal posterior dis-
tribution, the colored histograms. Most of the parameters



FIGURE 7 Cell-specific model parameters at

around 25�C. The inferred parameter values shown

here are obtained from the staircase protocol cali-

bration and are also the parameters used in the

model predictions in Fig. 5. It also shows the

manual patch obtained parameters (orange),

measured at around 22�C, from Beattie et al. (9).

The inferred kinetic parameter values from the

automated high-throughput system are broadly

consistent with the manual patch measurements.

To see this figure in color, go online.
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give a narrow credible interval, which reinforces our cer-
tainty in the information content of the calibration protocol.
Many of the marginal posterior distributions of the individ-
ual wells overlap, that is, we cannot distinguish between the
two sets of parameters given our uncertainty in them.
However, some of the individual marginal posterior distri-
butions are distinct from each other, demonstrating consid-
erable variability between wells.

The power of the hierarchical Bayesian model can then
be used to summarize and capture the experiment-to-exper-
iment variability. The hyperparameters of the model
describe both the mean m and (co)variance S of parameter
sets across wells, with experimental uncertainty taken into
FIGURE 8 The marginal distributions from the hierarchical Bayesian model fo

ized marginals (probability densities) for each parameter in each well, with dif

narrow distribution, which implies good confidence in our inferred parameters f

predictive distributions across cells p(qj...), which are assumed to follow a mult

underlying distribution across cells for each of the parameters. To see this figur
account. We estimated this posterior predictive distribution
(Eq. 9) from the samples of hyperparameters, and its mar-
ginal distributions are shown for each parameter as the red
curves in Fig. 8. This distribution can be used to predict the
likelihood and variability of parameter sets from further
wells in future experiments. The mean values of the sam-
ples of m (which is equivalent to the mean of the posterior
predictive distribution) and its 95% credible intervals are
provided in Table S3. To compare with previous literature
values, we plotted the activation and inactivation steady-
state curves aN and rN from these parameter sets alongside
results from Sanguinetti et al. (1), resulting in a good cor-
respondence shown in Fig. S18.
r all model parameters. Left y axis: individual histograms show the normal-

ferent colors representing the 124 individual wells. Each of them shows a

or the individual well. Right y axis: red curve shows the marginal posterior

ivariate log-normal distribution for each parameter. They show the inferred

e in color, go online.
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Finally, we utilized the hierarchical Bayesian model to
investigate the correlation between model parameters across
different wells. In the sampled hyperparameters, the covari-
ance matrix S reveals any correlation between our model
parameters. The typical assumption concerning the vari-
ability of parameters is that parameters are independent,
i.e., in the covariance matrix, all entries except the diagonal
are zero. In the upper triangle (orange) of Fig. 9, we
compare our inferred correlation between parameters
(calculated using Eq. 8) with this common assumption
(black vertical dashed lines). It is obvious that there are
many entries in which zero is outside our credible interval,
which is equivalent to showing that the independence
assumption is not supported by our findings.

To visualize the correlation between parameters better,
the 95% credible regions for each pair of parameters are
shown in the lower triangle (blue) of Fig. 9, plotted against
the scatter plot of the 124 cells’ individual posterior mean
parameters (shown on a log-scale). Each blue ellipse is re-
constructed from a sample of hyperparameters, where the
contour of the 95% credible region of the two-variate mar-
ginal distribution defined by the hyperparameter sample is
shown, capturing most of our individual posterior mean
parameters appropriately. In this plot, a perfect circle im-
plies there is no correlation between the pair of parameters.
However, we can clearly see that most of our pairwise
parameters show an elliptical shape, which means some de-
gree of correlation between the pairwise parameters exists.
This strongly suggests that correlations between parameters
are embedded in the experiment-to-experiment variability.
To ensure our observed correlations are biophysically rele-
vant rather than a sign of identifiability problems, in Sup-
porting Materials and Methods, Section S10, two figures
show how cell-specific parameters make accurate cell-
specific predictions. We further discuss explanations for
such observed correlations in the Discussion.
DISCUSSION

In this study, we have developed a short, high-information-
content staircase voltage-clamp protocol for IKr that is
applicable in automated high-throughput patch-clamp
systems and used a mathematical model to characterize
channel kinetics by fitting its parameters to recordings
made under this new protocol. This study will advance
future ion channel model development and model selection
and forms a basis for improved screening of ion channel
kinetics under different conditions, mutations, or pharma-
ceutical compounds.

Here, we no longer use I-Vor t-V relations to characterize
hERG kinetics, but rather, we use a mechanistic model and its
parameterization to capture our knowledge of channel
kinetics. An optimized voltage protocol, which is short and
has a high information content, was used to parameterize the
hERG kinetics model. The benefits of this approach are three-
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fold. First, current ‘‘rundown’’ during the protocol has less
of an effect over shorter experiments (tens of seconds) as
compared to traditional I-V and t-V protocols (tens of mi-
nutes); hence, it is much easier to obtain a measurement that
remains stable. Second, given its short duration, it is easy to
repeat themeasurement to examinewithin-cell reproducibility
and/or variability. Third, our staircase protocol can be used to
rapidly create cell-specific models of kinetics (which is much
harder to do using the more time-consuming traditional I-V
and t-V protocols).

We have shown that our 15 s staircase protocol can be
performed in an automated high-throughput system. We
have found that each of the resulting 124 models is consis-
tent with previous manual patch-clamp results (limited to
nine cells) (9), implying that these methods are reproduc-
ible. We can now easily produce large data sets for further
analysis, which is usually difficult, if not impossible, to
achieve with manual patch clamp. The predictions of the
cell-specific models are not perfect, as we examined in
Fig. 6, and there may be room for improvement in terms
of the model structure and further optimization of the cali-
bration protocol. But we are able to calibrate our model to
the extent that it can replicate both experimental training
data and predict validation data very well (Fig. 4). Our
models can predict the current response to the physiologi-
cally relevant action potential protocols, demonstrating
that our IKr models could be useful in predicting cardiac
electrical activity in both healthy and arrhythmic situations
(9). This provides assurance that our cell-specific models,
which are constructed in a high-throughput manner, have
great potential for future uses.

For example, our method can potentially be adapted and
used to investigate not only how much the hERG channel is
blocked by a drug but also how that drug influences chan-
nel kinetics. This might be useful for the Comprehensive
in vitro Proarrhythmia Assay initiative because both auto-
mated high-throughput systems and in silico modeling
constitute the core of the initiative (26,27). Our approach
may give us a better understanding of the pharmacological
properties of drugs in the screening process and hence a
better pharmaceutical safety assessment. We can also
incorporate the cell-to-cell or experiment-to-experiment
variability in the in silico modeling as part of the uncer-
tainty quantification for safety-critical predictions (15).
Furthermore, such rapid characterization using high-
throughput systems can benefit precision and personalized
medicine. For example, when using human-induced plurip-
otent stem cell-derived cardiomyocytes, as described in Lei
et al. (28), characterization of ion current kinetics may
need to be taken into account to tailor accurate cell-line-
specific models.

With our 124 cell-specific hERG models, we are able to
study experiment-to-experiment variability in the hERGchan-
nel. Such experiment-to-experiment variability is captured us-
ing our hierarchical Bayesian model, in which the posterior



FIGURE 9 The inferred correlation in model parameters across experimental wells. All parameters shown here are natural log-transformed. The posterior

mean parameters (q) of each of the 124 individual wells are shown in gray (dots and histograms). Note that the posterior distributions for each well are so tight

that only the mean values are shown for clarity (see Fig. 8); full example posteriors for a pair of cells are shown in Fig. S16. Lower triangle (blue): the 95%

credible region boundary for the distribution of parameters across wells is shown. Each credible region ellipse is reconstructed from one sample of the m,

S across-cell distribution parameters from the MCMC chain of size 105; for clarity, only 200 samples are shown here. Simulated voltage error offset

(described in the Discussion) is shown as red dots. Diagonal (green): the sampled posterior probably density functions before integration to give p(qj...)
are given, shown in detail in Fig. 8. Upper triangle (orange): the marginal histograms for each entry of the correlation matrix defined by Eq. 8 are given.

The common assumption of independence (correlation of zero) is shown as black vertical lines for comparison. The shadings in the background indicate

how these parameters relate to the model structure: the orange box contains the gates a in model, green box contains gate r, and gray relates to the conduc-

tance. To see this figure in color, go online.

Rapid Characterization of hERG Kinetics
predictive distribution is constructed and describes the under-
lying variability of the parameters (Fig. 8). Instead of using a
series of I-Vand time constant-voltage curves, here, we eval-
uate the variability of the observed hERG channel kinetics
using mathematical model parameters. The variability in the
parameter values predicts the observed differences in the
channel kinetics; see also Supporting Materials and Methods,
Section S10. In addition, we can use our posterior predictive
Biophysical Journal 117, 2438–2454, December 17, 2019 2451
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distribution to predict what might happen in future experi-
ments based on the observed experiments.
Sources of variability

We have successfully quantified the variability between
wells via our inferred model parameters. However, the un-
derlying cause of this variability is an open question. There
are possibilities at two extremes. One is that the variability is
truly cell-to-cell and ion channel kinetics do vary because of
different intracellular conditions, which one may speculate
is due to differing gene expression, subunits, phosphoryla-
tion states, or suchlike. The other possibility is that ion
channel kinetics are precisely identical in each cell but there
are some experimental artifacts, varying between wells, that
are causing the observed variability in parameters from each
well. Below, we discuss hints in our results as to which of
these extremes is the leading cause of variability.

As mentioned in the rationale of the staircase protocol,
the 100 ms reversal ramp at 14.41 s was introduced to esti-
mate experimentally the hERG reversal potential Ej

K in each
of the j wells; for details, see Fig. S2. Fig. 10 shows an
example Ej

K derivation using the reversal ramp and a histo-
gram of Ej

K values estimated from the 124 wells.
Our obtained histogram of Ej

K values is distributed close
to our theoretical EK from the Nernst equation (Eq. 2),
with an SD of 1.36 mV. Because all of our measurements
were performed on one 384-well plate, they shared the
same extra- and intracellular solutions and were recorded
at (almost) the same temperature. We would therefore
expect the real variability in reversal potential to be much
smaller than this observed variability.

A hypothesis then, is that reversal potentialEK really occurs
at the Nernst calculated value, and observed deviations from
this inferred from the reversal ramp provide an estimate for
a ‘‘voltage error’’ in the applied voltage clamp: DVj ¼ Ej

K �
EK , perhaps due to an imperfect compensations of other
external effects, such as junction potentials and electrode
offsets. We can investigate this hypothesis via the model
by applying a staircase protocol with voltage error offsets
of DVj estimated from each of the 124 cells, generating
synthetic data from these voltage clamps, and then refitting
parameters.
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Fig. 9 (lower triangle) shows the results of our voltage
error offset simulations in red dots. If there was an error
in the applied voltage clamp in each well, then we would
expect to see parameters appearing to covary along the
red lines (made up of individual dots/fits) in Fig. 9. The
observed primary parameter covariance directions and mag-
nitudes from this procedure (red lines) align suspiciously
well with much of the observed variability in the experi-
ments (blue ellipses inferred from gray dots). In Supporting
Materials and Methods, Section S13, we extend Fig. 9
(lower triangle) to show the value ofDVj for each individual
well j, which indeed finds a correlation along the proposed
directions, further supporting the hypothesis.

This is strong circumstantial evidence—a smoking gun—
suggesting that the majority of the observed variability in pa-
rameters may be due to well-well variability in patch-clamp
artifacts rather than cell-cell variability in ion channel kinetics.
We explored the possibility of the quality control parameters
having direct bearing on the estimated voltage error; however,
no obvious correlation between these values is apparent, as
shown in Fig. S19. Building a more complete mathematical
model of such patch-clamp artifacts is part of our future plans.
We should alsonote that despite patch-clampartifacts being an
apparent cause of parameter variability, they are not neces-
sarily larger artifacts in this automated system than might be
expected in manual patch clamp.

Finally, if we were to believe that the observed variability
here arises from experimental artifacts, then only the uncer-
tainty in the top-level mean parameter vector m in the hier-
archical Bayesian model is representative of our uncertainty
in the underlying physiology. That is, the variability of top-
level mean parameter vector m should be included in future
physiological studies, for example, in the second part of this
study (this issue of Biophysical Journal, Lei et al. (29)) or
when embedding an ion channel model within an action
potential model, whereas the full posterior predictive distri-
bution should be used only when predicting the results of
future patch-clamp experiments.
CONCLUSIONS

In this study, we have demonstrated the feasibility and
practicality of using a 15 second staircase protocol to
FIGURE 10 Left: an example of the current-

voltage relationship plotted for the last ramp in the

staircase protocol and how it is used to estimate

the EK reversal potential value for IKr in one well.

Right: a histogram of EK values estimated using

the reversal ramp technique is shown. The EK values

here were estimated from the same 124 wells used in

the main results. The dashed orange vertical line

shows the expected EK calculated directly from tem-

perature and concentrations using the Nernst equa-

tion (Eq. 2). To see this figure in color, go online.
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study and characterize hERG channel kinetics on an auto-
mated high-throughput system. We calibrated the hERG
model to our staircase protocol for 124 hERG cells. Our
124 cell-specific variants of the hERG model are able to
predict eight other protocols with a high accuracy,
including physiologically inspired action-potential-like
voltage clamps. Using a hierarchical Bayesian modeling
approach, we provide a quantitative description of the
variability and uncertainty within our 124 cell-specific
models.

With our rapid characterization techniques and the
hierarchical Bayesian modeling approach, we have
opened a, to our knowledge, new gateway to study param-
eter correlations between cells and investigate experi-
mental variability. We have found that some model
parameters are strongly cross-correlated, but not all.
This result may hint at the origin of the variability and re-
quires further investigation. In future, we aim to design
protocols to allow high-throughput systems to be used
to investigate not only how much the hERG channel is
blocked by a drug but also the kinetics of drug binding
and whether the drug influences underlying channel
kinetics.

All codes and data are freely available at https://github.
com/CardiacModelling/hERGRapidCharacterisation, a
permanently archived version is available on Figshare at
https://doi.org/10.1016/j.bpj.2019.07.030.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.07.029.
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S1 Details of voltage clamp protocol

Figure S1. All voltage clamp protocols used in the study, from A to I are (green) our newly developed staircase protocol,
(blue) the activation current-voltage (I-V) protocol, the steady-state inactivation I-V protocol, the hERG screening protocol, the
delayed afterdepolarization (DAD)-like protocol, the early afterdepolarization (EAD)-like protocol, and the action potential
(AP)-like protocol with beating frequency 0.5 Hz, 1 Hz and 2 Hz. All protocols are shown with the same voltage axes for
comparison; however due to different time scale, each of them has its own time axis.



S1.1 Calibration: Staircase protocol
The full protocol is comprised of a 250 ms step at holding potential of −80 mV, followed by a 50 ms ‘leak step’ at −120 mV,
and a 400 ms ‘leak ramp’ from −120 mV to −80 mV, before a 200 ms back at holding potential. This was followed by a 1 s
‘activation step’ at 40 mV and a 500 ms ‘closing step’ at −120 mV, before returning to holding potential for 1 s. Then the 9.5 s
staircase portion of the protocol (the details is described below), before a return to holding potential for 500 ms. Finally, it was
followed by a reversal potential estimation portion which is composed of a 500 ms step to 40 mV, and a 10 ms step to −70 mV
to remove capacitance effect, then followed by a 100 ms ‘reversal potential ramp’ starting from −70 mV to −110 mV, before a
390 ms step to −120 mV, and return to holding potential for 500 ms.

The staircase portion of the protocol consists of a range of 500 ms steps up and down as discussed in main text. It is
comprised of two sets of steps, the first set alternates between Vstep,1 and Vstep,2, each for 500 ms. There are 5 different Vstep,1
and Vstep,2; Vstep,1 ranged from −40 mV to 40 mV, and Vstep,2 ranged from −60 mV to 20 mV, both in 20 mV increments. The
second set alternates between Vstep,3 and Vstep,4, each for 500 ms. There are 5 different Vstep,3 and Vstep,4; Vstep,3 ranged from
40 mV to −40 mV, and Vstep,4 ranged from 0 mV to −80 mV, both in 20 mV decrements.

This protocol is shown in Figure S1A. A time series version of the full protocol is available at https://github.com/
CardiacModelling/hERGRapidCharacterisation/blob/master/protocol-time-series/protocol-staircaseramp.csv.

S1.2 Validation 1: Activation I-V protocol
From the initial period 100 ms at holding potential of −80 mV, a step to Vstep for 1 s, followed by a 500 ms step to −40 mV,
before a 100 ms step back to holding potential; this was repeated 7 times with a different Vstep on each repeat. Vstep ranged
from −50 mV to 40 mV in 15 mV increments. This protocol is shown in Figure S1B.

S1.3 Validation 2: Steady-state inactivation I-V protocol
From the initial period 100 ms at holding potential of −80 mV, a step to 20 mV for 500 ms, followed by a step to Vstep for
500 ms, before a 100 ms step back to holding potential; this was repeated 10 times with a different Vstep on each repeat. Vstep
ranged from −140 mV to 40 mV in 20 mV increments. This protocol is depicted in Figure S1C.

S1.4 Validation 3: hERG screening protocol
From the initial period 100 ms at holding potential of −80 mV, a step to −40 mV for 50 ms, and a step to 20 mV for 500 ms,
followed by a step to −40 mV for 500 ms, before a 200 ms step back to holding potential. This protocol is shown in Figure S1D.

S1.5 Validation 4-8: DAD-like, EAD-like, APs-like protocols
Details are described in Table S1, and each protocol is shown in Figure S1E-I respectively.

S2 Ramps in the staircase protocol
As discussed in the main text, protocol design, the two ramps implemented in the staircase protocol are designed to estimate the
leak current and to experimentally estimate the EK value. Figure S2 shows an example of using the two ramps to estimate
the leak current and the EK value. The top three panels show the staircase voltage clamp protocol (grey), an example of raw
currents before (blue) and after (orange) E-4031 application, and the corresponding estimated IKr (green; the difference between
the blue and orange traces), respectively. The greyed out sections highlight the two ramps in the staircase protocol. Bottom left
shows the I-V curves of the two raw currents measured under the first ramp. Linear regressions were applied, and the results
are shown as dashed lines, where the fitted slope and y-interception point were used to estimate the leak current parameters
(Eq. 12 in the main text). Bottom right shows the I-V curve of the leak-corrected, E-4031 subtracted IKr measured under the
second ramp. A third order polynomial regression was applied, and the result is shown as dashed line. The EK value was then
estimated as the x-interception point, shown as red vertical line.

S3 Electrophysiology solutions
The compositions of all the electrophysiology solutions, including both the external solutions (bath solutions) and the internal
solution (equivalent to the pipette solution in manual patch clamp), are shown in Table S2. External solutions were added in
the following order: first ‘fill chip’ solution to the measurement chip, and the suspended hERG cells, then the ‘seal enhancer’
solution for enhancing the seal by forming CaF crystal around the cells (note they have extra high concentration of Ca+, so we
need to reduce/dilute it later), followed by adding the extracellular ‘reference’ solution for Ca+ dilution. All the voltage clamp
measurements were performed after adding all these external solutions.

The solutions were added sequentially to the wells, by removing half of the previous solutions from the wells each time.
Therefore, the final ratios of the external (extracellular) solution are 1:1:2 — proportions of 0.25 of the ‘Fill Chip’ concentrations,
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DAD-like protocol EAD-like protocol Single AP-like protocol
Type V [mV] Duration [ms] Type V [mV] Duration [ms] Type V [mV] Duration [ms]

Step -80 50 Step -80 50 Step -80 50
Step 34 3 Step 40 3 Step 34 3
Ramp 30 8 Step 20 3 Ramp 30 8
Ramp 26 15.2 Ramp 30 20 Ramp 26 15.2
Ramp -5 142.6 Step 30 10 Ramp -8 183.6
Ramp -21 38.4 Ramp -10 168 Ramp -21 39
Ramp -70 68.6 Ramp -15.5 50.6 Ramp -68 70.5
Step -20 2 Ramp -20 61.2 Ramp -80 25.2
Ramp -30 20 Step -20 60 Step -80 —
Ramp -40 10 Ramp -10 40
Ramp -65 15 Step -10 10
Ramp -80 12 Ramp -20 50
Step -80 15.2 Ramp -30 20
Step -80 350 Ramp -75 40.5

Ramp -80 50
Step -80 13.7
Step -80 100

Table S1. Details of the DAD-like (validation 4), EAD-like (validation 5), APs-like (validation 6-8) protocols. It shows as a
sequence of steps and ramps that approximates different types of action potential shapes, as these are the only available settings
in the automated machine used. The voltage (V) in the type Ramp represents the final targeted voltage that the ramp finishes,
starting from the previous voltage within the given duration; for example, the first ramp in the EAD-like protocol means it starts
from 34 mV and ramps to 30 mV in 8 ms. The single AP-like protocol shows the protocol for one unit AP-like protocol that
repeats in 0.5 Hz, 1 Hz, and 2 Hz.

0.25 of the ‘Seal Enhancer’ concentrations, and 0.5 of the ‘Reference’ concentrations, as shown in the ‘Final Extracellular’
solution in Table S2. For each well, the volume of the final solution during recording is 80 µl.

Solution Intracellular Fill Chip Seal Enhancer Reference Final Extracellular
pH value (titrated with) pH 7.2 (KOH) pH 7.4 (NaOH) pH 7.4 (HCl) pH 7.4 (HCl)

Osmolarity [mOsm] 260-300 300-330 290-330 290-330

Chemicals Source / Cat# [ ] in mM [ ] in mM [ ] in mM [ ] in mM [ ] in mM

NaCl Merck / K38447104807 10 150 80 80 97.5
KCl Merck / K36782536 10 4 4 4 4
KF Acros Organics / 201352500 100 — — — —
MgCl2 Merck / A914133908 — 1 1 1 1
CaCl2 Acros Organics/ 349615000 — 1.2 5 1 2.05
HEPES Applichem A1069 10 10 10 10 10
Glucose Fluka / 49159 — 5 5 5 5
NMDG Fluka 66930 — — 60 40 35
EGTA Fluka / 03778 20 — — — —
Sorbitol Sigma / S1876 — — — 40 20

Table S2. Electrophysiology solutions for hERG assay on the Nanion SyncroPatch 384PE machine, all solutions are sterile
filtered. All hERG cells were suspended in 1/3 Extracellular Fill Chip Solution + 2/3 Hanks’ Balanced Salt Solution (HBSS).

S4 Recording techniques

All experiments were performed with Nanion SyncroPatch 384PE machine with software PatchControl384PE (v. 1.5.6 Build 22)
and current traces data were exported using their complementary software DataControl384 (v. 1.5.0 Customer Release).
Temperature was controlled by Nanion temperature control unit with software PE384TemperatureControl. The machine comes
with a measurement chip consists of 364 wells, with 16 rows by 24 columns.
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Figure S2. Two ramps (greyed out sections) implemented in the staircase protocols. The first ramp is designed to estimate the
leak current; the second ramp is designed to experimentally estimate the EK value. Top three panels show the staircase voltage
clamp protocol (grey), the raw currents before (blue) and after (orange) E-4031 application, and the estimated IKr (green; the
subtraction between the blue and orange traces), respectively. Below shows the I-V curves measured during the two ramps.
Linear regressions were applied to each of the I-V relation in the first ramp, shown as dashed lines. Third order Polynomial
regression was applied to the I-V curve in the second ramp, shown as dashed lines.

S5 Automated quality control
Here we present a more detailed selection results of our quality control which does not require any manual intervention. The
full details of our automated quality control criteria are summarised in Table 1 in the main text. A well must pass all the listed
criteria in order to be selected.

In Figure S3, we break down the selection results and show the results of each criterion in our automated quality control.
On the left, the bar chart shows the number of wells removed by each quality control criterion. There were 22 ‘no cell’ wells,
where the platform decided there was no valid estimation of Rseal, Cm, and Rseries and it was likely that no cell was clamped
in these wells. Our three QC1 criteria are used as part of the automated high-throughput machine quality control, which can
eliminate up to 46 wells out of the 201 wells that we manually decided to remove. We then added the other criteria to improve
the selection process, which allow us to eliminate a total of 173 wells, and achieved a positive predictive value of >86 %. On
the right, we show the number of wells commonly removed by any pair of criteria. This shows that most of our criteria are
quite independent, and are assessing different features of the recordings.

We note that our automated quality control can achieve a positive predictive value of >86 %. In Figure S4, we show 6 typical
examples of the ‘bad recordings’ that we manually removed. The manually removed bad recordings are compared against the
good recordings. Top panel shows our staircase protocol. Then we show 3 good recordings (green) and 6 manually removed
bad recordings (orange/red). We found our manually removed recordings fall into two main categories, as coloured, orange
and red. For the first category (orange), although they seem to contain IKr, they are heavily ‘contaminated’ by other signals
which are most probably a combination of leak and endogenous currents. For the second category (red), the recordings lack any
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Figure S3. Selection results of each criterion from our automated quality control. (Left.) Showing the number of wells
filtered out by each quality control criterion as bar chart. (Right.) Showing the number of wells filtered out by both the row and
column criteria. The automated high-throughput machine also has some simple quality control implemented, which are our
three QC1 criteria.

characteristic dynamics of IKr, for example during the first big repolarising step from 40 mV to −120 mV, the recordings do
not show any negative spikes that we would associate with hERG opening. Therefore, none of them are considered as good
recordings of IKr.
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Figure S4. A comparison of the good recordings and our manually removed bad recordings. Top panel shows our staircase
protocol. Following are 3 good recordings (green) and 6 manually removed bad recordings (orange/red). We found our
manually removed recordings fall into two main categories, as coloured, orange and red.
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S6 Synthetic data studies

S6.1 Introduction
We perform a synthetic data study prior to implementing the actual experiments for two reasons: design of protocols and test of
analysis.

First, given the mathematical model of the hERG channel, we are able to deduce what would be the best protocols to tease
out the kinetics of the underlying model. This can alleviate a common issue, identifiability when undertaking model fitting.
Because typically one constructs the problem into inverse problems when trying to parameterise mathematical models, however
the identifiability issue arises because of the poorly informed experimental data. Therefore we utilise a synthetic study to design
and optimise protocols to have sufficient information for rapid characterisation.

Second, we are able to test our analysis technique, to ascertain whether it is robust enough for our purpose — to recover the
parameters of the model given the data. Most of our ion channel models can be written as

I = f (V, t;θ, I0), (S1)

where I is the current (output of the model, the observable in experiments), V is the voltage, and θ is the vector of parameters
within the model. The models are usually formulated as differential equations which therefore requires initial conditions I0.
The dependency on initial conditions I0 can usually be eliminated by running the model long enough to reach a (pseudo-)steady
state. Then with our analysis techniques, given the output I with inputs V and t, we aim to infer the values of the parameters θ,
hence the overall process is termed an inverse problem. Therefore, we generate synthetic data (with added synthetic noise) with
some ‘true’ parameters θtrue, and we ask, how confident are we in our inferred parameters?

S6.2 Methods
S6.2.1 Generating synthetic data
We generate synthetic data by simulating the current I, with some fixed known parameter sets {θtrue}, voltage protocol Vprt(t),
initial values I0, and sampling time (time-step) ∆t.

First, the choice of {θtrue} could be arbitrary, but we used the parameters identified from a previous study1 (Table F11 Cell #5),
θlit, to utilise prior knowledge. We generated {θtrue} = {θtrue,1,θtrue,2, · · · ,θtrue,Ne } with each θtrue, j = (θtrue, j

1 , θ
true, j
2 , · · · , θ

true, j
N )T

sampled from

θ
true, j
i ∼ N(θlit

i ,ρ
2
i ), (S2)

where i = 1,2, · · · ,N for N parameters in the model, and (· · · )T represents the transpose. N denotes the normal distribution
and ρ2 is the variance for which we chose a value of ρi = 0.2|θlit

i |. That is, we assume that we performed Ne experiments
(recordings), and there exists variability between experiments. Assuming each experiment was performed identically, then the
variability that we are simulating is cell-to-cell variability.

We can take the notion of variability further, by removing the assumption of independence between model parameters. We
assume there exists an underlying correlation between each model parameter, which can be described by a covariance matrix Σ.
Therefore we can rewrite the underlying distribution of the parameters as being taken from a (covarying) multivariate normal
distribution, that is

θtrue, j ∼ N(θlit,Σ). (S3)

The correlation between parameters using the correlation matrix is then defined as

corr(θ) = diag(Σ)−1/2 Σ diag(Σ)−1/2, (S4)

where diag(·) denotes the matrix of the diagonal entries and its (i, i) entry is chosen to be ρ2
i . We randomly generated the

correlation matrix that satisfies the positive semi-definite condition for this synthetic data study.
Second, we fix the voltage V of the model at Vprt(t), which is the staircase protocol that we developed for the high-throughput

systems. Third, for the initial values I0, we ran the model at V = −80 mV for a long period (100 s), to allow the model to settle
at its steady state at V = −80 mV. Since we are able to mimic this in the actual experiments, we assume the model does not
depend on the choice of I0, that is I ≈ f (V, t;θ).

Finally, we add synthetic noise which follows a normal distribution with a mean of zero and standard deviation σ (i.e.
∼N(0,σ2)) to the simulated traces with ∆t = 0.5ms. We chose σ at a reasonable scale, σ = 11 pA, to mimic the high frequency
noise observed from some of our pilot experiments using the high-throughput system.
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S6.2.2 Inferring parameters
To infer the parameters, we use a two-step approach. Firstly, we use a global optimisation algorithm, CMA-ES2, to identify the
parameters. Secondly, we run Markov-chain Monte Carlo (MCMC) to explore and quantify the uncertainty of the identified
parameters.

In the CMA-ES optimisation, we used the sum of squares error measure of the whole trace as our objective function. To
alleviate any potential issues arising due to a constrained objective function, we applied a transformation g that maps the
positively constrained model parameters {θi}, with θi ∈ [0,∞], to {φi} ∈ R

N , an unconstrained search space for optimisation,
which is simply a log-scale transformation:

θi = g−1(φi) = eφi . (S5)

We then further considered the physical constraints for the rate constants in the kinetics parameters1, which has the form
k = Aexp(BV). For parameters of the form A, [θmin

i , θmax
i ] is chosen to be [10−7,103] ms−1; and for parameters of the form B,

[θmin
i , θmax

i ] is chosen to be [10−7,0.4] mV−1.
For the MCMC, we used a population MCMC3 algorithm with adaptive Metropolis4 algorithm as the base sampler. The

starting point of the population MCMC was chosen to be the CMA-ES inferred parameters. As a good practice, the population
MCMC was repeated 3 times to ensure the convergence of the MCMC chains. We chose the posterior measure to be

p(φ,σ|y) =
p(φ)p(y|φ,σ)

p(y)
∝ p(φ)p(y|φ,σ), (S6)

p(φ) ∼U(φmin,φmax), (S7)

p(y|φ,σ) =
1

√
2πσ2

exp

−∑
k

(
f (Vprt, tk;g−1(φ))−y|tk

)2

2σ2

 . (S8)

Here, y is the data and y|tk denotes the data at time tk. The likelihood, p(x|φ), in Eq. S8 is the Gaussian noise version of the sum
of square difference measure used in the CMA-ES.

S6.2.3 Hierarchical Bayesian model
In order to infer the correlation between model parameters, corr(θ) in Eq. S4, the mean, and the variability between cells,
we used a multi-level modelling technique which works under the Bayesian framework, known as a hierarchical Bayesian
model. This allows us to combine all the results from each individually performed experiment to inform the prediction of future
experiments.

A schematic of our hierarchical Bayesian model structure is shown in Figure S5. The full hierarchical Bayesian model is

L

(
µ,Σ,

{
φ j,σ j

}Ne

j=1
|
{
y j

}Ne

j=1

)
∝

Ne∏
j=1

p
(
y j|φ j,σ j

)
× p

({
φ j,σ j

}Ne

j=1
|µ,Σ

)
× p (µ,Σ)×

Ne∏
j=1

p
(
σ j

)
, (S9)

where all symbols have their usual meaning as defined above, L is the full posterior, and µ,Σ are the hyperparameters
of the hierarchical model which are the means and covariance matrix of the model parameters. We assume the model
parameters follow a multivariate log-normal distribution, thus the hyperparameters define the mean and covariance matrix of
this distribution. The three terms in Eq. S9 are: 1. the likelihood of all the individual (low-level) experiments; 2. the likelihood
of the hyperparameters; and 3. the priors of the hyperparameters (also known as ‘hyper-priors’) and the prior of σ j which we
do not infer its hyperparameters.

For computational ease, we chose the prior of the hyperparameters to be a multivariate normal distribution for the µ and an
inverse-Wishart distributionW−1 for the Σ, which is the respective conjugate prior. Suppose Ne individual parameters {θ j}

Ne
j=1

have been observed, then we have{
lnθ j

}Ne

j=1
∼ N (µ,Σ) , (S10)

and with the conjugate prior

p(µ,Σ) = p(µ|Σ)p(Σ), (S11)
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Figure S5. Hierarchical Bayesian model showing parameter dependency for combining multiple experiments. µ,Σ are the
hyperparameters of the hierarchical model which represent the mean and covariance matrix, respectively, of the individual
‘low-level’ parameters, {θ j,σ j}

Ne
j=1 are the set of individual ‘low-level’ parameters for each of the Ne measurements in the

high-throughput experimental recordings {y j}
Ne
j=1. The parameters in the box repeat for multiple wells and are indexed as the jth

experiment (or dataset). All parameters, and their probability distributions, are inferred from the shaded variable y j, the
experimental data. Prior distributions are required for the parameters with no inward-pointing arrows.

where

p(µ|Σ) ∼ N
(
µ0,

1
m

Σ

)
, and p(Σ) ∼W−1(Ψ, ν). (S12)

µ0,m,Ψ, ν are the prior parameters, where m, ν are respectively the strength of the prior mean µ0 and Ψ which determines the
prior of the covariance Σ. Then the posterior distribution of the hyperparameters becomes

p
(
µ |Σ,

{
lnθ j

}Ne

j=1

)
∼ N

(
Neθ̄+ mµ0

n + m
,

1
m + Ne

Σ

)
, and (S13)

p
(
Σ |

{
lnθ j

}Ne

j=1

)
∼W−1

(
Ψ+ NeS +

Nem
Ne + m

(θ̄−µ0)(θ̄−µ0)T ,Ne + ν

)
, (S14)

where

θ̄ =
1

Ne

Ne∑
j=1

lnθ j, and (S15)

S =
1

Ne

Ne∑
j=1

(θ̄− lnθ j)(θ̄− lnθ j)T . (S16)

We use the Metropolis within Gibbs (MwG)5 sampling method to explore the full hierarchical Bayesian model. The number
of parameters we have in Eq. S9 is N(N + 1)/2 + (Ne + 1)N + Ne. For our choice of hERG model and the size of the dataset, we
are expecting N = 9 and Ne > 100. This gives us more than 1000 parameters for which we wish to infer probability distributions.
It is computationally expensive and infeasible to use other standard algorithms, such as the population MCMC, and even MwG
can be very time consuming. We therefore further simplify the MwG to approximate the full posterior sampling, which we
have termed ‘pseudo-MwG’. We confirm that the pseudo-MwG can approximate the MwG very well in the results below.

Under our pseudo-MwG, we assume that the likelihoods of our individual experiments are unlikely to be affected by the
top-level distribution, due to our information-rich staircase protocol having thousands of data points rather than the ∼ 100
wells. We therefore separate the sampling steps between the likelihood of all the individual experiments and the likelihood of
the hyperparameters. That is, we first independently sample the likelihood of each individual experiment, using population
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MCMC alogrithm. Then we sample the hyperparameters using Eq. S10–S16, where
{
lnθ j

}Ne

j=1
become

{
lnθ j,l

}Ne

j=1
which are the

independently obtained lth samples of the individual experiments j. Note that this is only valid when the individual experiments
are far more information-rich than the number of repeats. We check these assumptions in the results below.

To obtain the posterior predictive distribution p(θ| · · · ) which allows us to make prediction about how the future experiments
would behave, where (· · · ) indicates all other variables appear in Eq. S9, we use

p(θ| · · · ) =

∫
Θ

p(θ|Θ)p(Θ| · · · ) dθ, (S17)

where Θ = (µ,Σ)T . This can be approximated by summing over the probability density functions which are defined by the
samples of Θ.

S6.3 Results/Discussion
S6.3.1 Single synthetic experiment
We start by showing the staircase protocol is information-rich enough to identify the ‘true’ parameter set in a synthetic data
study using our protocol. Figure S6 shows the results of inferring model parameters on a synthetic experiment, where θtrue = θlit

obtained from a previous study1 (Table F11 Cell #5). It shows the three independently sampled marginal posterior distributions
of each parameter (first and third columns), with indications of the ‘true’ parameters θtrue (black dashed lines) which we used to
generate the synthetic data, and the CMA-ES inferred parameters (red lines). Both the traces (second and fourth columns) and
the three independently run posterior distributions show a good indication of the convergence of the MCMC chains. We are able
to recover the ‘true’ parameters θtrue with high accuracy and a narrow credible interval using our inference techniques together
with our developed staircase protocol. Therefore we are confident that, with both the high information-content protocol and the
inference techniques, it is theoretically possible to infer all parameters of the model.

Figure S6. Parameter inference of single synthetic experiment, Ne = 1. First, Third columns: Show the marginal histograms
of the posterior distribution of each parameter. Second, Fourth columns: The trace plots for our MCMC chains indicating
that our MCMC chains have converged. Each panel shows the posterior distribution of 3 independently run MCMC, and their
extremely good agreement assures the chains are well mixed. The true (synthetic) parameters are indicated as black dashed
lines and the CMA-ES inferred parameters are shown as red lines.

S6.3.2 Hierarchical synthetic experiments
Figure S7 shows the results of the synthetic data study using hierarchical Bayesian model with Ne = 120. It shows the marginal
histograms of the model parameters for each individual experiment (left y-axis) and the marginal posterior predictive distribution
(right y-axis, red lines). This synthetic data study is equivalent to have Ne repeats of the same experiment. Unlike the single
experiment study above, the implications of the obtained posterior predictive distribution p(θ| · · · ) are much more powerful and
can be viewed in two ways.

First, we can see this as the underlying distribution that governs the parameters. That is, with this, we can try to understand –
through the model – what the hERG channel is doing in the cells. To do so, we compare it with the ‘true’ underlying distribution
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of parameters (black dashed lines), i.e. the multivariate normal distribution in Eq. S3. The marginal posterior predictive
distributions closely resemble the ‘true’ distribution. This indicates that we are able to recover the underlying distribution of the
parameters with high accuracy too, and therefore we can rely on it to study the behaviour of hERG cells in actual experiments.

Second, as the name implies, this is a predictive distribution. That is, given the observed individual experiments, we infer
a distribution which allows us to predict what might happen in a future experiment. To do this, we can view the posterior
predictive distribution in Eq. S17 as p(θNe+1| · · · ), where θNe+1 is our ‘future’ (Ne + 1)th experiment that we perform. Therefore
the distribution that we construct is able to tell us what is likely to happen in the future experiments — based on the observations
from previous experiments.

Figure S7. Parameter inference using the hierarchical Bayesian model on synthetic data, with Ne = 120. Left y-axis: the
marginal histograms of the model parameters for each individual experiment. Right y-axis: the marginal posterior predictive
distributions and the true probability density function that generates the parameters.

We further investigate the correlation between parameters, by trying to recover the correlation matrix corr(θ) in Eq. S4. The
posterior marginal histograms for each entry of the correlation matrix are shown in Figure S8 (upper triangle). The diagonal
is by definition equal to 1, so they are not shown. All inferred marginal posterior distribution for each entry covers the true
underlying correlation value (dashed black vertical lines). Therefore it shows us with confidence that our method is suitable for
studying the relation between model parameters.

Figure S8 (lower triangle) shows the correlation between each pair of parameters. Each contour ring represents the 95%
credible intervals of the joint distribution of the two parameters, for both the recovered (blue) and the true (black-dashed)
covariance matrices. As long as the main axis of the ellipse is not parallel to the x- or y-axis, it indicates the two parameters
are not pairwise-independent. The diagonal shows the sampled predictive posterior distribution before integrated over to give
p(θ| · · · ) shown in Figure S7. Again, it shows that we are able to recover the general shape of the underlying correlation with
high accuracy.

In this synthetic study, the correlation matrix that we recovered may not make any physical sense – as we randomly
generated it. However, in actual experiments, this correlation matrix tells us which parameters are intrinsically correlated. That
is, if there exists any non-zero values, with a good credible interval, in the off-diagonal entries of the recovered correlation
matrix, then this informs us how the parameters of model are related.
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Figure S8. Parameter correlation inference using the hierarchical Bayesian model on synthetic data, with Ne = 120. All
parameter values shown here are in the natural log-scale. (Lower-triangle) Showing the 95% credible region boundary for
each pair of parameters reconstructed from the sampled hyperparameters (blue) and the true distribution (black-dashed).
(Diagonal) Shows the sampled predictive posterior probably density functions before integrated to give p(θ| · · · ) shown in
Figure S7. The marginal probably density functions of the true distribution are shown in dashed black lines for comparison.
The parameters of our synthetic data are shown as grey. (Upper-triangle) Shows the marginal histograms for each entry of the
correlation matrix. The true correlation values are shown as dashed black vertical lines for comparison. The shadings in the
background indicate how these parameters relate to the model structure: orange box belongs to the gates a in model, green box
gate r, and grey relates to the conductance.
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Comparing Pseudo-MwG to MwG All the results above and those in the main text use pseudo-MwG method. Here we provide
a brief comparison between our pseudo-MwG method and the MwG for approximating the posterior predictive distribution. We
use Ne = 30 to demonstrate their similarity. The value was chosen as it is similar to the minimum cell yield we found in the Part
II of this paper6 and it is computationally tractable.

Figure S9 shows the posterior predictive distribution and the histograms of the individual experiments constructed from
the pseudo-MwG method (solid lines/filled) and the MwG method (dashed lines/unfilled). It has the same style of plot as
in Figure S7, where the left-axes show the marginal histograms and the right-axes show the marginal posterior predictive
distributions. The posterior predictive distributions constructed from the pseudo-MwG and MwG look extremely similar.
Therefore, with our staircase protocol as the likelihood of the low-level experiments, we are able to simplify our procedure to
the pseudo-MwG without losing much accuracy comparing to the MwG algorithm. We expect the agreement to hold for larger
Ne as well.

Figure S9. Comparing the hierarchical Bayesian model parameter inference on synthetic data using the pseudo-MwG (solid
lines/filled) and the MwG (dashed lines/unfilled) methods, with Ne = 30. Left y-axis: the marginal histograms of the model
parameters for each individual experiment. Right y-axis: the marginal posterior predictive distributions.

We also note that we can further simplify our pseudo-MwG, which we shall call it as simplified pseudo-MwG, given our
information-rich staircase protocol. First we can see that the MCMC distributions, see e.g. Figure S9 marginal histograms, are
really narrow relative to spread of each experiment parameters. By approximating these narrow distributions as single points
(i.e. delta functions), we can then sample the hyperparameters using Eq. S10–S16, where

{
lnθ j

}Ne

j=1
become point-estimates of

the parameters of the individual experiments j. Figure S10 shows the posterior predictive distribution constructed from the
simplified pseudo-MwG method (solid lines) and the MwG method (dashed lines). Again, the posterior predictive distributions
constructed from the simplified pseudo-MwG and MwG look extremely similar. Therefore, we can further simplify our
pseudo-MwG sampling scheme to estimate the full posterior-predictive distribution.

Converging to the true distribution We then check the performance of our method with different numbers of experiments/cells
Ne, and confirm that the result converges to the correct answer. We calculate the score with root mean square error (RMSE) for
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Figure S10. Comparing the hierarchical Bayesian model parameter inference on synthetic data using the simplified
pseudo-MwG (solid lines) and the MwG (dashed lines) methods, with Ne = 30. Left y-axis: the marginal histograms of the
model parameters for each individual experiment for the MwG method. Right y-axis: the marginal posterior predictive
distributions.

the correlation matrix, where

RMSE of correlationB
1
N

√√√ N∑
i

N∑
j

(corr− corrtrue)i, j, (S18)

and its slight variant root mean square percentage error (RMSPE) for standard deviation, where

RMSPE of stdB

√√√
1
N

N∑
i

stdi− stdi
true

stdi
true

. (S19)

We used RMSPE, instead of normal RMSE, for standard deviation to avoid different parameter magnitudes from dominating
the calculation.

Figure S11 shows the RMSPE of the standard deviation (left) and RMSE of the correlation (right) as function of the
numbers of experiments/cells Ne. For the RMSPE of the standard deviation, Figure S11 (Left), we repeated the above analysis
with Ne = 20,30, ...,120 and 125. We can clearly see that the RMSPE of the standard deviation decreases as Ne increases.
Hence it is convincing that our method is converging to the true answer in the synthetic data studies.

For the RMSE of the correlation, Figure S11 (Right), we further test the convergence rate of the RMSE value. To run
sufficiently large Ne, we simplified our procedure by running only the top-level of the hierarchical Bayesian model, i.e. the
simplified pseudo-MwG as described above. With this, we ran Ne up to 2×104. We plotted both axes in natural-log scale.
We then applied a linear regression, in which a slope of −0.516 is obtained. Therefore, we conclude that convergence rate of
the RMSE of the correlation is roughly consistent with ∝ 1/

√
Ne. We also expect the likely errors in our experiments, with

Ne = 124, is about 6.4 %, shown as grey lines.
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Figure S11. The RMSPE of standard deviation (left) and RMSE of correlation (right) as function of the numbers of
experiments/cells Ne. Each violin plot and posterior mean is constructed using 104 samples. Grey lines show where Ne = 124,
with an RMSE value of 0.064.

S7 Sweeps comparison
Here, we check the reproducibility of our results in the same cells. We performed the same fitting procedure to the second
sweep of our staircase protocol (calibration protocol) recording. First, to assess, if any, intrinsic (or intra-cell) variability7 in our
recordings; and second, to ensure our results are reproducible and biologically meaningful.

Figure S12 shows the fitted parameters comparison between the first sweep (sweep 1) and the second sweep (sweep 2)
for all N = 124 cells. The line of identity is plotted as grey dashed lines. The two sets of parameters broadly agree, therefore
it is convincing that our results are reproducible within the same cells. The intrinsic variability in our recordings are quite
small, compared to the extrinsic or experiment-to-experiment variability. Therefore, our analyses focus on the observed
experiment-to-experiment variability, and the intrinsic variability are assumed to be negligible.
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Figure S12. Comparison of the fitted parameters between the first sweep (sweep 1) and the second sweep (sweep 2). Grey
dashed lines show the line of identity. The two sets of parameters broadly agree, therefore it is convincing that our results are
reproducible within the same cells.

S8 Posterior predictive quantification
We quantify the goodness of the posterior predictive distribution from our hierarchical Bayesian model, compared to the 124
individual experiments, by means of a quantile-quantile (Q-Q) plot and a probability–probability (P-P) plot. The Q-Q (or P-P)
plot is a graphical method for comparing two probability distributions, in our case the 124 individual experiments and our
posterior predictive distribution p(θ| · · · ), by plotting their quantiles (or cumulative distributions) against each other.

Note that this is a good test of the LogNormal distribution because we used the pseudo-MwG method, and the individual
level parameter fits were not allowed to shift to meet a LogNormal by design as a hierarchical model would generally behave.

Figure S13 and S14 show the Q-Q and P-P plots respectively. In both figures, for each parameter, the marginal posterior
predictive distributions are plotted against the posterior mean of the 124 cells. We applied linear regression, shown as orange
lines, and they all lie very close to the line of identity (grey dashed lines). These analyses support our results and suggest our
posterior predictive distribution, defined by Eq. S17, is a very good description to the distribution of the data.
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Figure S13. Quantile-quantile (Q-Q) plot of the 124 individual experiments and our posterior predictive distribution. For each
parameter, the quantiles of the marginal posterior predictive distribution (theoretical quantiles) are plotted against the quantiles
of the posterior mean of the 124 cells (sample quantiles).

17/25



0.0

0.2

0.4

0.6

0.8

1.0

gKr

R2 = 0.9940

p1

R2 = 0.9853

p2

R2 = 0.9934

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

p3

R2 = 0.9952

p4

R2 = 0.9955

p5

R2 = 0.9914

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p6

R2 = 0.9767

0.0 0.2 0.4 0.6 0.8 1.0
Theoretical CDF

p7

R2 = 0.9963

0.0 0.2 0.4 0.6 0.8 1.0

p8

R2 = 0.9947

Figure S14. Probability–probability (P-P) plot of the 124 individual experiments and our posterior predictive distribution. For
each parameter, the cumulative distribution of the marginal posterior predictive distribution (theoretical CDF) are plotted
against the cumulative distribution of the posterior mean of the 124 cells (empirical CDF).
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S9 Remaining relative root mean square error (RRMSE) histograms
Here we include the relative root mean square error (RRMSE, given by Eq. 14 in the main text) histograms for the remaining
validation protocols 1, 2, and 6 that are not included in the main text due to the space limit. See Figure S15.

Figure S15. The relative root mean square error (RRMSE, given by Eq. 14 in the main text) histograms for all 124 cells and
for validation protocols 1, 2, and 6. Markers indicate the best (∗), median (‡) and 90th percentile (#) RRMSE values, and
diamond marker q indicates the error for the reference traces. For each protocol, the raw traces with the best, median and 90th

percentile RRMSE values, for both the model (red) and data (blue) are shown, with the voltage clamp above. Note that the
currents are shown on different scales, to reveal the details of the traces.

S10 Practical identifiability of model parameters
In this section we examine the practical identifiability of cell-specific parameters inferred from the experimental measurements.
We performed a comparison between two cells (B20 and C17) that had parameters p1, p2 at opposite ends of the anti-correlated
pairwise plot in Figure 9 in the main text.

Figure S16 shows that all the parameters are tightly constrained within each cell. We observe both the pairwise plots (below
the diagonal) and marginal histograms (on the diagonal) from the obtained MCMC chains for the two cells (denoted with
purple and brown) within the distributions across cells (denoted with blue and green). Figure S17A shows that these two sets
of cell-specific parameters (purple and brown) each have very good cell-specific fits, which do not overlap with fits from a
different cell. Indeed the best fits to the data are so tightly constrained within each cell that forward simulations with different
samples of the posterior are not distinguishable by eye. Similarly in Figure S17B we see that these cell-specific parameter sets
make good cell-specific validation predictions. This is strong evidence that our results are good cell-specific parameter fits, and
not overly-narrow distributions that should really overlap.
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Figure S16. A comparison of the inferred parameters for two example cells: B20 (purple) and C17 (brown). Both the pairwise
plots below diagonal and the marginal histograms on the diagonal show samples of the posterior from MCMC chains. Blue
ellipses and green distributions (identical to Figure 9 in the main text) are the 95% credible region boundary and posterior
probably density functions obtained from the full hierarchical Bayesian model across all cells, capturing the
experiment-experiment variability.
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Figure S17. A comparison of cell B20 (purple) and C17 (brown) fits and predictions. (A) Shows fits from the posterior (50
samples) from the two cells and corresponding experimental data under the staircase calibration protocol, with corresponding
cell-specific data shown in the background. Note that although there are 50 fits plotted, these appear to be a single line for each
cell as the parameter samples are so close that the forward simulations are indistinguishable at this scale. (B) Predictions based
on 50 samples of the cell-specific posteriors under the activation I-V Validation #1 protocol.
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S11 Mean model parameters
Table S3 shows the mean values of the model parameters µ (in Eq. 7 in the main text), which is equivalent to the mean of the
posterior predictive distribution, and the two set of 95% credible intervals. ‘95th %ile (mean)’ is the 95% credible intervals for
the uncertainty of the top-level mean parameter vector µ, which we describe it as the representative of our uncertainty in the
underlying physiology (see main text Discussion). ‘95th %ile (exp)’ is the 95% credible intervals of the full posterior predictive
distribution, which represents the variability of the experiments.

Table S4 compare the mean values of the steady state activation and inactivation parameters of our model against the
reported values in the literature8; Figure S18 shows the respective predictions.

gKr [pS ] p1 [s−1] p2 [V−1] p3 [s−1] p4 [V−1] p5 [s−1] p6 [V−1] p7 [s−1] p8 [V−1]

mean 3.23e+4 9.48e-2 8.69e+1 2.98e-2 4.69e+1 1.04e+2 2.19e+1 8.05e+0 2.99e+1

95th %ile (mean)
3.e+4 8.43e-2 8.45e+1 2.76e-2 4.60e+1 1.00e+2 2.08e+1 7.77e+0 2.95e+1
3.48e+4 1.06e-1 8.93e+1 3.23e-2 4.78e+1 1.07e+2 2.31e+1 8.34e+0 3.03e+1

95th %ile (exp)
1.42e+4 2.59e-2 6.36e+1 1.24e-2 3.80e+1 7.06e+1 1.2e+1 5.43e+0 2.59e+1
7.36e+4 3.46e-1 1.19e+2 7.18e-2 5.78e+1 1.52e+2 4.01e+1 1.19e+1 3.45e+1

Table S3. The mean values of the model parameters model parameters µ (in Eq. 7 in the main text). The two set of 95th

percentiles are the 95% credible intervals of (mean) the uncertainty of the mean parameter vector µ; and (exp) the full posterior
predictive distribution.

activation V1/2 [mV] activation k [mV] inactivation V1/2 [mV] inactivation k [mV]

Our mean (n=124) -8.6 7.5 -49.3 -19.3
Sanguinetti et al.8 (n=10) -15.0 7.9 -49.0 -28.0

Table S4. A comparison of the mean values of the steady state activation and inactivation parameters of our model against the
reported values in Sanguinetti et al. 19958.

Figure S18. A comparison of the mean value parameter predictions of the steady state activation and inactivation between our
model and Sanguinetti et al. 19958.

S12 Estimated voltage error and other quality control parameters
To investigate the possibility of all the quality control parameters having bearing on the estimated voltage error, we plot scatter
plots of the estimated voltage error ∆V j (see main text Discussion) against Rseal, Cm, Rseries, gleak, and Eleak, as shown in
Figure S19. However, no obvious correlation between these values is observed.

22/25



Figure S19. Scatter plots of the voltage error ∆V j (see main text Discussion) against Rseal, Cm, Rseries, gleak, and Eleak.

S13 Estimated voltage error and parameter variability
Figure S20 shows an extended version of Figure 9 (Lower triangle) in the main text. Each individual well’s parameter set
(originally grey dots) is colour-coded in terms of the ordering of the estimated voltage error ∆V j values, with cyan representing
the wells with the lowest ∆V j values and navy representing the largest ∆V j. The trend in the parameter values as estimated
voltage error ∆V j increases qualitatively agrees with the directions of red lines indicating the predicted effect of ∆V j in
parameters (see Discussion in the main text). This provides further evidence of the hypothesis in the Discussion in the main
text that varying patch clamp artefacts are a leading cause of variability in parameter sets across wells.
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Figure S20. Extension of Figure 9 in the main text. Each individual parameters (originally grey dots) is colour-coded in terms
of the ordering of the estimated voltage error ∆V j (see main text Discussion) values, with cyan representing the wells with the
lowest ∆V j values and navy representing the largest ∆V j.
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