SUPPLEMENTAL MATERIAL

Replacing saturated fat with unsaturated fat in western diet reduces foamy monocytes and atherosclerosis in male *Ldlr*^{-/-} mice

Zeqin Lian, Xiao-yuan Dai Perrard, Xueying Peng, Joe L. Raya, Alfredo A. Hernandez, Collin G. Johnson, William R. Lagor, Henry J. Pownall, Ron C. Hoogeveen, Scott I. Simon, Frank M. Sacks, Christie M. Ballantyne, Huaizhu Wu

From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Department of Molecular Physiology and Biophysics (W.R.L.), Department of Pediatrics (C.M.B., H.W.), and Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX; Houston Methodist Research Institute, Houston, TX (H.J.P.); Department of Biomedical Engineering, University of California, Davis (A.A.H, S.I.S.); Department of Nutrition, Harvard School of Public Health, and Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA (F.M.S.); and Institute of Materia Medica, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.P).

Supplemental Tables

Table I. Diet composition				
Diet components (% by weight)	ND	WD	EVOND	
Saturated fat	1.4	13.3	2.6	
MUFA	1.54	5.9	13.4	
PUFA	2.36	0.9	4.3	
Cholesterol	undetectable	0.2	0.2	
Carbohydrates	58	49	49	
Protein	25	19	19	

Fat source in Western diet (WD) is milkfat (21% w/w) and in extra-virgin olive oil and nuts diet (EVOND) is extra-virgin olive oil (15% w/w), walnuts (3% w/w), almonds (1.5% w/w), and hazelnuts (1.5% w/w).

Fatty acid (% of total measured)	Nomenclature	ND	WD	EVOND
Saturated fat				
Capric acid	C10:0	0.1	3.58	0.14
Lauric acid	C12:0	0.25	2.47	0.11
Myristic acid	C14:0	2.27	10.93	0.32
Palmitic acid	C16:0	29.52	52.71	12.95
Stearic acid	C18:0	5.06	9.58	1.65
Monounsaturated fat				
Palmitoleic acid	C16:1	1.93	0.7	0.31
Oleic acid	C18:1	22.39	18.56	72.52
Polyunsaturated fat				
Linoleic acid	C18:2	34.63	0.61	11.75
α-linolenic acid	C18:3	0.9	0.34	0.12

Table II. Major fatty acid composition in the diets

Arachidonic acid	C20:4	1.01	0.25	0.09
Eicosapentaenoic acid (EPA)	C20:5	1.82	0.02	0.01
Docosahexaenoic acid (DHA)	C22:6	0.14	0.24	0.002

Mouse genes	Primers	Sequences
	Forward	CGACTTCAACAGCAACTCCCACTCTTCC
GAPDH	Reverse	TGGGTGGTCCAGGGTTTCTTACTCCTT
Srohf1	Forward	GATGTGCGAACTGGACACAG
Stept I	Reverse	CATAGGGGGCGTCAAACAG
SCD1	Forward	TTCTTGCGATACACTCTGGTGC
	Reverse	CGGGATTGAATGTTCTTGTCGT
EVO	Forward	AAGTGTCTGGACTGTGTCATTTTACA
FA5	Reverse	TTAATTGTGGGATCAGGAGAGCAT
CD36	Forward	TCCAGCCAATGCCTTTGC
	Reverse	TCAGTGCAGAAACAATGGTTGTC

Table III. Primer sequences used in qPCR

Supplemental Figure I

Supplemental Figure II

Supplemental Figure II. Fluorescent isotype control staining of on-chip adhesion assay of monocytes (20x original magnification). PE, rat IgG2a κ isotype control; FITC, Alexa Fluor® 488 Armenian hamster IgG isotype control. See Figure 5B for positive staining.

Supplemental Figure III

Supplemental Figure III. Fluorescent isotype control staining of aortic sinus lesions (10x original magnification). PE, hamster IgG1 κ isotype control; FITC, rat IgG2b κ isotype Ccontrol. See Figure 6C for positive staining.

Supplemental Figure IV

Supplemental Figure IV. Body composition, plasma glucose and insulin levels, and insulin tolerance test (ITT) in mice on WD or EVOND for 3 months. A, Percentages of lean mass and fat mass were measured using Lunar scanner. B, Plasma glucose and insulin levels. C, Insulin tolerance test. Data are shown as mean \pm SEM. n=8/group, *p<0.05.

ITT

30

45

60

tímes (minutes)

WD

90

EVOND

120

Supplemental Figure V

Supplemental Figure V. Malondialdehyde (MDA) levels measured by the thiobarbituric acid–reactive substances (TBARS) assay in plasma from mice on WD and EVOND. Data are expressed as mean \pm SEM. n=7/group, **p<0.01.

Supplemental Figure VI

Supplemental Figure VI. Mice on EVOND for 6 months had improved monocyte phenotypes. A, SSC value of circulating monocytes of mice on different diets. B, EVOND reduced CD11c expression on CD36⁺ monocytes compared to WD. Data are shown as mean \pm SEM. n=7/group, *p<0.05, **p<0.01.

Supplemental Figure VII

Supplemental Figure VII. EVOND reduced monocyte uptake of triglyceride-rich lipoprotein (TGRL) with or without lipoprotein lipase (LPL) pretreatment in vitro. A, SSC value of CD36⁺ monocytes (normalized fold change to no TRGL treatment control) and B, MFI level of CD36 on monocytes (from ND-fed *Ldlr^{-/-}* mice), after incubation with TGRL alone or TGRL plus LPL from mice on WD or EVOND (n=3/group). Data are shown as mean \pm SEM. *p<0.05, ***p<0.001.

Supplemental Figure VIII

Supplemental Figure VIII. Mice on EVOND vs. WD for 6 months had greater reductions in atherosclerosis than those on diets for 3 months. A, Quantification of oil red O-positive lesion size of the whole aorta from mice on WD or EVOND. B, Representative en face oil red O staining of whole aorta. Data are shown as mean \pm SEM. n=7/group, *p<0.05. Α

(6 months) 50₇ * (%) 40-30-20-10-30-20-10-0 WD **EVOND**

Whole aorta

WD EVOND

Β

Supplemental Figure IX

В

3 months

Supplemental Figure IX. Quantification of atherosclerotic lesions at aortic branch and arch areas and descending aorta from mice on WD or EVOND. A, Schematic view of aorta areas for lesion size quantification. B, Lesion size as percentage of the whole aorta area from mice on WD or EVOND for 3 months (n=8/group) or 6 months (n=7/group). Data are shown as mean \pm SEM. *p<0.05, **p<0.01.

Major Resources Tables

Animals (in vivo studies)

Species	Vendor or Source	Background Strain	Sex
B6.129S7-Ldlr ^{tm1Her} /J	The Jackson Laboratories	C57BL/6J	male

Animal breeding

	Species	Vendor or	Background Strain	Other Information
		Source		
Parent - Male	B6.129S7-	The Jackson	C57BL/6J	
	Ldlr ^{tm1Her} /J	Laboratories		
Parent - Female	B6.129S7-	The Jackson	C57BL/6J	
	LdIr ^{tm1Her} /J	Laboratories		

Antibodies

Target antigen	Vendor or Source	Catalog #	Working	Lot # (preferred
			concentration	but not required)
PE anti-mouse	eBioscience	12-1152-83	0.06µg/100µL	
CD115				
FITC anti-mouse	Bio-Rad	MCA1322F	0.1µg/100µL	
CD204	Laboratories			
FITC anti-mouse	Bio-Rad	MCA2748F	1μg/100μL	
CD36	Laboratories			
PerCP/cy5.5 anti-	eBioscience	45-0114-82	0.25µg/100µL	
mouse CD11c				
PE anti-mouse	eBioscience	12-7321-41	0.125µg/100µL	
TNFα				
PE anti-mouse IL-	eBioscience	12-7114-82	0.06µg/100µL	
1β				
FITC anti-mouse	BD Biosciences	553323	5µg/mL	
Mac3				
PE anti-mouse	eBioscience	12-0114-82	2µg/mL	
CD11c				
Alexa Fluor 488	Biolegend	117313	5µg/mL	
anti-mouse CD11c				
APC anti-mouse Ly-	eBioscience	17-5932-82	0.125µg/100µL	
6C				

PerCP-Cyanine5.5	eBioscience	45-4801-82	0.5µg/100µL	
anti-mouse F4/80		40.4000.04		
PE Hamster IgG1 ĸ	eBioscience	12-4888-81	2µg/mL	
Isotype Control				
FITC Rat IgG2b, к	BD Biosciences	556923	5μg/mL	
Isotype Control				
PE Rat IgG2a kappa	eBioscience	12-4321-80	0.06µg/100µL	
Isotype Control				
Alexa Fluor [®] 488	Biolegend	400923	5µg/mL	
Armenian Hamster				
IgG Isotype Ctrl				
APC Rat IgG2c, к	Biolegend	400713	0.125µg/100µL	
Isotype Ctrl				
Antibody				
PerCP-Cyanine5.5,	eBioscience	45-4888-80	0.25µg/100µL	
Armenian Hamster				
IgG Isotype Control				
PerCP-Cyanine5.5,	BD Biosciences	550765	5µg/mL	
Rat IgG2a, к Isotype				
Control				
FITC Rat IgG2a, к	BD Biosciences	554688	1μg/100μL	
Isotype Control				