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eAppendix. Materials and Methods 

Section 1. Identification of automotive assembly plants 

 

Our strategy to identify automotive assembly plant closures followed the approach used in the 

academic literature and federal government reports, which involves triangulating data from 

industry trade publications, automotive company websites, and newspaper articles.1-3  We first 

obtained an initial listing of automotive assembly plants in operation in North America as of 

2005-2006 from Automotive News (AutoNews.com),4 a leading industry trade publication. This 

was the earliest publicly-available and industry-verified census of automotive assembly plants 

during our study period. We considered all plants that were involved in manufacturing of 

automobiles, trucks, and heavy trucks. To identify plants that were in operation as of 1999, but 

had closed by 2005-2006, we conducted a series of Google and Google News searches using the 

each of the following search terms: 

 
[Company name] [Year] plant  

[Company name] [Year] auto plant 

[Company name] [Year] assembly 

[Company name] [Year] assembly plant 

[Company name] [Year] auto assembly 

[Company name] [Year] auto assembly plant 

[Company name] [Year] plant closed 

[Company name] [Year] plant closure 

[Company name] [Year] auto plant closed 

[Company name] [Year] auto plant closure 

[Company name] [Year] assembly closed 

[Company name] [Year] assembly closure 

[Company name] [Year] assembly plant closed 

[Company name] [Year] assembly plant closure 

[Company name] [Year] auto assembly closed 

[Company name] [Year] auto assembly closure 

[Company name] [Year] auto assembly plant closed 

[Company name] [Year] auto assembly plant closure 

 

The field [Company name] refers to each of the following automotive manufacturers: AM 

General, Autoalliance, BMW, FCA US LLC (or “DaimlerChrysler” or “Chrysler”), Ford, 

Freightliner, General Motors (or “GM” or “G.M”), Honda, Hyundai, International, Kenworth, 

Mack, Mitsubishi, Nissan, Nummi, Peterbilt, Sterling, Subaru, Toyota, Volvo, and Western Star. 

The field [Year] refers to individual years between 1999 and 2005. Using this strategy, we found 

six additional automotive assembly plants that were operational as of 1999 but closed before 

2005. 

 

To identify automobile assembly plant closures from 2005 onwards, we used a combination of 

company websites (e.g. https://corporate.ford.com/company/operation-list.html#s1f0) and 

Google news searches using either specific plant names or company names with plant locations. 

Specifically, we conducted searches using the following terms: 

 
[Plant name] closed 

[Plant name] closure 

[Plant name] plant closed 

[Plant name] plant closure 

https://corporate.ford.com/company/operation-list.html#s1f0
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[Company name] [Plant location city], [Plant location state] 

[Company name] [Plant location city], [Plant location state] auto plant 

[Company name] [Plant location city], [Plant location state] auto plant closed 

[Company name] [Plant location city], [Plant location state] auto plant closure 

[Company name] [Plant location city], [Plant location state] auto assembly 

[Company name] [Plant location city], [Plant location state] auto assembly closed 

[Company name] [Plant location city], [Plant location state] auto assembly closure 

 

Where [Plant name], [Company name], [Plant location city], and [Plant location state] are fields 

specific to each individual plant that we identified as being in operation as of 1999. We cross-

checked each potential closure and closure date using additional Google searches. 

 

The list of automotive assembly plants identified through our search algorithm, along with their 

location, and, if relevant, year of closure are provided eTable 1. The list is divided by plants that 

were represented in the main study sample versus those that were not, based on the sample 

restrictions discussed in Section 2 of this Supplement. 

 

Section 2. Sample and exposure  

 

To define the study sample, we first restricted the study sample to all counties within commuting 

zones that contained at least one operational automotive assembly plant as of 1999. Commuting 

zones represent groups of counties that capture predominant residential and commuting patterns. 

The use of commuting zones to define exposure therefore accounts for the possibility that 

individuals likely to be affected by automotive assembly plant closures may live in a county 

other than the one in which the plant was located. Commuting zones have been widely used to 

define local labor markets.11-13 Because our study period ranged from 1999-2016, we used 

commuting zone definitions from the year 2000. Counties were considered exposed to an 

automotive assembly plant closure if they were located in a commuting zone that experienced a 

plant closure during the study period. In the 4 commuting zones where more than one automotive 

plant closure occurred, we assigned exposure based on the year of the first closure. 

 

We defined counties that were most likely to be affected by automobile assembly plant closures 

using data on the share of county residents employed in manufacturing at the beginning of the 

study period. Specifically, we restricted our sample to counties in the top quintile nationwide 

with respect to the share of employed residents aged 16 years and above who were working in 

the manufacturing sector, based on data from the 2000 Decennial Census14 (“manufacturing 

counties,” eFigure 1). The use of the top quintile versus bottom four quintiles of the share of the 

workforce employed in manufacturing to define manufacturing counties follows from prior 

work, which (1) demonstrated that top quintile manufacturing counties experienced distinct 

socioeconomic trends during the study period,15 and (2) defined the U.S. manufacturing sector as 

consisting of ~600 counties (i.e., approximately 1/5th of all U.S. counties).16 Imposing this 

sample restriction meant that 18 of the 48 commuting zones with at least one automotive 

assembly plant in operation as of 1999 were excluded, as they did not contain any counties with 

a share of manufacturing workers in the highest national quintile. As we discuss in Section 5C, 

our substantive findings were unchanged if we employed alternate definitions of exposure that 

included counties from all 48 of these commuting zones. 
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Our approach to identify sample counties was motivated in part by limitations in vital statistics 

and employment record data. Vital statistics data do not include information on previous 

occupation or industry of employment, and data on relevant proxies such as education are often 

missing or measured with error.17 Employment databases, such as the U.S. Census Bureau’s 

Quarterly Workforce Indicators,18 allow for an exact enumeration of individuals employed in the 

automotive industry. However, the assignment of counties in these data are based on place of 

employment and not place of residence, which creates similar potential for measurement error as 

in the vital statistics data (which identify only the county of residence or death).  

 

Our approach was also motivated by the fact that the consequences of an automotive assembly 

plant closure likely extend beyond just those workers employed in the automotive industry. 

These spillovers are likely present because individuals employed in other manufacturing 

industries have long sought employment in the historically higher-paying automotive sector.19 

Moreover, contraction of opportunities within the automotive sector likely affected other workers 

in other manufacturing industries through reduced demand for automotive parts from component 

suppliers1,20 and potentially through changing expectations about the potential for socioeconomic 

mobility through manufacturing work. 

 

Our final study sample consisted of 112 manufacturing counties situated in 30 commuting zones, 

including 29 exposed counties located in 10 commuting zones in which an automotive assembly 

plant closed during the study period, and 83 unexposed counties located in 20 commuting zones 

in which all automotive assembly plants remained open during the study period.  

 

Section 3. Outcome variables 

 

The primary outcome was the annual age-adjusted opioid overdose rate for 18-65-year-old adults 

in the county. We calculated these rates using restricted-access, individual-level multiple cause 

of death vital statistics data from the U.S. National Center for Health Statistics (NCHS) from 

January 1, 1999 to December 31, 2016.5 We followed the strategy recommended by the U.S. 

Centers for Disease Control and Prevention by first using ICD-10 underlying cause codes X40-

X44, X60-X64, X85, Y10-Y14 to identify drug overdose deaths and then using contributing 

cause codes T40.0-T40.4 to identify deaths specific to opioid overdoses.6,7 Doing so, we 

identified a total of 10,759 opioid overdose deaths of 18-65 year-old adults in the 112 sample 

counties during the study period. We then used these data, along with population counts from the 

U.S. Census Bureau,8 to compute age-adjusted rates per 100,000 individuals (based on a direct 

standardization method). Counties were assigned based on reported county of residence for each 

decedent in the NCHS data. We used a similar procedure to construct our secondary outcomes: 

rates of overall drug overdose mortality (ICD-10 codes X40-X44, X60-X64, X85, Y10-Y14), 

prescription opioid overdose mortality (subset of drug overdose deaths assigned contributing 

cause codes, T40.2, T40.3, and T40.4), and illicit opioid overdose mortality (subset of drug 

overdose death contributing cause codes, T40.0 and T40.1).7  

 

We examined overall drug overdose mortality as a secondary outcome in order to address 

potential bias from underreporting of opioids as a specific cause of drug overdose mortality 

during the study period.9 This potential bias includes differential changes in the likelihood of 

identifying opioids as the causal agent specifically related to plant closures (e.g., due to rising 
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overall drug overdose mortality rates raising concerns among medical examiners). The 

possibility of such bias is suggested by geographic variation in the identification of different 

contributing causes of drug overdose deaths.10 The concordant results for both opioid and overall 

drug overdose mortality (Figure 2) suggests that any bias from differential reporting was unlikely 

to have been substantial.  

 

We used the same procedures to construct subgroup-specific opioid overdose mortality rates 

reflecting each combination of age (18-34 versus 35-65), sex (women versus men), and 

race/ethnicity (non-Hispanic white versus all other).   

 

Section 4. Statistical model 

 

For each primary and secondary outcome, we estimated the following least squares multivariable 

regression model: 

 

(1)   𝑌𝑖𝑗𝑡 =   𝛼0 + ∑ 𝛼𝑝(𝐶𝑙𝑜𝑠𝑢𝑟𝑒𝑗𝑝)
7

𝑝=−5
+ 𝜇𝑖 + 𝜃𝑡 +  𝜀𝑖𝑗𝑡 

 

where i indexes the county, j the commuting zone within which the county is located, and t the 

calendar year. The subscript p refers to event years, which are annual intervals relative to the 

calendar year of automotive assembly plant closure. For example, period -3 refers to 3 years 

before plant closure. Event periods 5 or more years prior to plant closure were combined into a 

single bin, as were event periods 7 or more years after plant closure. This aggregation follows 

prior literature21 as a means of avoiding difficulties in interpreting coefficients due to sample size 

imbalances created by differences in the timing of plant closures. The variable Closurejp denotes 

a series of binary indicators = 1 if the closure of an automotive assembly plant in operation since 

1999 had occurred in commuting zone j during or before the calendar year associated with event-

time period p. Yijt denotes the outcome of interest. County fixed effects (denoted by i) captured 

time-invariant differences in socioeconomic and cultural characteristics across sample counties. 

Nationwide secular trends in the outcomes, for example, due to the Great Recession or 

differential changes in availability of prescription or illicit opioids were captured by calendar 

year fixed effects (denoted by t). 

 

This model estimates the difference in outcomes for leads and lags of plant closure relative to a 

reference year (event time -1) and relative to all manufacturing counties in commuting zones 

where a plant had not closed during the study period (i.e., for whom Closurejp is equal to zero for 

all event periods). These relative differences are captured by the coefficients p, estimates for 

which are plotted in all of the main and supplement figures.   

 

By allowing associations between exposure and the outcome to vary over time, our specification 

represents a generalization of the method of difference-in-differences - known as the “event 

study specification” in modern econometrics.22-24 Specifically, in cases where the timing of 

exposure varies across units and where effects vary with time, event study models are preferred 

to standard difference-in-differences models because the single coefficient reported in 

difference-in-differences analyses represents a weighted average of all combinations of 

comparisons between sample units.22 However, in some of these comparisons, units exposed 

earlier may serve as controls for units exposed later. If differences in outcomes are increasing 
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with event time (as is the case for the present study), the estimates from these particular 

comparisons will be attenuated toward the null. Hence, the single difference-in-differences 

estimate may provide a misleading estimate of the true association between exposure and 

outcome. The event study specifications, which also provide a more transparent test of violations 

of the parallel trends assumption required for causal inference,26 avoid this problem by indexing 

the reference point to time since the event (as opposed to calendar time) and by allowing 

associations to vary over time.  

 

For all models, we computed 95% confidence intervals adjusting for serial correlation in the 

outcome at the commuting zone level.27 We weighted all regressions by county population size 

at baseline (1999).  

 

Section 5. Sensitivity analyses 

 

A. Modelling overdose deaths as a count variable 

 

We estimated our main regression model (Equation 1) using least squares given this estimator is 

less prone to finite sample bias from the inclusion of numerous fixed effects (a well-known 

problem that arises with maximum likelihood estimators such Poisson or negative binomial 

regression28). We nevertheless assessed the sensitivity of our findings to this choice by modelling 

the number of opioid overdose deaths, using a generalized linear model with a negative binomial 

distribution and a log-link (and with county-year population specified as the exposure).29 The 

resulting coefficients can be interpreted as relative changes in mortality rates.  

 

The substantive findings were robust to using this alternate estimate strategy (eFigure 6). In 

particular, the estimates suggest that at 5 years after a plant closure, opioid overdose mortality 

rates increased by 85% (95% CI: 41%, 128%, p<0.001) in exposed counties relative to 

unexposed counties. (The corresponding estimate from our main specification implies a 75% 

increase relative to unexposed counties by the same time point.) 

 

B. Wild-cluster bootstrap-t procedure for variance estimation 

 

The Huber-White method to account for geographic clustering may result in standard errors that 

are biased downwards in cases where there are few clusters.30 What constitutes a small number 

of clusters depends on the application. Our main study sample specified 30 clusters (commuting 

zones), which is generally considered a large enough number of clusters according to 

conventional rules of thumb. Nevertheless, we tested the robustness of our statistical inference 

using the wild cluster bootstrap method.31 To implement this procedure, we used the Stata 

command -bootwildct- developed by Bansi Malde and Molly Scott (available at 

https://www.ifs.org.uk/publications/6231). As shown in eTable 2, the p-values on the event study 

coefficients were substantively unchanged when using this alternate procedure.  

 

C. Including counties from commuting zones excluded from main sample 

 

As discussed in Section 2, we restricted our sample to counties in the top quintile nationwide 

with respect to the share of employed residents working in the manufacturing sector, in order to 

https://www.ifs.org.uk/publications/6231
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identify areas of the country most likely to be economically affected by automotive assembly 

plant closures. However, doing so excluded counties in 18 of the 48 commuting zones with at 

least one operational automotive assembly plant as of 1999. To assess whether our results were 

sensitive to the inclusion of these commuting zones, we added to our main sample the county in 

each excluded commuting zone with the highest share of residents working in the manufacturing 

industry. Results for this alternate sample, which included 130 counties (37 exposed and 93 

unexposed), were similar to those for the main study sample (eFigure 7). 

 

D. Alternate control group 

 

Our primary regression models defined unexposed manufacturing counties as those located in 

commuting zones without an automotive assembly plant closure. We hypothesized that these 

unexposed counties were likely to follow similar pre-existing trends in the outcomes compared 

with exposed counties, given that they would also be subject to similar automotive industry-

specific social, economic, and cultural factors that may be relevant to population health. 

However, plant closures in one commuting zone may cause automotive workers in commuting 

zones where plants have remained open to experience economic uncertainty, which may be 

consequential for health.32 Another possibility is that automotive manufacturers preferentially 

closed plants in areas where their workers were experiencing downward trends in health.  

However, both the known rationales for specific plant closure decisions19 and the absence of 

differential pre-existing trends in the outcome between exposed and unexposed counties (Figure 

2) suggests that bias from selective plant closure is unlikely. 

 

These potential spillovers could violate the Stable Unit Treatment Value Assumption 

(SUTVA).26 To assess the robustness of our findings to this potential violation, we repeated the 

analysis with an alternate control group: manufacturing counties located in non-automotive 

commuting zones that were situated in the same states as commuting zones with automotive 

plant closures. The restriction of counties to the same states helps to ensure similar exposure to 

broad, regional trends in social or economic factors that could influence health outcomes. 

However, this control group should be less prone to cross-commuting zone spillovers (though the 

problem is not fully eliminated given that firms supplying automobile component parts, who 

would face the downstream consequences of plant closures, tend to locate in similar regions as 

automotive plants1). The estimates using this alternate control group were substantively similar 

to our main findings (eFigure 8), suggesting that cross-commuting zone spillovers are unlikely to 

bias our findings. 

 

E. Repeating the analysis under conditions expected to produce a null result 

 

We did not expect to find strong associations between automotive assembly plant closures and 

opioid overdose mortality in non-manufacturing counties (i.e., counties in the bottom four 

quintiles of the county workforce employed in manufacturing). Consistent with this expectation, 

the estimated associations between plant closure and opioid overdose mortality in non-

manufacturing counties were smaller in magnitude and not statistically significant (eFigure 9).  
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F. Selective migration 

 

The association between automotive assembly plant closures and rising opioid overdose 

mortality rates may reflect, in part, selective outmigration of individuals at lower risk of 

developing substance use disorders. While recent work in labor economics suggests that 

differential outmigration after adverse economic events may be minimal,12,33 we nevertheless 

examined whether manufacturing counties exposed to plant closures experienced greater (net) 

outmigration relative to unexposed manufacturing counties. 

 

We obtained intercensal, county-level data on net migration rates from the University of 

Wisconsin-Madison, Net Migration Patterns for US Counties database.34 We used these data to 

create net migration rates by each combination of age group (18-34 years versus 35-64 years) 

and sex. We investigated these groups separately given potential differences in the propensity to 

migrate, along with differential exposure to automotive assembly plant closures (Figure 3). 

Because these data are only available at intercensal (i.e., decadal) intervals, we could not 

estimate the event study specification in Equation 1. Instead, we estimated the following least 

squares regression model, for each age-sex group: 

 

(2)   ∆𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑖𝑗 =   𝛽0 + 𝛽1( 𝐶𝑙𝑜𝑠𝑢𝑟𝑒, 2005 − 2009𝑗) + 𝛽2(𝐶𝑙𝑜𝑠𝑢𝑟𝑒, 2006 − 2009𝑗)  +   𝜀𝑖𝑗𝑡 

 

where i indexes the county and j the commuting zone within which the county is situated. The 

outcome variable ∆𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑖𝑗  represents the difference in decadal net migration rates (i.e., 

between the 2010 and 2000 censuses and between the 2000 and 1990 census). Positive values of 

this measure reflect increasing in-migration (or decreasing outmigration) while negative values 

reflect either increasing outmigration or slowing of in-migration. The terms  ( 𝐶𝑙𝑜𝑠𝑢𝑟𝑒, 2002 −

2005𝑗) and (𝐶𝑙𝑜𝑠𝑢𝑟𝑒, 2006 − 2009𝑗) are binary indicators = 1 if the manufacturing county was 

located in a commuting zone where an automotive assembly plant in operation at the start of the 

study period closed during the specified time frame. We split closures to take into account any 

potential lagged effects of economic decline on migration.35 

 

Equation 2 assesses whether net migration rates changed more in manufacturing counties located 

in a commuting zone where an automotive assembly plant closed versus manufacturing counties 

not exposed to plant closure . Because the dependent variable is the change in decadal net 

migration rates, and the independent variables effectively capture a commuting zone change in 

the operational status of one or more automotive assembly plants, Equation 2 effectively 

represents a first-differences model. Like our event study specifications, which include county-

specific fixed effects, first-differences models adjust for potential confounding by time-invariant, 

county-specific variables, whether observed or unobserved.36 This specification is the closest 

analog to the model in Equation 1 that was possible to fit given the constraints of the migration 

data. 

 

Consistent with the recent labor economics literature,12,33 we found no evidence that automotive 

assembly plant closures were associated with net migration rates for any era of plant closure 

(eFigure 10). Across specifications, even the estimates with the largest magnitudes represent 

only a 0.13 standard deviation decrease in net in-migration (not outmigration) rates.  
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There are two caveats to these findings. First, the confidence intervals are relatively wide, so we 

cannot exclude the possibility that there were substantively meaningful differences in net out-

migration rates attributable to plant closures. Second, the findings only apply to a time frame of 8 

years post plant closure (because the last decadal time point to assess net migration was 2010 and 

the first closure in our sample was 2002). Thus, we cannot rule out differences in out-migration 

over a longer time frame. That said, the null findings here are useful to support the veracity of 

our event study estimates through at least 6 years of follow-up after plant closure.  
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eTable 1. Automotive Assembly Plants in Operation as of 1999, Location, and Closure Dates 

  
Company Location Date closed 

Plants included in main sample   

1 AM General Mishawaka, IN 
 

2 Autoalliance Flat Rock, MI 
 

3 BMW South Greer, SC 
 

4 DaimlerChrysler Belvidere, IL 
 

5 DaimlerChrysler Detroit, MI July 2017 

6 DaimlerChrysler Gaffney, SC 
 

7 DaimlerChrysler Detroit, MI 
 

8 DaimlerChrysler Sterling Heights, MI 
 

9 DaimlerChrysler Fenton, MO July 2009 

10 DaimlerChrysler Fenton, MO October 2008 

11 DaimlerChrysler Toledo, OH 
 

12 DaimlerChrysler Toledo, OH 
 

13 DaimlerChrysler Vance, AL 
 

14 DaimlerChrysler Warren, MI 
 

15 Ford Dearborn, MI February 2004 

16 Ford Hapeville, GA October 2006 

17 Ford Chicago, IL 
 

18 Ford Dearborn, MI 
 

19 Ford Detroit, MI 
 

20 Ford Louisville, KY 
 

21 Ford Lorain, OH December 2005 

22 Ford Louisville, KY 
 

23 Ford Wayne, MI 
 

24 Ford Avon Lake, OH 
 

25 Ford Norfolk, VA June 2007 

26 Ford Hazelwood, MO March 2006 

27 Ford Wayne, MI 
 

28 Ford Wixom, MI May 2007 

29 General Motors Lansing, MI May 2005 

30 General Motors Bowling Green, KY 
 

31 General Motors Detroit, MI 
 

32 General Motors Doraville, GA September 2008 

33 General Motors Flint, MI 
 

34 General Motors Roanoke, IN 
 

35 General Motors Janesville, WI April 2009 

36 General Motors Lansing, MI March 2006 

37 General Motors Lansing, MI 
 

38 General Motors Lansing, MI 
 

39 General Motors Warren , OH 
 

40 General Motors Moraine, OH December 2008 

41 General Motors Lake Orion, MI 
 

42 General Motors Pontiac, MI September 2009 

43 General Motors Spring Hill, TN 
 

44 General Motors Wentzville, MO 
 

45 Honda East Liberty, OH 
 

46 Honda Marysville, OH 
 

47 Nissan Smyrna, TN 
 

48 Subaru Lafayette, IN 
 

49 Toyota Georgetown, KY 
 

50 Toyota Princeton, IN 
 

51 Freightliner/Sterling Cleveland, NC 
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52 Freightliner Mt. Holly, NC 
 

53 International Springfield, OH 
 

54 Kenworth Chillicothe, OH 
 

55 Mack/Volvo Dublin, VA 
 

56 Mack Winnsboro, SC November 2002 

57 Mack Macungie, PA 
 

58 Peterbilt Madison, TN December 2009 

    

Plants not included in main sample   

59 DaimlerChrysler Newark, DE December 2008 

60 Ford Edison, NJ February 2004 

61 Ford Claycomo, MO  

62 Ford St. Paul, MN December 2011 

63 General Motors Linden, NJ April 2005 

64 General Motors Baltimore, MD May 2005 

65 General Motors Arlington, TX  

66 General Motors Kansas City, KS  

67 General Motors Oklahoma City, OK February 2006 

68 General Motors Shreveport, LA August 2012 

69 General Motors Wilmington, DE July 2009 

70 Mitsubishi Normal, IL November 2015 

71 Nummi Fremont, CA  

72 Freightliner/ 

Western Star 

Portland, OR  

73 International Garland, TX May 2013 

74 Kenworth Renton, WA  

75 Peterbilt Denton, TX  

 

Notes: List includes all plants involved in manufacturing of automobile, truck, SUV, and medium-heavy trucks 

identified using the search strategy described in Section 1. Plants included in the main sample are those situated 

within the 30 commuting zones with at least one manufacturing county (see Section 2 of this Supplemental 

Appendix for details on how manufacturing counties were defined). Of note, we identified four plants that opened 

after 2000 in commuting zones that previously did not have an automotive assembly plant: Honda (2001) in Lincoln, 

AL; Hyundai (2005) in Montgomery, AL; Nissan (2003) in Canton, MS; and Toyota (2006) in San Antonio, TX. 

These plants were not included in our analyses. 
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eTable 2. Event Study Estimates from Figure 2 of Main Text, Including Alternate 

Calculation of Standard Errors 

 
Independent Variable Estimates 

Closure, -5 years and prior  0.479 
 

[-2.377, 3.335] 
 

p=0.734 
 

wild p = 0.765 

Closure, -4 years  0.941 
 

[-1.164, 3.047] 
 

p=0.368 
 

wild p = 0.470 

Closure, -3 years -0.508 
 

[-2.163, 1.148] 
 

p=0.537 
 

wild p = 0.422 

Closure, -2 years 0.504 
 

[-1.872, 2.880] 
 

p=0.668 
 

wild p = 0.685 
  

Closure, -1 years [REF] 
  

Closure, +0 years 0.311 
 

[-2.488, 3.109] 
 

p=0.8222 
 

wild p = 0.852 

Closure, +1 years 1.572 
 

[-2.946, 6.090] 
 

p=0.482 
 

wild p = 0.518 

Closure, +2 year 3.555 
 

[-0.805, 7.915] 
 

p=0.106 
 

wild p = 0.159 

Closure, +3 years 5.023 
 

[0.819, 9.226] 
 

p=0.021 
 

wild p <0.001 
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Closure, +4 years 7.409 
 

[3.121, 11.70] 
 

p=0.001 
 

wild p <0.001 

Closure, +5 years 8.635 
 

[2.615, 14.66] 
 

p=0.006 
 

wild p = 0.016 

Closure, +6 years 7.668 
 

[2.911, 12.42] 
 

p=0.003 
 

wild p = 0.008 

Closure, +7 years and onward 8.201 
 

[2.097, 14.30] 
 

p=0.010 
 

wild p = 0.032 
  

N (county-years) 2,016 

N (counties) 112 

    

 
Notes: Coefficient estimates from the main event study model for the primary outcome of opioid overdose 

mortality rates (per 100,000 individuals aged 18-65 years). All models include county and calendar year 

fixed effects (see main text and Section 4 of this Supplemental Appendix for further details on the event 

study specification). Point estimates for each event time binary variable are bolded. 95% CI, adjusting for 

clustering at the commuting zone level, are in square brackets. Below these are p-values based on cluster-

corrected Huber-White standard errors. Wild cluster bootstrap p-values are denoted by “wild p.” Section 

5B of this Supplement provides further details on statistical inference using the wild-cluster bootstrap-t 

method. 
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eFigure 1. US Counties by Quintile of the Manufacturing Share of Workforce in 2000 

 

 
 
Notes: U.S. counties by quintiles of the share of employed residents above the age of 16 working in the 

manufacturing sector, based on data from the 2000 Decennial Census. Our main study sample consisted of all top-

quintile counties located in commuting zones with at least one automotive assembly plant in operation as of 1999 

(N=112 counties, see Figure 1 of main text).  
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eFigure 2. Trends in Share of Sample Manufacturing Counties Exposed to Commuting Zone 

Automotive Assembly Plant Closure  

 

 
 

Notes: Trend in the percentage of the 112 sample counties exposed to plant closures over time. The y-axis 

denotes the cumulative percentage of manufacturing counties in the study sample that were exposed to an 

automobile assembly plant closure. At the beginning of the study period in 1999, there were no counties 

exposed to plant closure. By the end of the study period in 2015, 29 counties, located in 10 commuting 

zones, had been exposed.  
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eFigure 3. Adjusted Difference-in-Differences Estimates for Overall Drug Overdose 

Mortality 

 

 
 

Notes: Coefficient estimates and 95% CIs from models identical to those estimated in Figure 2 of the main 

text except here the main outcome is overall drug overdose mortality. 
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eFigure 4. Adjusted Difference-in-Differences Estimates for Nonwhites, Stratified by 

Sex-Age Subgroups 

 

 

   

  

Notes: Coefficient estimates and 95% Cis from models identical to those estimated in Figure 4 of the main text 

except here populations of interest are non-white subgroups. See Figure 2 and Figure 4 notes for further details.  
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eFigure 5. Adjusted Difference-in-Differences Estimates by Class of Opioid Stratified by 

Demographic Subgroup  

 

 

 
 

Notes: Coefficient estimates and 95% Cis from models identical to those presented in Figure 3 of the main 

text, except here the samples are stratified by race/ethnicity-age-sex subgroups. See Figure 2 and 3 notes 

for further details. 
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eFigure 6. Adjusted Difference-in-Differences Estimates, Modelling Overdose Deaths as 

a Count Variable 

 

 
 

Notes: Coefficient estimates and 95% CIs from a generalized linear model where the number of opioid 

overdose deaths was specified as the dependent variable. We assumed a negative binomial distribution and 

a log-link, and the county-year population was specified as the exposure. The coefficient estimates can be 

interpreted as relative changes in mortality rates (see Section 5A of this Supplement for further details). 

Covariates and sample size are identical to the main specification (see main text and Figure 2 notes for 

further details).  
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eFigure 7. Adjusted Difference-in-Differences Estimates for an Expanded Sample That 

Includes Manufacturing Counties From Each Commuting Zone Excluded From Main 

Sample 

 

 
 

 

  
 

Notes: Coefficient estimates and 95% CIs from the same statistical model as in Figure 2 of the main text, 

except here we used an expanded sample of counties, comprising all counties from the main sample as well 

as the highest manufacturing share county from each commuting zone excluded from the main sample. See 

Section 5C for further details. The sample included 2,358 county-year observations (37 exposed and 94 

unexposed counties across 48 commuting zones; top panel).  
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eFigure 8. Adjusted Difference-in-Differences Estimates Using an Alternate Control 

Group  

 
 

  
 

Notes: Coefficient estimates and 95% CIs from the same statistical model as in Figure 2 of the main text, 

except here we used an alternate control group, which was comprised of manufacturing counties located in 

non-automotive commuting zones that were situated in the same states as commuting zones with 

automotive plant closures (top panel). Section 5D provides further details. The sample included 4,176 

county-year observations (29 exposed and 203 unexposed counties across 97 commuting zones; top panel). 

Model included county and calendar year fixed effects.  
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eFigure 9. Adjusted Difference-in-Differences Estimates in Nonmanufacturing Counties 

 

 

  
 

Notes: Coefficient estimates and 95% CIs from the same statistical model as in Figure 2 of the main text, 

except here the sample consists of non-manufacturing counties, defined as counties in the bottom four 

quintiles nationally with respect to the share of workers in the manufacturing industry in 2000 (see Section 

2 and Section 5E for further details). The sample included 2,052 county-year observations (52 exposed and 

62 unexposed counties; top panel), all within the same 30 commuting zones as the main sample. Model 

included county and calendar year fixed effects. Of note, in fully interacted models, post-event coefficient 

estimations were jointly statistically significantly different for manufacturing vs. non-manufacturing 

counties (F(8, 29) = 2.38, p=0.04). Differences in the pre-event coefficient estimates were not statistically 

significantly different between these groups (F(4, 29) = 1.11, p=0.37). 
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eFigure 10. Differences in Net Migration Rates by Exposure to Automotive Assembly Plant 

Closures 

 
 

Notes: Each graph presents estimates from Equation 2 (see Section 5F of this Supplemental Appendix) for 

the demographic subgroup listed in the header. The sample size for each regression is 112 counties (the 29 

exposed and 83 unexposed counties that form the main sample).  “Closures, 2002-2005” and “Closures, 

2006-2009” are binary indicators = 1 if that particular county experienced an automotive assembly plant 

closure in the given time period. Estimates represent the standard deviation change in county net migration 

rates. 95% CI are corrected for clustering at the CZ level. All estimates range between -0.13 to 0.05 s.d. of 

the dependent variable. 

 


