Suppl. Table 1: Analysis of variance of peak areas (log-scale)

Source	d.f.	SS	SS (%)	MS	p	Coef. variance ¹	Homogeneity of variance ²
Line	8	1094.88	6.05%	136.86	< 0.001	16.3% - 20.9%	F=1.42 <i>p</i> =0.184
Compound	120	15484.75	85.60%	129.04	< 0.001	2.2% - 22.1%	
Line x Compound	960	1490.69	8.24%	1.55	< 0.001		
Compound x Replicate	242	2.35	0.01%	0.01	0.106		
Error	1935	16.76	0.09%	0.01			
Total	3266	18089.44					

A detailed analysis of repeated estimates (3 independent repeats) of phospholipid profiles confirmed a high degree of repeatability of the experimental outcomes. Analysis of variance (performed on log-scaled peak areas) revealed coefficient of variance in the range of 16.1 - 22.1% which confirms effective normalization of the peak data base on logarithmic transformation. Random error exhausted only 0.09% of the overall experimental variance (calculated as a proportion of the total sum of squares). Furthermore, test of homogeneity of variance among compared cell lines proved acceptable homogeneity (p = 0.184) which enables a direct comparison of lipid profiles among lines.

d.f. degrees of freedom; SS sum of squares; MS mean sum of squares

¹ range of coefficients of variance in given stratification

² Levene test