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1 Density decomposition using a density-fitting basis

Within the density-fitting framework two-center densities are approximated using an auxiliary-basis

(φRI
P (r)) as

ρpq(r) = χp(r)χq(r) =

Naux∑
P

dpqP φRI
P (r) (S1)

where χq(r) are the atomic orbitals and dpqP are the RI-expansion coefficients defined as

dabP =
∑
Q

(ab|Q)[J−1]QP (S2)

Equation S2 relies upon the following three-center two electron integrals

(ab|Q) =

∫
dr1

∫
dr2χa(r1)χb(r1)

1

r12
φRI
Q (r2) (S3)

while [J−1]QP is defined as:

[J ]QP =

∫
dr1

∫
dr2φ

RI
Q (r2)

1

r12
φRI
P (r2) (S4)

Then, starting from the definition of the electron density and using Eq. S1, we can write:
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ρ(r) =

NAO∑
ab

Dab χa(r)χb(r) (S5)

ρ(r) =

NAO∑
ab

Dab χa(r)χb(r) =

NAO∑
ab

Dab (

Naux∑
P

dabP φRI
P (r)) = (S6)

=

Naux∑
P

(

NAO∑
ab

Dab d
ab
P )φRI

P (r)) = (S7)

=

Naux∑
P

CPφ
RI
P (r)) (S8)

where Dab is the 1-electron reduced density matrix.

2 Symmetry-Adapted Machine Learning Model

The core idea of our density-learning framework consists in representing ρ in a non-orthogonal basis

set {φk} made of spherical harmonics and radial functions centered on each atom of the molecule,

i.e.,

ρ(r) =
∑

i∈{atoms}

∑
k

cikφk(r − ri) =
∑

i∈{atoms}

∑
nlm

cinlmRn(|r − ri|)Ylm
( ̂r − ri
|r − ri|

)
. (S9)

In a nutshell, one can ask to predict the expansion coefficients {cik} by training a symmetry-adapted

Gaussian process regression model on a set of N reference densities {ρ}N previously computed1. To

do so, symmetry adapted kernels2 are constructed from the atomic coordinates of the molecules in

order to represent the statistical correlations of the expansion coefficients, interpreted as spherical

tensors of a given angular momentum order l, that is klmm′(i, j) ≡ 〈cinlm, c
j
nlm′〉. Once these kernel

functions are computed for each angular momentum value included in the expansion of ρ(r), the

learning can be carried out and the spherical harmonic components of the density of any given

new molecule can be predicted. In compact notation, the vector cA that contains the predicted

expansion coefficients of a molecule A is obtained as follows

cA = kAMxM = kAM
(
KT

NMSNNKNM + ηKMM

)−1
KT

NMwN . (S10)

Here, the vector wN contains the projections 〈φ|ρ〉 of the N reference densities on the basis functions

and SNN is a block-diagonal matrix containing the spatial overlap 〈φ|φ′〉 between the basis functions

of each reference molecule. The value M identifies the number of atomic environments which can

be suitably selected to remap the density learning problem in a representative subset of the total
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number of atoms belonging to the ensemble of the N training molecules. The rectangular matrix

KNM contains the symmetry-adapted kernels coupling the atoms of the training set with the ones

of the sparse representative set, while the square matrix KMM only couples the atoms within the

sparse set. The parameter η needs to be empirically adjusted in order to reach the best compromise

between fitting accuracy and smoothness of the model. Note that the dimensionality of the final

problem to be solved is defined by M times the number of basis functions that are associated

with each selected atom. The outcome of the learning procedure is given by the vector xM which

contains the set of regression weights. These weights can be finally used in combination with the

kernel matrix kAM to obtain the predicted expansion coefficients for the molecule A.

It is worth noticing that if the basis functions were made orthogonal, then SNN = 1NN , and

the problem of learning ρ(r) can be conveniently recast into the problem of learning each set of

independent orthogonal projections. This is indeed exactly what is done in Ref. 3 by expanding the

electron density in a plane-wave basis set and learning each Fourier component of ρ(r) separately.

From a computational point of view, this framework is undoubtedly more convenient than having to

deal with all the set of density projections at once. However, we believe that the resulting increase

in complexity due to the use of a non-orthogonal basis is greatly paid back by the local nature of

our regression model, which allows for highly transferable predictions across very diverse chemical

and conformational subspaces.

Kernel functions that are covariant in O(3) have been constructed for each of these angular momen-

tum values, according to the l-SOAP formalism discussed in Refs. 2,4. In particular, an environment

cutoff of 4.0 Å and a Gaussian smearing of 0.3 Å have been used to define the SOAP-density around

each atom of the dataset. The resulting symmetry-adapted SOAP descriptors are sparsified with

farthest point sampling down to 1000 components. A non-linearity degree of order ζ = 2 has been

used to enhance the regression power. The representative set of atoms, needed to contract the

dimensionality of the density-learning problem, has been defined by selecting, with farthest point

sampling, the most diverse M atomic environments according to the scalar 0-SOAP metric. This

procedure accounts for a sparsification of the training set of more than an order of magnitude,

going from about 40’000 atomic environments to 1000 environments at the most. When solving

the regression problem of Eq. (S10), a regularization parameter η = 10−5 has been found to yield

optimal predictions.

2.1 Density Baseline

The direct application of the formula of Eq. (S10) to predict the all-electron density of a molecule

would imply that a great portion of the regression effort is spent on capturing the density contribu-

tions associated with the core-electrons. Given that these contributions are merely constants across

the dataset, it is convenient to apply a baseline to the reference densities and let the regression fo-
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cuses on the sole chemically driven fluctuations of ρ(r). This baseline is chosen such as considering,

for each radial function n, the average of the spherical components of the density across the dataset,

i.e., c̄n00. For each molecule A, these average components build up an effective density field ρ̄(r)

given by the superposition of spherically symmetric contributions. The projections of ρ̄(r) onto the

atomic basis functions can be eventually obtained by considering w̄A = SAc̄A, with c̄A a sparse

vector representation of the expansion coefficients which include the set of c̄n00. At this point, a

much more stable regression can be obtained by including the set of baselined projections wN −w̄N

in Eq. (S10), and adding the average density components c̄n00 back on the predicted expansion

coefficients.

3 Computational Details

All DFT computations have been performed with ORCA5 and a locally modified version of PySCF.6

In addition, the modified PySCF has been used for the density decomposition and to compute

density-fitting integrals through an interface with libcint.7 All the figures of densities, DORI map-

pings and electrostatic potentials have been generated using Paraview 5.6. The structures of the

polypeptides were taken from the crystallographic data of the Protein DataBank (PDB).8 Hydrogen

positions of the polypeptides were let relax at HF-3c9 as implemented in ORCA.

4 Comparison between SA-GPR and promolecular den-

sities

The superposition of atomic densities has been successfully used with the NCI analysis to qualita-

tively characterize non-covalent patterns in large molecular systems (such as DNA and proteins) at

a minimal computational cost. While, by construction, promolecular densities do not include the

effects of density relaxation, they are able to describe sufficiently well the low-density, low-gradient

regions typical of the non-covalent regions.10 In Figure 1, the example of the enkaphalin (PBD

ID: 4OLR) polypeptide is used to compare the density error with respect to ωB97X-D/cc-pVQZ

between the SA-GPR and the promolecular density.

As reported in Figure 1, the mean absolute percentage error of the promolecular density (22.97%)

is about 17 times larger than with SA-GPR (1.33%), for a similar computational cost once the

machine-learning model is trained. The consequences are well illustrated by the DORI analysis of

the non-covalent interactions in enkephalin. In particular, the use of promolecular density results

in spuriously fragmented DORI domains in the covalent region of the molecule. In addition, quan-

titative measures of the DORI error show large deviations in the non-covalent regions (e.g., both

in the basin volumes (Err. Vol.) and integration (Err. Int.)). As example, the Err. Vol. in the
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SA-GPR Promolecular

ερ = 1.33% ερ = 22.97%

Err. Vol. =  7.18%
Err. Int. = 3.43% 

Err. Vol. =  19.11%
Err. Int. = 150.57% 

Err. Vol. =  3.8%
Err. Int. = 14.5% 

Err. Vol. =  42.3%
Err. Int. = 27.7% 

Figure S1: (top) Predicted and promolecular density of enkephalin at three isovalues (0.5,
0.1, and 0.001 e− Bohr−3) enclosing the domain of integration for the Walker-Mezey L(a,a’)
similarity index with respect to ab-initio density. (middle) Charge density difference with
respect to the ab-initio electron density (isovalues ±0.01 e− Bohr−3). The mean absolute
percentage error is also reported. (bottom) DORI map of enkephalin (DORI isovalue: 0.9)
colored by sgn(λ2)ρ(r) in the range from -0.02 a.u. (red) to 0.02 a.u. (blue).

non-covalent DORI domain between the phenilalanine and the leucine side-chain (see Figure) using

the promolecular density are nearly 3 times larger than with SA-GPR. DORI integrals shows a

dramatic overestimation of the density in the basin with the promolecular approach (150% of the

ab-initio value), compared to only 3.43% for the predicted DORI. Overall, for a similar gain in

computational cost, SA-GPR captures the distortion of the atom-in-molecule densities much more

accurately than the promolecular approach.
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5 Volume and Integral of the DORI basins

The error on DORI can be quantified through the analysis of the volume of the basins and through

the integration of the electron density in the volume, which they enclose. Table S1 reports these

quantities for the non-covalent basins of the three representative dimers reported in the manuscript.

The absolute percentage deviation is reported with respect to the ab-initio (cc-pVQZ-RI) value.

Table S1: Volume (DORIvol) and integrals (DORIint) of the electron density within DORI
[0.9]-domains in a.u. computed from predicted and ab-initio electron densities.

Ab-Initio

(cc-pVQZ-RI)

SA-GPR

Predicted

Deviation

(absolute deviation %)

DORIvol DORIint DORIvol DORIint DORIvol DORIint

London

Dispersion
5.292 0.0259 5.393 0.0261

-0.101

(1.9%)

-0.0002

(0.77%)

Electrostatics 0.947 0.0318 0.938 0.0320
0.009

(0.95%)

-0.0002

(0.63%)

Mixed

Regime
9.270 0.0551 9.114 0.0564

0.156

(1.68%)

-0.0013

(2.36%)

6 Comparison between cc-pVXZ and cc-pVXZ-RI

With respect to standard quantum chemical basis sets, density-fitting auxiliary basis (RI-basis)

are characterized by higher angular momenta (mainly lmax + 1), slightly more diffuse functions and

are, in general, not contracted.11–13 To further analyze which of these properties has the strongest

impact on the accuracy of the density decomposition, we computed the decomposition error on the

water molecule with the cc-pVXZ series (Figure 2).

As mentioned in the main text, the addition of diffuse functions (aug-cc-pVXZ series) is not discrim-

inant for the performance and actually adds instabilities in the overlap matrix inversion. Starting

with s functions only for cc-pVQZ [cc-pVQZ(s-only)] and gradually adding back all the other an-

gular momenta shows that the overall performance of a basis is already largely determined by l=0,

as already discussed in our previous work. The contribution of higher angular momenta is determi-

nant for capturing the deviation from the spherical/isotropic behavior of the density, but is not the

main source of difference with the RI-basis. Instead, decontraction is the key element, which alone

leads to an error reduction of an order of magnitude. This result is not surprising considering that

decontraction of the original basis set (at least in the core region), prior to exponent optimization,
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Figure S2: Decomposition error of the electron density for a single water molecule: evolution
of the absolute percentage error depending on the choice of basis set. In particular adding
diffuse functions, gradually including higher angular momenta, upon decontraction and using
resolution of identity auxiliary basis.

is commonly used as a first step for the generation of density-fitting auxiliary basis sets.13 Beside

this aspect, decontraction results in a larger and more flexible basis, more adapted to capture the

feature of the density field.
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J. Am. Chem. Soc, 2010, 132, 6498–6506.
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