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Analysis of data error and application in simulations

We describe the construction of an empirical genotype error profile in Section 1. Information

derived from the error profile was used to

• reproduce realistic rates of error in simulated data (described in Section 2),

• develop a method for detecting shared haplotype segments while being robust towards

data error when applied to real genomic data sets (Section 3), and

• evaluate the performance of GEVA (which includes the method for shared haplotype

detection) and characterise the effects on age estimation in simulations of large sample

data before and after the inclusion of error (Section 4).
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1 Assessment of genotype error in genomic data

Any assessment of error in empirical data requires the existence of an error-free “gold stan-

dard” against which data can be compared; provided that data were obtained on the same

biological sample. We used genotype data from the Illumina Platinum Genomes (IPG) project

as a reference “truthset” [1],* against which we assessed error in matched data from the 1000

Genomes Project (TGP) [2];† for human assembly GRCh37 (hg19), which are available for

both panels.

In the following, we use g to denote the assumed true genotypic state (as seen in IPG),

and g̃ to denote the genotype that has been observed in the assessed data set (TGP), at a given

locus and for the same individual. We define the coefficient ei→j to denote the rate at which

a true genotype gi was observed as genotype g̃j , where the subscripts i, j ∈ {0, 1, 2} indicate

the genotypic state; homozygous for the reference allele (0), heterozygous (1), or homozygous

for the alternative allele (2).

1.1 Data preparation

The TPG sample comprises 2,504 individuals sequenced (or genotyped) at >80 million SNPs,

for which data has been generated using a combination of low-coverage whole-genome

sequencing (> 4×), high-coverage exome sequencing (> 50×), and microarray genotyping [2].

Data from IPG comprises 4.7 million SNPs generated using high-coverage whole-genome

sequencing of a 17-member, three-generation family of European ancestry (CEPH 1463);

namely, four individuals in the founder generation, two in the parental generation, and eleven

children. The IPG sample has been sequenced at 50× coverage on Illumina HiSeq 2000 and

variants have been called in accordance with different methods to resolve conflicts among

different call sets. The two parents (IDs NA12877 and NA12878) have been additionally

sequenced at 200× coverage and variant data has been validated based on Mendelian

inheritance constraints from pedigree information [1].

Cell lines from CEPH 1463 are a well-characterized model system and have been sequenced

or genotyped in several studies. Data for individual NA12878 was available in both the IPG

and TGP panels. We compared genotype data that we extracted from both panels for this

individual, where the genotypic state observed in IPG was assumed to be the “true” state.

Although the possibility that IPG retained misclassified genotypes at a certain fraction of

variant sites cannot be excluded, we assumed this fraction to be negligibly small. Likewise,

the impact of other sources of error, such as somatic mutations that occurred in the sampled

biological material and thereby may produce different results when processed on different

platforms, were assumed to be negligible.

We extracted genotype data for all autosomes and matched sites by chromosome position

between the two panels. We only considered biallelic SNPs, and we excluded sites at which the

* https://emea.illumina.com/platinumgenomes.html
† ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/release/20130502/
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reference or alternate alleles were inconsistent between IPG and TGP. Data were additionally

filtered using the accessibility mask available from IPG, thereby retaining only sites called

with high confidence in IPG. Conversely, however, we did not filter sites based on high-

confidence regions available for the TGP panel, due to the underlying intention to measure

error as typically encountered in analyses of genomic data. The matching processes is

illustrated in the figure below.

Schematic of the genotype matching process. Genotype information of individual NA12878 were extracted
from the Illumina Platinum Genomes (IPG) truthset and data from the 1000 Genomes Project (TGP) Phase 3,
from all autosomes, and sites were matched by chromosome position (GRCh37). We used the accessibility
mask available for the IPG panel to retain variant sites called with high-confidence (indicated by gaps in the
figure). Sites were removed if reference or alternate alleles did not match between IPG and TGP. Because the
reference truthset (IPG) did not contain genotypes homozygous for the reference allele, these were assumed
from high-confidence regions if present in the assessment dataset (TPG); indicated by left-pointing arrows.
Figure modified from [3].

Note that available IPG data did not contain variants called as being homozygous for the

reference allele (g0). This is because the high-confidence regions in IPG have been identified

in the individual call sets by collating sites that were called as being homozygous for the

reference allele and monomorphic in the sample [1]. Variants homozygous for the alternate

allele (g2) have not been removed. Here, we made the following assumption to be able to

measure error proportions pertaining to each genotypic state. The true state was assumed to

be of the g0 type if the position of a variant site in TGP was within high-confidence regions of

the IPG accessibility mask. We assumed that high-confidence intervals encompassed variants

which would have been reported as a different type otherwise.

1.2 Genotype error profile

We measured genotype error at 76 million comparisons between IPG and TGP. Of those,

73.2 million were homozygous for the reference allele. While the vast majority of genotypes
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(>99%) have been called (or typed) without error, we found 0.08% of genotypes to be

misclassified. The confusion matrix given in the table (below) shows the overall proportion

of states observed per true genotypic state. We found that the density of erroneous genotypes

increased towards the telomeric and centromeric regions on each chromosome (see panel A

in the figure shown on Page 5), where we see error densities of >0.2% on all chromosomes,

but >1% on most chromosomes, on a genome-wide background of ∼0.1% on average.

Relative error rates measured per genotype class. Genotype data from individual NA12878 was available
at 76 million comparisons between the Illumina Platinum Genomes (IPG) truthset and the 1000 Genomes
Project (TGP) across autosomes. Error rates were calculated as the relative proportion a given true genotype gi
was observed as g̃j , where i, j ∈ {0, 1, 2}; thus, summing to 100% per column. The total number of genotypes
assessed per true genotype class is given below.

Observed

genotype

True genotype

g0 g1 g2

g̃0 99.942% 0.550% 0.034%

g̃1 0.041% 99.282% 0.231%

g̃2 0.017% 0.168% 99.735%

Total 73,211,532 2,076,098 1,326,955

Next, we constructed a frequency-dependent genotype error profile. Assessed sites were

assigned their population frequency as observed in the TGP sample and then pooled into

200 evenly distributed frequency bins. We calculated

ei→j = P (gi → g̃j |f), for i, j ∈ {0, 1, 2} (1)

as the relative rate a true genotype gi was observed as g̃j for sites at allele frequency f

(recorded at the mean per bin), and normalized to sum to 1 per true genotype class;∑2
j=0 ei→j = 1. These results are shown in panel B of the figure on Page 5.
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Genotype error measured in data from the 1000 Genomes Project. Genotype error was measured at
76 million comparisons between the Illumina Platinum Genomes (IPG) truthset and the 1000 Genomes
Project (TGP), on genotype data extracted for the same individual (NA12878) from all autosomes. Panel A
shows measured error densities by region on Chromosomes 1-22. The density of misclassified genotypes
(g 6= g̃) was calculated in equally sized chunks of 1 Mb size along the length of each chromosome. Error
density was calculated as the number of misclassified genotypes divided by the total number of genotypes per
chunk; percentage shown on log-scale. Colors indicate the number of genotypes per chunk (see legend). The
ruler at the bottom indicates the physical length per chromosome, where longer tick marks sit 10 Mb apart.
Panel B shows the confusion matrix of relative error measured per genotypic class, given the allele frequency
at matched sites in the TGP sample. The set of matched genotypes was pooled into 200 equally sized allele
frequency bins. Relative error, ei→j , was calculated by counting gi observed as g̃j and dividing by the sum of
gi per frequency bin; for i, j ∈ {0, 1, 2}. Colors indicate the number of genotypes per bin (see legend).
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2 Generation of simulated data

We performed coalescent simulations using msprime software [4]. The software stores the

history of the simulated sample, which can be queried in downstream analyses through its

python interface. We used data generated from two main simulations (described below); in

the following referred to as data sets A and B. We further modified haplotype data in a copy

of data set B to include empirically estimated rates of error (Section 2.1); in the following

referred to as data set B′. A copy of this data set was further modified by performing in silico

haplotype phasing (Section 2.2); in the following referred to as data set B′′. The process of

generating data sets B, B′, and B′′ is summarized in the figure shown below.

Schematic of the data generation process. The figure summarizes the generation of data sets B (blue), B′
(orange), and B′′ (red). We performed coalescent simulations using msprime software [4], which produced a
sample of haplotype sequences and a corresponding record (meta data) of the genealogical history of the
simulated sample. Haplotype data was stored in variant call format (VCF), in which haploid sequences were
arranged in pairs to form diploid individuals. We used this sample configuration to introduce error by
scanning along the paired sequence in each individual, but where we used the frequency-dependent genotype
error profile constructed in Section 1 to introduce error on haplotype-level. A given allelic pair, a, was
re-sampled as ã with probability P (a→ ã|f), where f is the sample allele frequency at the current site; see
Equation (2). We further modified the resulting haplotype data set by performing in silico haplotype phasing
using SHAPEIT2 [5] after conversion to genotype data. Because these data were derived from the same original
data set, its simulation record can be queried in downstream analyses of each generated data set. However,
note that genealogical information may not be retrieved conclusively in data after haplotype phasing.

Simple demographic model simulation (A). We simulated a sample of N=1,000 haplo-

types of 100 Mb length, with Ne=10,000 and constant and equal mutation and recombination

rates (µ = 1× 10−8, r = 1× 10−8, per base per generation). The full command to simulate

this data set is given in Script 1 (below).
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Script 1. Simple demographic model; single demographic unit without migration, constant population size, and
constant and equal mutation and recombination rates.

1 import msprime
2 data = msprime.simulate(Ne = 10000,
3 sample_size = 1000,
4 mutation_rate = 1e-08,
5 recombination_rate = 1e-08,
6 length = 100000000)
7 data.dump("history.hdf5") # simulation record
8 with open("sample.vcf", "w") as vcf_file:
9 data.write_vcf(vcf_file, ploidy = 2) # output haplotype data in VCF file

Complex demographic model simulation (B). We simulated a sample of N = 5, 000

haplotypes (Ne = 7, 300; µ = 2.35× 10−8 per base per generation) under a demographic

model that recapitulates the human expansion out of Africa [6], with population growth

and migration between three major populations (African, Asian, European). The simulation

was conducted with variable rates of recombination, for which we used the genetic map for

Chromosome 20 from HapMap (Phase 2; GRCh37) [7], which also determined the length

of the simulated region (∼63 Mb). The full command to simulate this data set is given in

Script 2 (below).

Script 2. Complex demographic model; out-of-Africa model following [6], with population growth and
migration between three major populations (African, Asian, European), with constant mutation rate, and
variable recombination rates in Chromosome 20 from HapMap (Phase 2; GRCh37) [7]. Script modified from the
msprime manual (https://msprime.readthedocs.io).

1 import msprime
2 import math
3 rec_map = msprime.RecombinationMap.read_hapmap("genetic_map_GRCh37_chr20.txt")
4 mut_rate = 2.35e-8
5 N_A = 7300
6 N_B = 2100
7 N_AF = 12300
8 N_EU0 = 1000
9 N_AS0 = 510

10 generation_time = 25
11 T_AF = 220e3 / generation_time
12 T_B = 140e3 / generation_time
13 T_EU_AS = 21.2e3 / generation_time
14 r_EU = 0.004
15 r_AS = 0.0055
16 N_EU = N_EU0 / math.exp(-r_EU * T_EU_AS)
17 N_AS = N_AS0 / math.exp(-r_AS * T_EU_AS)
18 m_AF_B = 25e-5
19 m_AF_EU = 3e-5
20 m_AF_AS = 1.9e-5
21 m_EU_AS = 9.6e-5
22 population_configurations = [
23 msprime.PopulationConfiguration(sample_size=0, initial_size=N_AF),
24 msprime.PopulationConfiguration(sample_size=5000, initial_size=N_EU, growth_rate=r_EU),
25 msprime.PopulationConfiguration(sample_size=0, initial_size=N_AS, growth_rate=r_AS)
26 ]
27 migration_matrix = [
28 [ 0, m_AF_EU, m_AF_AS],
29 [m_AF_EU, 0, m_EU_AS],
30 [m_AF_AS, m_EU_AS, 0],
31 ]
32 demographic_events = [
33 msprime.MassMigration(time=T_EU_AS, source=2, destination=1, proportion=1.0),
34 msprime.MigrationRateChange(time=T_EU_AS, rate=0),
35 msprime.MigrationRateChange(time=T_EU_AS, rate=m_AF_B, matrix_index=(0, 1)),
36 msprime.MigrationRateChange(time=T_EU_AS, rate=m_AF_B, matrix_index=(1, 0)),
37 msprime.PopulationParametersChange(time=T_EU_AS, initial_size=N_B, growth_rate=0, population_id=1),
38 msprime.MassMigration(time=T_B, source=1, destination=0, proportion=1.0),
39 msprime.PopulationParametersChange(time=T_AF, initial_size=N_A, population_id=0)
40 ]
41 data = msprime.simulate(Ne = N_A,
42 mutation_rate = mut_rate,
43 recombination_map = rec_map
44 population_configurations = population_configurations,
45 migration_matrix = migration_matrix,
46 demographic_events = demographic_events)
47 data.dump("history.hdf5") # simulation record
48 with open("sample.vcf", "w") as vcf_file:
49 data.write_vcf(vcf_file, ploidy = 2) # output haplotype data in VCF file
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2.1 Integration of error in simulated data

The frequency-dependent genotype error profile constructed in Section 1 was used to modify

a copy of simulated data set B, but where we introduced error on haplotype-level. This

modified version is referred to as data set B′. We first sorted haplotypes into pairs to form

diploid individuals composed of two allelic sequences. Note that msprime already provides

the option to output simulated haploid sequences in variant call format (VCF) for diploids.

Alleles are encoded as 0s and 1s for the ancestral and derived allelic states, respectively.

There are four possible ordered pairs of alleles; namely

a00 = (0, 0), a01 = (0, 1), a10 = (1, 0), a11 = (1, 1).

We scanned along the paired sequence of each individual, where, for a given allelic pair a,

we sampled ã from the set of possible pairs {aij}i,j∈{0,1}, with probability according to the

empirically determined rate of genotype error; given by

P (a→ ã|f) =

ã00 ã01 ã10 ã11


e0→0
e0→1
2

e0→1
2 e0→2 a00

e1→0 e1→1 0 e1→2 a01

e1→0 0 e1→1 e1→2 a10

e2→0
e2→1
2

e2→1
2 e2→2 a11

(2)

where f is the allele frequency in the simulated sample at the current site along the sequence.

Recall that the coefficient ei→j captures the relative rate of error per genotypic class at a

set of recorded allele frequencies; see Equation (1). At sites where the observed frequency

did not match to frequencies recorded in the error profile, we used linear interpolation to

approximate error rates, which we again normalized to sum to 1 per true genotype class

(corresponding to rows in Equation 2).

2.2 Additional haplotype error through in silico phasing

We used a copy of data set B′ (described above) to introduce additional errors through

in silico haplotype phasing. Note that haplotype sequences were already sorted to form

diploid individuals in the generated VCF output, and we maintained this configuration after

the integration of data error. We computed the genotype sequence per individual as the sum

of alleles at each position. This converted data set was then used to statistically re-estimate

haplotypes without a reference panel using SHAPEIT2 [5]. The haplotype phasing process was

expected to introduce single-site (“flip”) and long-range phase (“switch”) errors.
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3 Shared haplotype estimation using a simple hidden Markov

model (HMM)

We have developed a hidden Markov model (HMM) to locally infer the region a given pair

of chromosomes (concordant or discordant) share by descent from their MRCA at a focal

position. Relative to a given target site in the genome, the shared haplotype segment is

delimited by ancestral recombination events that occurred independently to the left and

right-hand side in either of the two lineages considered. Our HMM is constructed as a

two-state model in which the local genealogy at a given target site is distinguished from any

peripheral genealogies that generated the variation seen outside the local segment. The two

states are denoted by H0 (local) and H1 (peripheral). We scan the sequence from the position

of a given target site until the end of the chromosome, which we do in two independent runs

for the sequence to the left and to the right-hand side. The Viterbi algorithm is then used

to decode the hidden state sequence from which we find a recombination breakpoint at the

first occurrence of the H1 state. If the H0 state was inferred at all sites until the end of the

chromosome, we record the breakpoint to sit beyond the last position of the sequence. The

breakpoints inferred on both sides identify the sequence interval which encloses the local

shared haplotype segment. This is illustrated in the figure shown below. In cases where the

H1 state was inferred throughout (including the focal site at the initial position), we exclude

the current (concordant or discordant) haplotype pair from downstream analyses.

Schematic of the hidden Markov model (HMM). Panel A gives a graphic representation of the hidden state
transitions and observation state emissions of the HMM. We define two hidden states to discriminate the local
genealogy (H0) which generated the variation observed at and around a given target site from any peripheral
genealogies (H1) outside the focal segment. The observation sequence is encoded as genotypes (G0, G1, G2) by
combining alleles (encoded as 0s and 1s) along the sequence of the haplotype pair considered. The probability
of transition from the local to the peripheral state is denoted by ϕ. The HMM is constructed using a left-to-right
architecture in which transitions from a higher to a lower-numbered state have zero probability. Emission
probabilities were determined using an empirically generated model with realistic rates of data error. Panel B
shows the HMM trellis, illustrating (from bottom to top) how two haplotype sequences are paired to form the
observation sequence. Starting at the position of a given focal variant, the HMM is applied independently to
the sequence to the left and right-hand side, to infer the nearest recombination breakpoints that delimit the
enclosed shared haplotype segment.
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The observation sequence is constructed from SNP variant data from the two sequences

considered. Alleles are encoded as 0s and 1s, denoting the reference and alternate allele,

respectively. We assume that the alternate allelic state has been correctly assigned to the

derived allele. The two sequences are paired such that each site is represented as an unsorted

pair of alleles (genotypes) with three possible observation states; namely

G0 = {0, 0}, G1 = {0, 1}, G2 = {1, 1}.

Note that we do not consider a separate state for missing alleles, but rather exclude sites

from the observation sequence at which one or both alleles have been missed.

3.1 Transition model

Our HMM employs a left-to-right architecture, meaning that the state transitions proceed in

one direction where transitions from a higher to a lower-numbered state have zero probability.

We define the transition matrix

A =

[
a00 a01

a10 a11

]
=

[
1− ϕ ϕ

0 1

]
(3)

where the coefficient aij denotes the probability of transition from state Hi to state Hj . Since

we have a10 = 0 (and thus a11 = 1), it is implied that we cannot return to the local genealogy

once it has been left. The transition from the local to the peripheral state is given by a01 = ϕ,

which is dependent on the genetic distance between consecutive variants in the sequence

and the number of meioses (generations) separating the two haplotypes considered.

From the target site at position k, the HMM proceeds until the end of the chromosome to

either the left or right-hand side relative to k. At the current site l in the sequence, we define

δl as the genetic distance observed between l and the immediately previous site at position

l − 1. The time since the two chromosomes inherited the local haplotype from a common

ancestor is treated as an unknown, but we use the following approximation to make broad

distinctions of coalescence times based on the sample frequency fk of the allele observed at

target site k. For concordant pairs, we calculate [8]

ξk =
−2fk
1− fk

log(fk) , 0 < fk < 1 (4)

which is the expected age of a selectively neutral allele at frequency fk in a population of

constant size. Since the above is dependent on the frequency of the allele observed at the

target site, it does not apply to discordant pairs, for which we set ξk = 1, as we cannot derive

an expectation when the allele is not shared by both haplotypes. We use the above to obtain

an approximation for the probability of transition from the local to a peripheral genealogy as

ϕl(k) = 1− e−4Neδlξk (5)
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where Ne is the diploid effective size of the population. Note that we therefore compute a

transition matrix Al(k) at every site along the sequence, dependent on the allele frequency at

the target site k and the genetic distance at the current site l.

Transition probabilities computed for different focal allele frequencies are illustrated

in panel A of the figure shown below. We note that differences in transition probabilities

resulting from focal allele frequency variation, in practice, have little impact on the allele

age estimation process. This is demonstrated through analysis of simulated data set A (see

Section 2). First, we calculated transition probabilities conditional on focal allele frequency,

as defined in this section and which is the default in GEVA. We then analyzed the same

data, but set ξk = 1 for all haplotype pairs to make the calculation of transition probabilities

independent of frequency. We found that age estimates were highly correlated (Spearman

rank correlation, ρ > 0.98) for each clock model; see panel B in the figure below.

Transition probabilities. Panel A shows the probability of transition from the local (H0) to the peripheral
(H1) state, ϕ, given the genetic distance (x-axis) for different allele frequencies (see legend; labels indicate
certain low and high frequencies). Note that the genetic distance is given in centiMorgan in the figure, but
transition probabilities are computed in units of Morgan in Equation (5). In the HMM, genetic distance
is measured between consecutive sites along the sequence, and allele frequency is taken as the observed
frequency of the alternative allele in the sample at a given focal site. Panel B shows density scatterplots of
allele age estimated (maxC = 500; maxD = 500) under each clock model for 5,000 variants (randomly drawn at
allele count 1 < x < N ) from data simulated with sample sizeN=1,000 haplotypes, Ne=10,000, µ = 1× 10−8,
and r = 1× 10−8; see Section 2 (Script 1). The same set of variants was analyzed using GEVA, but with
frequency-dependent transition probabilities in the HMM (x-axis), and with fixed transition probabilities
(y-axis). For the latter, we set ξk = 1 for all haplotype pairs; see Equation (5). Lower inserts indicate the
Spearman rank correlation statistic, ρ, and the squared Pearson correlation coefficient (on log-scale), r2,
calculated between the two corresponding sets of age estimates.
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3.2 Empirical emission model

We generated an empirical model from simulated data, which we modified to include realistic

distributions of error, to make the HMM robust in applications to real data. The model is

defined by a set of observation probabilities (emissions), denoted by σij(fl), where i identifies

the hidden state {Hi}i∈{0,1} and j the genotypic state {Gj}j∈{0,1,2} observed at site l along

the sequence of the two haplotypes considered. Emissions are obtained conditional on the

allele frequency, fl, observed in the sample at site l. Note that the emissions for the two

hidden states (H0, H1) are based on TMRCA, but which involves a simplifying assumption

(described further below) to construct a time-independent, approximate emission model.

The model was constructed by estimating the relative rates of observing each genotypic

state in pairwise shared haplotype segments (identified from genealogical records after

simulation using msprime; see Section 2), given allele frequency information and the TMRCA

for each segment. This was done through an iterative sampling process. We randomly

selected two haplotypes from simulated data and identified the locations of recombination

breakpoints to detect shared haplotype segments (non-recombinant sequence intervals).

Specifically, we scanned each genealogical tree along the sequence and recorded breakpoints

at coordinates where the genealogical relationship changed due to recombination, such that

the sequence interval in between two consecutive breakpoints was derived from the same

MRCA. Note that the continuous position coordinates internally stored by msprime may differ

from the discrete genomic positions after output to variant call format (VCF). We matched

breakpoint coordinates to the returned genomic positions to identify sequence intervals that

are observable from the data. For each segment, we recorded the TMRCA and retrieved the

enclosed variant sequences from both haplotypes. The genotypic states observed at each site

in the sequence interval were recorded together with the sample allele frequency at each

site. Segments shorter than 10 variant sites were removed. We repeated this process until

collecting ∼100 million segments (from >30,000 random haplotype pairs).

To illustrate differences arising from data error, we first analyzed data set B, which was

simulated using msprime under a complex demographic model that recapitulates the human

expansion out of Africa (described in Section 2). This is compared to data set B′, which is

a copy of B but where haplotypes were modified using empirically estimated error rates

(described in Section 2.1). Both data sets thereby have the same genealogical history.

We pooled segments into 100 TMRCA bins (evenly distributed on log-scale between

1 generation and 500,000 generations), within which we pooled genotypes into 500 allele

frequency bins (evenly distributed on linear scale). For each combination of TMRCA and

frequency bin, the relative rate of observing each genotypic state was obtained by normalizing

counts (to sum to 1). The resulting time and frequency-dependent distributions are shown in

panel A of the figure shown on Page 13. We found that the main differences were located

at the extremes of either TMRCA or frequency. But notably, before error, the relative rate

of observing heterozygous genotypes (G1) was zero (or near zero) in each frequency bin for

recent TMRCA (<10 generations), but non-zero throughout after error.
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Empirical emission probabilities. The relative rate of observing each genotypic state (G0, G1, G2) in
simulated data before error (data set B; top) and after error (data set B′; bottom). Panel A shows the relative
rates measured in 100 TMRCA bins, evenly distributed on log-scale between 1 generation and 500,000
generations (see legend), and for variants pooled into 500 evenly distributed allele frequency bins. For each
combination of TMRCA and frequency bin, measured rates were normalized to sum to 1 across the three
genotypic states. Panel B shows the relative rates as in (A), but where a nominal distinction at 100 generations
was made to determine emission probabilities in the local state (H0; ≤ 100 generations) and the peripheral
state (H1; > 100 generations) by allele frequency.

Next, we estimated emissions as defined for the model, specifically σij(fl), for which we

pooled segments into only two TMRCA bins, to make an approximate distinction between

recent shared ancestry and older genealogical relationships. We applied a nominal cutoff
at 100 generations to distinguish segments in hidden state H0 (TMRCA ≤ 100 generations)

from those in hidden state H1 (TMRCA > 100 generations). The resulting observation rates

(after pooling into 500 allele frequency bins) are shown in panel B of the figure shown

above, for the analyses before and after error. We used the observation rates obtained from

data after error as the emission model in subsequent applications of GEVA. These results

are available as part of the online repository of the GEVA software.* For frequencies not

captured by the set of recorded frequency bins, in practice (within GEVA), we use linear

interpolation to approximate the emissions at the observed sample allele frequency, which

we again normalize to ensure that observation rates sum to 1 per hidden state.

* https://github.com/pkalbers/geva/blob/master/hmm/hmm_emission_probs.txt
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Note that the distinction of TMRCA to determine observation rates in H0 and H1 is

arbitrary for any nominal cutoff. We see this as a useful simplification to distinguish a

local shared haplotype segment from the background “noise” of variation produced through

peripheral genealogies. However, one caveat is that we implicitly assume that local TMRCA

is on average younger than TMRCA at neighboring segments. Inference of breakpoints is

expected to be less problematic at older segments if the local segment sits within an extended

region where variation is derived from similarly old relationships, because we would quickly

transition into the peripheral state and infer a breakpoint nearby. But, conversely, it is less

likely that we can accurately infer breakpoints that delimit an older and short local segment

if the immediately following segment is younger and relatively long.

Further, we note that a nominal cutoff at 100 generations, in practice, may not reflect a

limit on the ability to infer breakpoints at shared haplotype segments with higher or lower

TMRCA, or on the performance of the method to estimate allele age. This is demonstrated

through comparison of age estimation in GEVA, performing pairwise analyses of the HMM

with emission models generated from different nominal cutoffs of TMRCA. We used the

default emission model generated with a TMRCA cutoff at 100 generations (from data after

error) and prepared a second model in the same way, but with a cutoff at 1,000 generations.

For the same set of 5,000 randomly selected variants in data set B′, we found that age

estimates were highly correlated (Spearman rank correlation, ρ > 0.94) for each clock model;

see figure below.

Comparison of allele age estimated with different empirically generated emission models. The correlation
between allele age estimated using GEVA with two different emission models in the HMM. Emissions were
generated from simulated data (after including realistic distributions of error), but with different nominal
cutoffs to distinguish the two hidden states (H0 and H1) based on younger and older TMRCA, respectively.
This was done by applying a TMRCA cutoff at 100 generations (x-axis) and with a cutoff at 1,000 generations
(y-axis). Each panel shows the density scatterplots of allele age estimated (maxC = 500; maxD = 500) under a
given clock model, for the same set of 5,000 variants (randomly drawn at allele count 1 < x < N ) from data set
B′, simulated with sample size N=5,000 haplotypes, Ne=7,300, µ = 2.35× 10−8, and variable recombination
rates (HapMap2, Chromosome 20); see Section 2 (Script 2). Lower inserts indicate the Spearman rank
correlation statistic, ρ, and the squared Pearson correlation coefficient (on log-scale), r2, calculated between
the two corresponding sets of age estimates.
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3.3 Empirical initial state model

Similar to the generation of emission probabilities described above, we estimated the initial

probability of being in eitherH0 orH1 empirically from simulated data. For concordant pairs,

we define πCi (fk) as the initial probability of being in state {Hi}i∈{0,1}, where fk is the sample

allele frequency at the focal site k. Likewise, we define πDi (fk) for discordant pairs. Again,

we used simulation data sets B and B′ (described in Section 2 and Section 2.1, respectively)

to obtain frequency-dependent estimates for πCi and πDi from the true positive rate (TPR)

of correctly observing allelic combinations by comparing pairs ({1, 1} for concordant pairs,

{0, 1} or {1, 0} for discordant pairs) before and after error.

In data without error, we have πC0 = 1 and πD0 = 1 with certainty at any fk (and therefore

πC1 = 0 and πD1 = 0). To estimate initial state probabilities in data after error, we used data

set B′ to divide the set of variants by allele count (simulated sample size N=5,000). We then

randomly sampled up to 1,000 sites per allele count category (1 < allele count < N ) and, for

each site, sampled up to 1,000 pairs per set of possible concordant and discordant pairs. For

both groups, we computed the TPR by comparison to the allelic combination seen at the

same position and for the same pair in data before error (data set B). We recorded the TPR at

each site and report mean TPR per allele count category; see figure shown on Page 16.

We defined πC0 (fk) and πD0 (fk) according to the recorded mean TPR at a given allele

frequency, and set πC1 (fk) = 1− πC0 (fk) and πD1 (fk) = 1− πD0 (fk). These results are available

as part of the online repository of the GEVA software.* Because these were recorded at a

fixed set of allele frequencies, we use linear interpolation to approximate the probabilities at

sample allele frequency fk, which we again normalize to ensure that probabilities sum to 1

per hidden state, separately for concordant and discordant pairs.

* https://github.com/pkalbers/geva/blob/master/hmm/hmm_initial_probs.txt
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Empirical initial state probabilities. The probability of being in the local H0 state at the initial position in
the sequence was estimated from the true positive rate (TPR) of correctly observing the allelic combination
{1, 1} for concordant and {0, 1} or {1, 0} for discordant pairs, by comparing the same pairs in data before
error (data set B) to corresponding coordinates in data after error (B′). The TPR was measured at sets of up
to 1,000 variants randomly selected per allele count category (1 < allele count < N ; where N=5,000 is the
number of haplotypes in the simulated sample), for which up to 1,000 concordant or discordant pairs were
sampled per variant. Panel A shows the mean TPR (±SE) per allele count category measured for concordant
pairs; shown in greater detail for allele counts in [2, 50] (left), and across the full allele frequency range (right).
Panel B shows the same as A, but for discordant pairs.
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4 Simulation study

We used simulated data to assess the genealogical estimation of variant age (GEVA) method

(Section 4.1), and compared GEVA to a strategy that employs PSMC as a method to infer

TMRCA posteriors from which allele age can be estimated (Section 4.2). Also, we evaluated

the performance of the heuristic rejection method (described in S1 Text) through which

outliers in the inferred TMRCA distribution are excluded prior to age estimation in GEVA

(Section 4.3).

4.1 Estimation of variant age in simulated sample data

The performance of GEVA was evaluated in terms of its accuracy to infer the TMRCA between

pairs of haplotypes, and to estimate allele age from the inferred TMRCA distributions. We

used simulation data sets A and B, which we generated under different demographic models

(described in Section 2). To reproduce the conditions typically present in applications to

real data, we also applied GEVA to data sets B′ and B′′, which we derived from B, but where

haplotype data were modified to contain realistic proportions of data error (B′; described

in Section 2.1) and additional error through in silico haplotype phasing (B′′; described in

Section 2.2).

We applied GEVA with scaling parameters as specified for each simulation. For data set

A, we used Ne =10,000, µ = 1× 10−8, and r = 1× 10−8. Allele age was estimated for 5,000

variants randomly drawn from sites with allele count 1 < x < N , which we analyzed with

maxC = 500 and maxD = 500 as the maximum number of concordant and discordant pairs

sampled per site (given a sample size of N =1,000). Thus, we inferred TMRCA posteriors

from locally estimated shared haplotype segments at >3 million concordant and discordant

pairs. We used our heuristic rejection method to exclude outlier pairs before estimating age.

Similarly, for B and its derived data sets B′ and B′′, we used Ne =7,300, µ = 2.35× 10−8,

and the HapMap genetic map (Phase 2; GRCh37; Chromosome 20) to determine variable

recombination rates over the simulated region. Data were simulated with a sample size

of N =5,000. Allele age was estimated for the same set of variants in B, B′, and B′′, with

maxC = 500 and maxD = 500. We selected 5,000 variants at random from the intersection of

sites at which the observed allele count satisfied 1 < x < N across the three data sets. More

than 3 million haplotype pairs were analyzed in each data set, where we excluded outliers

before estimating age.

The results of the analysis of data set A are shown in S1 Fig, in which we used different

metrics to measure estimation bias and correlation between true and estimated allele age

(S1 FigA) and pairwise TMRCAs inferred at each site (S1 FigB), for each of the three clock

models. Likewise, the results for data set B are shown in S2 Fig, data set B′ in S3 Fig, and

data set B′′ in S4 Fig. The metrics are described below.
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Evaluation of allele age. Let t denote the true time of the mutation event that gave rise

to the allele at a given site in the sample, for which we obtain an estimated age denoted

by t̂. Coalescent simulators typically do not record the actual point in time when a (neutral)

mutation occurred, as the probability of mutation is proportional to the branch length in

a simulated genealogical tree, and mutations are placed uniformly over a given branch. To

obtain a “true” value for allele age, we queried the simulation meta-data as recorded by

msprime to locate the branch on which a specific mutation occurred. A branch is delimited

by the time all carrier haplotypes have coalesced into a single lineage and the time this

lineage joined with any of the remaining lineages. Let t0 and t1 denote the times of coalescent

events that occurred immediately before and after the mutation event, respectively, as for the

simulated sample, where t0 ≤ t and t1 > t. We retrieved t0 and t1 from simulation records to

calculate the true time of a mutation as t′ =
√
t0 × t1, which is the geometric mean. Note that

the arithmetic mean would be appropriate given that mutation events are placed uniformly

between t0 and t1 in the neutral coalescent. However, we found the geometric mean to be

more reliable when analyzing larger sets of variants that exhibit high variability in terms of

mutational timing and branch lengths.

Correlation between true (t) and estimated (t̂) allele age was measured using Spearman’s

rank correlation coefficient, ρ. Additionally, we calculated Pearson’s r2 on log-scaled values

of true and estimated allele age. Estimation error was measured using the root mean squared

log10 error (RMSLE), calculated as

RMSLE =

√√√√ 1

n

n∑
i=1

(
log10

[
ti
]
− log10

[
t̂i
])2

(6)

where n is the number of variants considered.

We compute the following metric as a measure for estimation bias, denoted by ε, which is

adjusted for the time interval between t0 and t1. Error is quantified as the mean difference

relative to the time interval during which a focal mutation occurred, where underestimation

of allele age is calculated relative to t0, and overestimation relative to t1; calculated as

ε =
1

n

n∑
i=1

I0i

(
t0i − t̂i
t0i

)
+ I1i

(
t̂i − t1i
t1i

)
(7)

where I0 and I1 are indicator functions given by

I0i =

0 if t0i < t̂i

1 otherwise
, I1i =

0 if t1i > t̂i

1 otherwise
. (8)

Implicitly, this considers any age estimate falling in between t0 and t1 as being correct,

thereby making ε robust towards variations in branch lengths when considering larger sets

of variants with different coalescent histories.
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Evaluation of pairwise TMRCA. We used Spearman’s ρ and Pearson’s r2 to measure

correlation between true and inferred TMRCA for the sets of concordant and discordant pairs

sampled for each variant, as well as RMSLE as an error metric. The true time of coalescence

was determined from simulation records, and we used the mean of the Gamma distribution

as a point estimate of the inferred TMRCA, calculated as E[T ] = α/β, where the values of

α, β are obtained through analysis under a given clock model (see S1 Text).

4.2 Variant age estimation based on PSMC

The Pairwise Sequentially Markovian Coalescent (PSMC) model has been used to infer historic

changes in population size back in time [9], using sequence data from two haplotypes alone

(or one diploid individual). The model is based on the Sequentially Markov Coalescent (SMC)

model for analytically tractable approximation to the ancestral recombination graph (ARG)

in model-based inferences [10, 11]. Here, we employed the HMM-based PSMC method [9]

for TMRCA inference between two chromosomal sequences. In this approach, time is divided

into a number of discrete intervals, which are the hidden states of the HMM. Using the

forward-backward algorithm, a posterior probability is obtained for each state at different

sites equally spread across the full length of the chromosome.

Implementation. Here we used an implementation of the PSMC-based HMM to infer

the posterior distribution of coalescence times for concordant and discordant pairs at a

given target position; thus effectively treating PSMC as a substitute clock model. The

decode algorithm implemented in software available for the Multiple Sequentially Markovian

Coalescent (MSMC) method [12] specifically applies the PSMC-HMM when two haplotype

sequences are provided as input data. We modified decode to only output posterior

probabilities at a specified target position, but without hindering the computation of

posteriors along the sequence. The modified version of decode is available online.*

Pairwise TMRCA inference. We first used GEVA to estimate allele age for the sets of

variants selected from each simulated data set (A,B,B′,B′′), to then apply the modified

decode algorithm on haplotype data for the same sets of concordant and discordant pairs

as sampled through GEVA (before excluding outlier pairs). The number of discrete time

intervals (hidden states) was set to 64, which is the default in decode. For simulation panel

A, we used Ne=10,000, µ = 1× 10−8, and r = 1× 10−8 to specify the scaled mutation and

recombination rates. For B, B′, and B′′, we usedNe =7,300 and µ = 2.35× 10−8 to specify the

scaled mutation rate (θ = 2Neµ). Because decode does not operate on variable recombination

rates, we fixed the scaled recombination rate parameter to 80% of the value of θ, which is the

recommended setting.† A total of >14 million haplotype pairs was analyzed across all four

simulated data sets.

* https://github.com/pkalbers/msmc2
† https://github.com/stschiff/msmc/blob/master/guide.md
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Allele age estimation. We first applied our heuristic method to reject outlier pairs in the

sets of concordant and discordant pairs that were analyzed per focal variant. For this, we took

the mode of the inferred posterior distribution to obtain a point estimate of the TMRCA per

pair, which we recorded at the mean between time interval boundaries. We then estimated

allele age on the posteriors of the retained pairs using a composite posterior approach similar

to the one used by GEVA. Specifically, we computed

F (t) =
t∑
i=1

p(i)×max

[ n∑
j=1

p(j)

]−1
, for t = 1, 2, . . . , n (9)

for concordant pairs and F ′(ti) = 1− F (ti) for discordant pairs to approximate the

cumulative posterior distribution, where n is the number of discrete time intervals and

p(i) the posterior probability inferred at the ith time interval. The PSMC-derived composite

posterior distribution was then computed as

Φ
(
t
)
∝
∏

{a,b}∈C

Fa,b(t) ×
∏

{c,d}∈D

F ′c,d(t) , for t = 1, 2, . . . , n (10)

where C and D refer to the pre-selected (and subsequently filtered) sets of available

concordant and discordant pairs, respectively. A point estimate of allele age was taken

at the mode of the composite posterior distribution which we recorded at the mean between

time interval boundaries.

4.3 Performance of the heuristic pair rejection method

We evaluated our heuristic rejection method (see S1 Text) in terms of the proportion of

haplotype pairs rejected in data before and after error, for each clock model and the PSMC-

based approach. In data before error (B), pairwise TMRCA inference under the joint clock

model led to a rejection of 2.4% of pairs, across the 5,000 variants analyzed, which was

similar for the mutation clock (2.3%) and higher for the recombination clock (3.4%). In data

after error (B′), 8.1% of pairs were rejected for the joint clock, 7.6% for the mutation clock,

and 10.7% for the recombination clock. Additional phasing of data after error (B′′) showed

no notable differences compared to the proportion of pairs rejected in data set B′. When

using PSMC to infer TMRCA, only 1.7% of pairs were rejected in the analysis on data before

error (B), but 8.9% in data after error (B′ or B′′).
We further evaluated our heuristic filtering approach in terms of its accuracy to reject

pairs that have been selected by GEVA due to data error. This was done by comparing the

pairs selected in the analysis of data set B′ to their true allelic configuration in haplotype

data from B; results are given in the table on Page 21. For the 5,000 variants analyzed, we

measured the true positive rate (TPR) of correctly retaining error-free pairs, which was >94%

for concordant or discordant pairs and under each clock model. The true negative rate (TNR)

of correctly rejecting erroneous pairs was overall lower and differed between the two groups;
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>58% for concordant pairs and >38% for discordant pairs under each clock model. Filtering

of pairs inferred using the PSMC-based approach resulted in a similar TPR overall (>94%

for concordant or discordant pairs), but the TNR was much lower compared to either clock

model (9% for concordant pairs and 12.2% for discordant pairs), such that PSMC (within the

implementation used here) showed the lowest accuracy.

Accuracy of rejecting haplotype pairs in data after error. The performance of our heuristic rejection method
was evaluated in terms of its accuracy to reject erroneous haplotype pairs that have been selected by GEVA
from data after error (B′). Selected concordant and discordant pairs were distinguished into true and false
positives by scanning their allelic configurations in data before error (B). We report the true positive rate (tpr,
or sensitivity) of correctly retaining error-free pairs, the true negative rate (tnr, or specificity) of correctly
rejecting erroneous pairs, as well as the accuracy (acc) as the sum of true positives and true negatives divided
by the sum of all pairs; separately for the sets of concordant and discordant pairs selected across 5,000
variants analyzed under each clock model and the PSMC-based approach. However, because the 5,000
variants analyzed here were selected from the intersection of sites at which the observed allele count satisfied
1 < x < N across data sets B, B′, and B′′, the accuracy reported is likely to be artificially inflated overall.

Clock model
Concordant pairs Discordant pairs

tpr tnr acc tpr tnr acc

Mutation clock 97.0% 58.9% 96.0% 97.3% 38.2% 87.2%

Recombination clock 94.1% 66.6% 93.3% 94.3% 41.6% 85.3%

Joint clock 97.3% 60.0% 96.3% 96.8% 39.7% 87.0%

PSMC-based approach 94.6% 9.0% 37.3% 94.5% 12.2% 49.0%
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